基于光谱特征的月球岩性分类方法研究——以Apollo 16登月区域为例

陈建平, 王翔, 高光大, 姚美娟. 基于光谱特征的月球岩性分类方法研究——以Apollo 16登月区域为例[J]. 岩石学报, 2016, 32(1): 77-86.
引用本文: 陈建平, 王翔, 高光大, 姚美娟. 基于光谱特征的月球岩性分类方法研究——以Apollo 16登月区域为例[J]. 岩石学报, 2016, 32(1): 77-86.
CHEN JianPing, WANG Xiang, GAO GuangDa, YAO MeiJuan. On the methodology of lunar lithological classification based on spectral characteristics as exemplified from Apollo 16 moon landing area[J]. Acta Petrologica Sinica, 2016, 32(1): 77-86.
Citation: CHEN JianPing, WANG Xiang, GAO GuangDa, YAO MeiJuan. On the methodology of lunar lithological classification based on spectral characteristics as exemplified from Apollo 16 moon landing area[J]. Acta Petrologica Sinica, 2016, 32(1): 77-86.

基于光谱特征的月球岩性分类方法研究——以Apollo 16登月区域为例

  • 基金项目:

    本文受国家自然科学基金重大项目(41490634)及面上项目(41373068)和科技基础性工作专项(2015FY210500)联合资助.

On the methodology of lunar lithological classification based on spectral characteristics as exemplified from Apollo 16 moon landing area

  • 利用NASA行星数据系统提供Apollo计划登月点采样线路影像数据,通过与嫦娥二号CCD数据、印度M3数据空间校正获得采样路线坐标。开展嫦娥二号CCD数据与印度M3数据MAP(后验概率)融合并选择Apollo 15、Apollo 16-62231的LSCC测得的标准岩石双向反射率光谱与M3、嫦娥二号进行交叉定标。本文采用月球岩石光谱谱型全特征分析方法,选取涵盖Apollo计划登月获取的36个基站主要岩性87种、285件岩石样品,利用校正后的M3数据分析月球典型岩石各阶吸收反射特征,建立月球典型岩石标准遥感影像光谱库,此后应用Apollo 623个岩石样品进行对比得到很好结果,同时完成Apollo 16登月点周围领域岩性分布图,并讨论了研究区的岩石成因,Apollo 16区域形成于高地大撞击,在早期的研究中已经被用于划分月球年代,本文方法对于月球岩石类别研究与理解月球的岩浆演化具有重要的研究价值。
  • 加载中
  • [1]

    Apollo 16 Preliminary Examination Team. 1973. The Apollo 16 lunar samples: Petrographic and chemical description. Science, 179(4068): 23-34

    [2]

    Bogard DD, Nyquist LE, Hirsch WC et al. 1973. Trapped solar and cosmogenic noble gas abundances in Apollo 15 and 16 deep drill samples. Earth and Planetary Science Letters, 21(1): 52-69

    [3]

    Carr LP and Pillinger CT. 1984. Nitrogen isotopic composition of osbornite from the Bustee meteorite. Lunar. Planet. Sci 03/1984; 15:129-130

    [4]

    Cirlin EH and Housley RM. 1982. Distribution and evolution of Zn, Cd, and Pb in Apollo 16 regolith samples and the average U-Pb ages of the parent rocks. In: Proceedings of the 12th Lunar and Planetary Science Conference. New York and Oxford: Pergamon Press, 529-540

    [5]

    Ding XZ, Wang L, Han KY et al. 2014. The lunar digital geological mapping based on ArcGIS: Taking the Arctic region as an example. Earth Science Frontiers, 21(6): 19-30 (in Chinese with English abstract)

    [6]

    Dowty E, Keil K and Prinz M. 1974. Lunar pyroxene-phyric basalts: Crystallization under supercooled conditions. Journal of Petrology, 15(3): 419-453

    [7]

    Du JS, Chen C, Liang Q et al. 2010. The characteristics of rock-density distributions on the surface and in the crust of the Moon. Chinese Journal of Geophysics, 53(9): 2059-2067 (in Chinese with English abstract)

    [8]

    Elphic RC, Lawrence DJ, Feldman WC et al. 1998. Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data. Science, 281(5382): 1493-1496

    [9]

    Fan E, Chu J and Wang L. 2009. Review of studies about methods on optimal bands selection of multispectrum datasets of lunar surface. Computer and Modernizatio, (4):39-43, 47 (in Chinese with English abstract)

    [10]

    Ganapathy R, Morgan JW, Higuchi H et al. 1974. Meteoritic and volatile elements in Apollo 16 rocks and in separated phases from 14306. In: Proceedings of the 5th Lunar Science Conference. New York: Pergamon Press, 1659-1683

    [11]

    Gilmore MS, Thompson DR, Anderson LJ et al. 2011. Superpixel segmentation for analysis of hyperspectral data sets, with application to Compact Reconnaissance Imaging Spectrometer for Mars data, Moon Mineralogy Mapper data, and Ariadnes Chaos, Mars. Journal of Geophysical Research: Planets, 116(E7): E07001

    [12]

    Gross J, Treiman AH, Filiberto J et al. 2011. Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato-980459. Meteoritics & Planetary Science, 46(1): 116-133

    [13]

    Haber T, Norman MD, Bennett VC et al. 2014. Formation ages, cogenetic relations and formation processes of a set of Apollo 16 impact melt rocks. In: Proceedings of the 45th Lunar and Planetary Science Conference. New York: Pergamon Press, 1693

    [14]

    Hartmann WK. 2003. Megaregolith evolution and cratering cataclysm models: Lunar cataclysm as a misconception (28 years later). Meteoritics & Planetary Science, 38(4): 579-593

    [15]

