湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义

杨金豹, 赵志丹, 莫宣学, 盛丹, 丁聪, 王丽丽, 侯青叶, 李红进. 湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义[J]. 岩石学报, 2015, 31(5): 1421-1432.
引用本文: 杨金豹, 赵志丹, 莫宣学, 盛丹, 丁聪, 王丽丽, 侯青叶, 李红进. 湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义[J]. 岩石学报, 2015, 31(5): 1421-1432.
YANG JinBao, ZHAO ZhiDan, MO XuanXue, SHENG Dan, DING Cong, WANG LiLi, HOU QingYe, LI HongJin. Petrogenesis and implications for alkali olivine basalts and its basic xenoliths from Huziyan in Dao County, Hunan Province.[J]. Acta Petrologica Sinica, 2015, 31(5): 1421-1432.
Citation: YANG JinBao, ZHAO ZhiDan, MO XuanXue, SHENG Dan, DING Cong, WANG LiLi, HOU QingYe, LI HongJin. Petrogenesis and implications for alkali olivine basalts and its basic xenoliths from Huziyan in Dao County, Hunan Province.[J]. Acta Petrologica Sinica, 2015, 31(5): 1421-1432.

湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义

  • 基金项目:

    本文受深部探测技术与实验研究专项课题(Sinoprobe-04-02)、科技部国际合作基金(2011DFA22460)和111计划(B07011)联合资助.

详细信息

Petrogenesis and implications for alkali olivine basalts and its basic xenoliths from Huziyan in Dao County, Hunan Province.

More Information
  • 本文在湖南道县虎子岩地区采集了碱性玄武岩、橄榄辉长岩和基性麻粒岩捕虏体。碱性玄武岩的斑晶为橄榄石(10%~15%),岩石K2O含量为2.88%~3.51%,Mg#值为80,具有洋岛玄武岩的微量元素特征,岩石具有富集的氧同位素组成(7.8‰~11.0‰),可能是其上升到地表后由碳酸盐岩组分的加入及后期风化蚀变作用造成的,其相对均一且为负的εNd(t)值和靠近EMⅡ地幔端员的特点,指示了该玄武岩是拉张构造环境下富集地幔部分熔融的产物。橄榄辉长岩具有弱富集的LREE (La/Yb)N=2.5~3.0)、弱的Eu正异常(δEu=1.03~1.06),其Sr-Nd同位素组成更靠近EMⅡ地幔端员,87Sr/86Sr比值、εNd(t)值及Nd模式年龄均高于碱性玄武岩,说明橄榄辉长岩是先形成的上述玄武岩浆在未到达地表之前局部发生结晶作用后形成的。基性麻粒岩捕虏体具较强的正Eu异常(δEu=1.42~4.41),其重稀土元素含量出现明显的分组特征,强烈亏损U、Th和Nb、Ta、Zr、Hf、Ti等高场强元素,同时Sr-Nd同位素组成显示其具有壳幔混合的特征。本文结合已有研究结果,探讨了岩浆起源和演化,以及与古太平洋板片俯冲有关的构造环境转换。
  • 加载中
  • [1]

    Bohlen SR and Mezger K. 1989. Origin of granulite terranes and the formation of the lowermost continental crust. Science, 244(4902): 326-329

    [2]

    Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier

    [3]

    Charvet J, Shu LS, Shi YS, Guo LZ and Faure M. 1996. The building of South China: Collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences, 13(3-5): 223-235

    [4]

    Che ZC, Liu L and Luo JH. 2002. The Regional Tectonics of China and Its Adjacent Areas. Beijing: Science Press (in Chinese)

    [5]

    Christensen NI and Mooney WD. 1995. Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100(B6): 9761-9788

    [6]

    Dai BZ, Jiang SY, Jiang YH, Zhao KD and Liu DY. 2008. Geochronology, geochemistry and Hf-Sr-Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: Petrogenesis and implications for lower crust evolution. Lithos, 102(1-2): 65-87

    [7]

