北祁连石灰沟奥陶纪碳酸盐岩—硅质岩形成的构造环境

闫臻, 李继亮, 雍拥, 肖文交, 王宗起, 向永生. 北祁连石灰沟奥陶纪碳酸盐岩—硅质岩形成的构造环境[J]. 岩石学报, 2008, 24(10): 2384-2394.
引用本文: 闫臻, 李继亮, 雍拥, 肖文交, 王宗起, 向永生. 北祁连石灰沟奥陶纪碳酸盐岩—硅质岩形成的构造环境[J]. 岩石学报, 2008, 24(10): 2384-2394.
YAN Zhen, LI JiLiang, YONG Yong, XIAO WenJiao, WANG ZongQi, XIANG YongSheng. Tectonic environment of Ordovician carbonate-cherts in the Shihuigou area, North Qilian orogen[J]. Acta Petrologica Sinica, 2008, 24(10): 2384-2394.
Citation: YAN Zhen, LI JiLiang, YONG Yong, XIAO WenJiao, WANG ZongQi, XIANG YongSheng. Tectonic environment of Ordovician carbonate-cherts in the Shihuigou area, North Qilian orogen[J]. Acta Petrologica Sinica, 2008, 24(10): 2384-2394.

北祁连石灰沟奥陶纪碳酸盐岩—硅质岩形成的构造环境

  • 基金项目:

    中国地质科学院地质研究所所长基金(J0709)、国家重点基础研究发展规划项目(2007CB411307)和国家自然科学基金委项目(40334044, 40772137,40725009)联合资助

Tectonic environment of Ordovician carbonate-cherts in the Shihuigou area, North Qilian orogen

  • 北祁连造山带石灰沟奥陶纪硅质岩与碱性玄武岩、熔结凝灰岩、火山碎屑岩、泥岩、杂砂岩、砂屑灰岩、生物碎屑灰岩及生物礁共同构成了一个相对完整的海山组合序列。其中硅质岩中含有早—中奥陶世牙行刺化石,泥岩和砂岩中含有中—晚奥陶世三叶虫和笔石化石。硅质岩地球化学特征研究表明其源区为其形成提供了丰富的碎屑物质来源,从而表现为LREE富集,Eu*CN负异常特征; 这些硅质岩形成于陆缘环境,并非深海或洋中脊环境。
  • 加载中
  • [1]

    Ben-Avrahem Z, Nur A, Jones D and Cox A. 1981. Continental accretion: From oceanic plateau to allochthonous terranes. Science, 213, 47 -54

    [2]

    Blome CD and Nestell MK. 1991. Evolution of a Permian-Triassic sedimentary melange, Grindstone terrane, east-central Oregon. Geological Society of America Bulletin, 103:1280 -1296

    [3]

    Bogdanov NA and Dobretsov NL. 2002. The Okhotsk volcanic oceanic plateau. Russian Geology and Geophysics, 43:101 -114

    [4]

    Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and islands. Geological Society of America Bulletin, 105:715 -737

    [5]

    Dobretsov NL, Buslov MM and Uchio Yu. 2004. Fragments of oceanic islands in accretion-collision areas of Gomy Altai and Salalr, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time. Journal of Asian Earth Sciences, 23 : 673 - 690

    [6]

    Doubleday PA and Leat PT, Alabaster T, Nell PAR, Tranter TH. 1994. Alloehthonous oceanic basalts within the Mesozoic accretionary complexs of Alexander Island, Antarctica: Remnants of proto-Pacific oceanic crust. Journal of Geological Society London, 151 : 65 -78

    [7]

    Du Y, Zhu J and Gu SZ. 2006. Sedimentary geochemistry of cherts from the Middle-Upper Ordovician in Shihuigou area, North Qilian orogenic belt and its tectonic implications. Geological Review, 52 (2) : 184 -189

    [8]

    Fedo CM, Eriksson KA and Krogstad EJ. 1996. Geochemistry of shales from Archean ( ~ 3.0Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochemical Cosmochimical Acta, 60 : 1751 - 1763

    [9]

    Fedo CM, Nesbitt HW and Young GM. 1995. Unravelling the effects of potassium metamorphism in sedimentary rocks and palesols, with implications for paleoweathering conditions and provenance. Geology, 23 : 921 -924

    [10]

    Girty GI-I, Ridge DL, Knaack C, Johnson D and A1-Riyam R. 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66 : 107 - 118

    [11]

    Hamilton WB. 1988. Plate tectonics and island arcs. Geological Society of America Bulletin, 100:1503 - 1527

    [12]

    Isozaki Y, Maruyama S and Furuoka F. 1990. Accreted oceanic materials in Japan. Tectonophysics 181 : 179 -205

    [13]

    Juteau T and Maury R. 1997. The oceanic crust, from accretion to mantle recycling. Springer-Praxis Series in Geophysics, 1 -390

    [14]

    Kanmera K and Sano H. 1991. Collisional collapse and accretion of late Paleozoic Akiyoshi island. Episodes, 14 : 217 - 223

    [15]

    Kunimaru T, Shimizu H, Takahashi K and Yabuki S. 1998. Differences in geochemical features between Permian and Triassic cherts from the Southern Chichibu terrane, southwest Japan : REE abundances, major element compositions and Sr isotopic ratios. Sedimentary Geology, 119:195-217