    Du YS, Collerson KD, Zhao JX and Pang BC. 1999. Characteristics and petrogenesis of granulite enclaves in S-type granites in the junction of Guangdong and Guangxi provinces. Acta Petrologica Sinica, 15(2): 309-314 (in Chinese with English abstract)

    [8]

    Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter: Journal of Geostandards and Geoanalysis, 26(2): 181-196

    [9]

    Guo F, Fan WM, Lin G and Lin YX. 1997. Geochronology and petrogenesis of gabbroic xenoliths from Daoxian, southern Hunan Province, China. Chinese Science Bulletin, 42(15): 1661-1664 (in Chinese)

    [10]

    Holbrook WS. Mooney WD and Christensen NI. 1992. The seismic velocity structure of the deep continental crust. In: Fountain DM, Arculus R and Kay RW (eds.). Continental Lower Crust. Amsterdam: Elsevier, 1-44

    [11]

    Huang XL, Xu YG and Liu DY. 2004. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, East China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochimica et Cosmochimica Acta, 68(1): 127-149

    [12]

    James DE. 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annual Review of Earth and Planetary Sciences, 9: 311-344

    [13]

    Jia DC, Hu RZ and Lu Y. 2002. Lithogeochemistic characteristics and tectonic setting of basaltic rocks in southeastern Hunan Province. Journal of Jilin University (Earth Science Edition), 32(3): 209-214 (in Chinese with English abstract)

    [14]

    Jiang N, Carlson RW and Guo JH. 2011. Source of Mesozoic intermediate-felsic igneous rocks in the North China craton: Granulite xenolith evidence. Lithos, 125(1-2): 335-346

    [15]

    Jiang YH, Jiang SY, Dai BZ, Liao SY, Zhao KD and Ling HF. 2009. Middle to late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China: Implications for a continental arc to rifting. Lithos, 107(3-4): 185-204

    [16]

    Kempton PD and Harmon RS. 1992. Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic under plating. Geochimica et Cosmochimica Acta, 56(3): 971-986

    [17]

    Kempton PD, Downes H and Embey-Isztin A. 1997. Mafic granulite Xenoliths in Neogene alkali basalts from the Western Pannonian Basin: Insights into the lower crust of a collapsed orogen. Journal of Petrology, 38(7): 941-970

    [18]

    Kong H, Jin ZM and Lin YX. 2000. Petrology and chronology of granulite xenolith in Daoxian County, Hunan Province. Journal of Changchun University of Science and Technology, 30(2): 115-119 (in Chinese with English abstract)

    [19]

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750

    [20]

    Li CN, Zhong CS, Wang FZ and Liu CF. 2001. Geochemistry and petrogenesis of Mesozoic basaltic rocks and their deep-source enclaves in northern Guangxi-southern Hunan. Acta Petrologica et Mineralogica, 20(2): 112-122 (in Chinese with English abstract)

    [21]

    Li QL, Wu FY, Li XH, Qiu ZL, Liu Y, Yang YH and Tang GQ. 2011. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos, 126(1-2): 127-134

    [22]

    Li XH, Chung SL, Zhou HW, Lo CH, Liu Y and Chen CH. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, Geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geological Society, London, Special Publications, 226(1): 193-215

    [23]

    Li ZX, Li XH, Zhou HW and Kinny PD. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163-166

    [24]

    Liu YS, Gao S, Jin SY, Hu SH, Sun M, Zhao ZB and Feng JL. 2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China Craton: Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604

    [25]

    MacDonald GA and Katsura T. 1964. Chemical composition of Hawaiian lavas. Journal of Petrology, 5(1): 82-133

    [26]

    McKenzie DP and O'Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091

    [27]

    Müller D, Rock NMS and Groves DI. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study. Mineralogy and Petrology, 46(4): 259-289

    [28]

    Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47

    [29]

    Rudnick RL. 1992. Xenoliths-sample of the lower continental crust. In: Fountain DM, Arculus RJ and Kay RW (eds.). The Continental Lower Crust. Amsterdam: Elsevier, 269-308

    [30]

    Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267-309

    [31]

    Rudnick RL and Gao S. 2004. Composition of the Continental Crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Amsterdam: Elsevier Science, 1-64

    [32]

    Shu LS. 2006. Predevonian tectonic evolution of South China: From Cathaysian block to Caledonian Period folded orogenic belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract)

    [33]

    Smithson SB. 1978. Modeling continental crust: Structural and chemical constraints. Geophysical Research Letters, 5(9): 749-752

    [34]

    Sun SS and McDonough WF. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [35]

    Sun T. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract)

    [36]

    Wang FZ, Li HL, Zhu QW and Lu FX. 1997. Assemblages of anatectic xenoliths from volcanic and the petrology model of lithosphere in South Hunan Province. Geological Science and Technology Information, 16(3): 1-6 (in Chinese with English abstract)

    [37]

    Wang Q, Zhao ZH, Xiong XL, Li XH and Bao ZW. 2002. Ascertainment of the Shaoxing-Enping alkali-rich intrusive rock zone and preliminary discussion on its geodynamic implications. Geochimica, 31(5): 433-442 (in Chinese with English abstract)

    [38]

    Wang Q, Zhao ZH, Jian P, Xiong XL, Ma JL and Bao ZW. 2003. SHRIMP zircon U-Pb dating and tectonic implications of aegiriteaugite syenite from Yangfang in Wuyi Mountain. Chinese Science Bulletin, 48(14): 1582-1588 (in Chinese)

    [39]

    Wang Q, Zhao ZH, Jian P, Xiong XL, Bao ZW, Dai TM, Xu JF and Ma JL. 2005. Geochronology of Cretaceous A-type granitoids or alkaline intrusive rocks in the hinterland, South China: Constraints for Late-Mesozoic tectonic evolution. Acta Petrologica Sinica, 21(3): 795-808 (in Chinese with English abstract)

    [40]

    Wang YL, Zhang CJ and Xiu SZ. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract)

    [41]

    Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343

    [42]

    Xu DM, Ma DS, Zhang YM and Xie CF. 2007. Origin and geological significance of granulites from Qiongzhong complex. Acta Petrologica et Mineralogica, 26(1): 35-41 (in Chinese with English abstract)

    [43]

    Xu XS and Xie X. 2005. Late Mesozoic-Cenozoic basaltic rocks and crust-mantle interaction SE China. Geological Journal of China Universities, 11(3): 318-334 (in Chinese with English abstract)

    [44]

    Yu JH, Zhao L and Xu XS. 2002. Discovery and implications of granulite facies xenoliths from some Cenozoic basalts, SE China. Geological Journal of China Universities, 8(3): 280-292 (in Chinese with English abstract)

    [45]

    Yu JH, Xu XS, O'Reilly SY, Griffin WL and Zhang M. 2003a. Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprint to distinguish lower crust terranes from the North and South China tectonic Blocks. Lithos, 67(1-2): 77-102

    [46]

    Yu JH, Xu XS and Zhou XM. 2003b. Late Mesozoic crust-mantle interaction and lower crust components in South China: A geochemical study of mafic granulite xenoliths from Cenozoic basalts. Science in China (Series D), 46(5): 447-460

    [47]

    Zhai MG and Liu WJ. 2001. The formation of granulite and its contribution to evolution of the continental crust. Acta Petrologica Sinica, 17(1): 28-38 (in Chinese with English abstract)

    [48]

    Zhang HF, Gao S, Zhong ZQ, Zhang BR, Zhang L and Hu SH. 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 186(3-4): 281-299

    [49]

    Zhao ZH, Bao ZW and Zhang BY. 1998. Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province. Science in China (Series D), 41(1): 102-112

    [50]

    Zheng JP, O'Reilly SY, Griffin WL, Lu FX and Zhang M. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton. International Geology Review, 40(6): 471-499

    [51]

    Zheng JP, Sun M, Lu FX and Pearson M. 2003. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics, 361(1-2): 37-60

    [52]

    Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Yu CM, Zhang M and Li HM. 2004a. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: Evolution of the lower crust beneath the North China craton. Contributions to Mineralogy and Petrology, 148(1): 79-103

    [53]