    [16]

    Li JL. 2004. Basic characteristics of accretion-type orogens. Geological Bulletin of China, 23:947 -951

    [17]

    Macpherson G, Phipps SP and Grossman JN. 1990. Diverse sources for igneous blocks in Franciscan m~langes, California Coast Ranges. Journal of Geology, 98 : 845 - 862

    [18]

    Masson DG, Parson LM and Milson J. 1990. Subduction of island at the Java trench: A review with long-range sidescan sona. Tectonophysics, 185 : 51 -65

    [19]

    McLennan SM, Taylor SR and Erikkson KA. 1983. Geochemistry Archean shales from the Pilbara Supergroup, Western Australia. Geochemica et Cosmochimica Acta, 47:1211 -1222

    [20]

    Mitchell AHG. 1970. Facies of an early Miocene volcanic arc, Malekula Island, New Hebrides. Sedimentology, 14 : 201 - 243

    [21]

    Murray RW, Buchholtz Brink M R, Gerlach DC, Price Russ Ⅲ G and Jones DL. 1991. Rare earth, major, and trace elements in chert from the Franciscn Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geoehimiea et Cosmochimica Acta, 55 : 1875 - 1895

    [22]

    Murray RW, Buchhohz ten Brink MR, Gerlach DC, Russ DP and Jones DL. 1992. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert : Perspectives gained from the DSDP and ODP record. Geochim. Cosmochim. Acta, 56:1897 - 1913

    [23]

    Murray RW, Buchhohz ten Brink MR, Jones DL, Gerlach DC and Russ GP Ⅲ. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18:268 - 271

    [24]

    Murray RW. 1994. Chemical criteria to identify the depositional environments of cherts: General pricnciples and applications. Sedimentary Geology, 90: 213- 232

    [25]

    Owen AW, Armstrong HA and Floyd JD. 1999. Rare earth element geochemistry of upper Ordovician cherts from the Southern Uplands of Scotland. Journal of geological Society, London, 156 : 191 - 204

    [26]

    Qian Q, Zhang Q, Sun XM and Wang YM. 2001. Geochemical features and tectonic setting for basalts and cherts from Laohushan, North Qilian. Chinese Journal of Geology, 36 (4) : 444 -453

    [27]

    Qian Q. 1999. Lithogeochemical characteristics and geodynamic significance of Jiugequan ophiolite and Jiugequan-Laohushan "Ophiolites Cover", North Qilian (Doctoral Degree Thesis ). Beijing: Institute of Geology, Chinese Academy of Sciences, 1 - 66

    [28]

    Soja CM. 1996. Island-arc carbonates: Characterization and recognition in the ancient geological record. Earth-Science Reviews, 41:31 - 65

    [29]

    Sugisaki R, Yamamoto K and Adachi M. 1982. Triassic bedded cherts in central Japan are not pelagic. Nature, 298 : 644 - 647

    [30]

    Sugitani K, Yamamoto K, Wada H, Binu-Lal SS and Yoneshige M. 2002. Geochemistry of Archen carbonaceous cherts deposited at immature island-arc setting in the Pilbara Block, Western Australia. Sedimentary Geology, 151 : 45 -66

    [31]

    Von Huene R and Scholl DW. 1991. Observation at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Reviews of Geophysics, 29:279 -316

    [32]

    Wilson M. 1989. Igneous Petrogenesis. London: Kluwer Academic Publishers, 1 - 466

    [33]

    Xia LQ, Xia ZC, Peng LG et al. 1991. Determination of magmatie nature of Ordovician island arc volcanic series in the Shihuigou area in the Northern Qilian Mountains. Acta Petrologica et Mineralogica, 10 ( 1 ) : 1 - 10

    [34]

    Xiao WJ, Windley BF, Chen HL, Zhang GC and Li JL, 2002. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan plateau. Geology, 30:295 -298

    [35]

    Xiao WJ, Windley BF, Liu DY, Jian P and Liu CZ, 2005. Paleozoic accretionary tectonics of the Western Kunlun Range, China: New SHRIMP zircon ages from the Kudi ophiolite and associated granites, and implications for the crustal growth of Central Asia. Journal of Geology, 113 : 687 - 705

    [36]

    Xu ZQ, Xu HF, Zhang JX et al. 1994. The Zoulangnanshan Caledonian subductive comp|ex in the north Qilian mountains and its dynamics. Acta Geologica Sinica, 68( 1 ) : 1 -15

    [37]

    Zhang Q, Sun XM, Zhou D et al. 1997. The characteristics of north Qilian ophiolites, forming setting and their tectonic significance. Advance in Earth Sciences, 12 ( 4 ) : 366 - 393

    [38]

    Zhang RL, Zhao JT and Shen SN. 1997. Early Paleozoic marine volcanic sedimentary facies and geological prospecting in northern Qilian Mountains. Beijing: Geological Publishing House, 1- 132

    [39]

    甘肃省地质局第一区域地质测量队.1:20万《永登幅》(J-48-ⅩⅩⅥ)区域地质报告[R].,1961.

  • 加载中
计量
  • 文章访问数:  7039
  • PDF下载数:  8979
  • 施引文献:  0
出版历程
刊出日期:  2008-10-31

目录