    Zheng JP, O'Reilly SY, Griffin WL, Zhang M, Lu FX and Liu GL. 2004b. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 74(1-2): 41-65

    [54]

    Zhou XM, Sun T, Shen WZ, Shu LS and Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33

    [55]

    Zhu JS, Cai XL, Cao JM, Gao DZ, Zhao FQ, Du YS and Wang Y. 2005. The Three-Dimensional Structure of Lithosphere and Its Evolution in South China and East China Sea. Beijing: Geological Publishing House (in Chinese)

    [56]

    Zhu QW, Wang FZ, Lu FX and Zhong ZQ. 1996. Petrological properties of Mesozoic-Cenozoic basalts from southern Hunan Province. Geoscience, 10(4): 461-469 (in Chinese with English abstract)

    [57]

    车自成, 刘良, 罗金海. 2002. 中国及其邻区区域大地构造学. 北京: 科学出版社

    [58]

    杜杨松, Collerson KD, 赵建新, 庞保成. 1999. 两广交界地区S型花岗岩中麻粒岩包体的特征和成因. 岩石学报, 15(2): 309-314

    [59]

    郭锋, 范蔚茗, 林舸, 林源贤. 1997. 湖南道县辉长岩包体的年代学研究及成因探讨. 科学通报, 42(15): 1661-1664

    [60]

    贾大成, 胡瑞忠, 卢焱. 2002. 湘东南玄武质岩石地球化学特征及构造环境. 吉林大学学报(地球科学版), 32(3): 209-214

    [61]

    孔华, 金振民, 林源贤. 2000. 道县玄武岩中麻粒岩包体的岩石学及年代学. 长春科技大学学报, 30(2): 115-119

    [62]

    李昌年, 钟称生, 王方正, 刘春芳. 2001. 桂北-湘南中生代玄武质岩石及其深源包体的地球化学性质和岩石成因探讨. 岩石矿物学杂志, 20(2): 112-122

    [63]

    舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431

    [64]

    孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335

    [65]

    王方正, 李红丽, 朱勤文, 路凤香. 1997. 湘南火山岩深源包体组合及岩石圈岩石学模型. 地质科技情报, 16(3): 1-6

    [66]

    王强, 赵振华, 熊小林, 李献华, 包志伟. 2002. 华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探. 地球化学, 31(5): 433-442

    [67]

    王强, 赵振华, 简平, 熊小林, 马金龙, 包志伟. 2003. 武夷山洋坊霓辉石正长岩的锆石SHRIMP U-Pb年龄及其构造意义. 科学通报, 48(14): 1582-1588

    [68]

    王强, 赵振华, 简平, 熊小林, 包志伟, 戴橦谟, 徐继峰, 马金龙. 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约. 岩石学报, 21(3): 795-808

    [69]

    汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421

    [70]

    徐德明, 马大铨, 张业明, 谢才富. 2007. 琼中麻粒岩的成因及地质意义. 岩石矿物学杂志, 26(1): 35-41

    [71]

    徐夕生, 谢昕. 2005. 中国东南部晚中生代-新生代玄武岩与壳幔作用. 高校地质学报, 11(3): 318-334

    [72]

    于津海, 赵蕾, 徐夕生. 2002. 中国东南新生代玄武岩中麻粒岩相捕虏体的新发现及其意义. 高校地质学报, 8(3): 280-292

    [73]

    翟明国, 刘文军. 2001. 麻粒岩的形成及其对大陆地壳演化的贡献. 岩石学报, 17(1): 28-38

    [74]

    朱介寿, 蔡学林, 曹家敏, 高德章, 赵凤清, 杜杨松, 汪洋. 2005. 中国华南及东海地区岩石圈三维结构及演化. 北京: 地质出版社

    [75]

    朱勤文, 王方正, 路凤香, 钟增球. 1996. 湘南中新生代玄武岩岩石学特征. 现代地质, 10(4): 461-469

  • 加载中
计量
  • 文章访问数:  5596
  • PDF下载数:  5150
  • 施引文献:  0
出版历程
收稿日期:  2014-04-29
修回日期:  2015-01-20
刊出日期:  2015-05-31

目录