    Heiken GH, Vaniman DT and French BM. 1991. Lunar Sourcebook: A User's Guide to the Moon. London: Cambridge University Press

    [16]

    Hodges FN and Kushiro I. 1973. Petrology of Apollo 16 lunar highland rocks. 5th Lunar and Planetary Science Conference Proceedings, 1033

    [17]

    Isaacson PJ, Pieters CM, Besse S et al. 2011. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra. Journal of Geophysical Research: Planets, 116(E6): E00G11

    [18]

    Jiao ZH. 2012. Lunar surface material information extraction from visible and near-infrared remote sensing: The cases study in Aristarchus and the South Pole-Aitken Basin. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese)

    [19]

    Kaydash V, Pieters C, Shkuratov Y et al. 2013. Lunar opposition effect as inferred from Chandrayaan-1?M3 data. Journal of Geophysical Research: Planets, 118(6): 1221-1232

    [20]

    Krahenbuhl U, Ganapathy R, Morgan JW and Anders E. 1973. Volatile elements in Apollo 16 samples: Possible evidence for outgassing of the moon. Science, 180(4088):858-61

    [21]

    Li L, Liu SF, Wei W et al. 2012. Interpretation of landform of sinuous rilles on the moon based on multi-data of remote sensing. Remote Sensing for Land & Resources, (3): 16-21 (in Chinese with English abstract)

    [22]

    Lian Y, Chen SB, Meng ZG et al. 2014. Geological analysis of lunar middle and low latitude brightness temperature anomaly area based on Chang'E-2 MRM data. Acta Geoscientica Sinica, 35(5): 643-647 (in Chinese with English abstract)

    [23]

    Lim YM, Choi YJ, Jo YS et al. 2013. Hyper-spectral imager of the visible band for lunar observations. Journal of the Korean Physical Society, 62(11): 1587-1590

    [24]

    Ling ZC, Zhang J, Wu ZC et al. 2013. The compositional distribution and rock types of the Aristarchus region on the Moon. Scientia Sinica (Physica, Mechanica & Astronomica), 43(11): 1403-1410 (in Chinese)

    [25]

    Ling ZC, Liu JZ, Zhang J et al. 2014. The lunar rock types as determined by Chang'E-1 IIM data: A case study of Mare Imbrium-Mare Frigoris region (LQ-4). Earth Science Frontiers, 21(6): 107-120 (in Chinese with English abstract)

    [26]

    Liu DY, Jolliff BL, Zeigler RA et al. 2012. Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth and Planetary Science Letters, 319-320: 277-286

    [27]

    Liu J, Ouyang ZY, Li CL et al. 2006. Applications of mid-infrared spectra in the lunar exploration. Acta Mineralogica Sinica, 26(4): 435-440 (in Chinese with English abstract)

    [28]

    Liu JH, Wang ZW, Chen SB et al. 2014. Spectrum characteristics analysis of four lunar rocks based on the CE-1 Gamma-ray spectrometry data. Earth Science Frontiers, 21(6): 121-128 (in Chinese with English abstract)

    [29]

    Liu JJ and Li CL. 1999. Research progress of the spectral characteristics of the lunar material. Bulletin of Mineralogy, Petrology and Geochemistry, 18(2): 45-50 (in Chinese)

    [30]

    Liu JJ, Ren X, Tan X and Li CL. 2013. Lunar image data preprocessing and quality evaluation of CCD Stereo Camera on Chang'E-2. Geomatics and Information Science of Wuhan University, 38(2): 186-190 (in Chinese with English abstract)

    [31]

    Liu JZ and Ling ZC. 2012. Division of lunar rock types in Sinus Iridum area as an example. In: Proceedings of the 10th National Conference on the National Lunar Science and Comparative Planetary Astronomy and Astrophysics. Guilin: CSSR (in Chinese)

    [32]

    Meyer C. 1987. The Lunar Petrographic Thin Section Set. Houston, Texas: NASA JSC Curatorial Branch Publishing

    [33]

    Morgan JW, Ganapathy R, Laul JC et al. 1973. Lunar crater Copernicus: Search for debris of impacting body at Apollo 12 site. Geochimica et Cosmochimica Acta, 37(1): 141-154

    [34]

    Ouyang ZY, Li CL, Zou YL et al. 2010. The primary science result from the Chang'E-1 probe. Scientia Sinica (Terrae), 40(3): 261-280 (in Chinese)

    [35]

    Petro NE and Pieters CM. 2006. Modeling the provenance of the Apollo 16 regolith. Journal of Geophysical Research: Planets, 111(E9): E09005

    [36]

    Pieters CM. 1978. Mare basalt types on the front side of the moon: A summary of spectral reflectance data. In: Proceedings of the 9th Lunar and Planetary Science Conference. New York: Pergamon Press, 2825-2849

    [37]

    Pieters CM, Besse S, Boardman J et al. 2011. Mg-spinel lithology: A new rock type on the lunar farside. Journal of Geophysical Research: Planets, 116(E6): E00G08

    [38]

    Qiao L, Xiao L and Zhao JN. 2012. The diversity of geological features of the lunar Sinus Iridum Area. In: Proceedings of the 10th National Conference on the National Lunar Science and Comparative Planetary Astronomy and Astrophysics. Guilin: CSSR (in Chinese)

    [39]

    Qiao L, Xiao L, Zhao JN and Huang Q. 2013. Geological features and magmatic activities history of sinus Iridum, the moon. Scientia Sinica (Physica, Mechanica & Astronomica), 43(11): 1370-1386 (in Chinese)

    [40]

    Schaber GG, Scott DR and Irwin JB. 1972. Glass in the bottom of Small Lunar Craters: An observation from Apollo 15. Geological Society of America Bulletin, 83(1972):1573-1577

    [41]

    Spudis PD. 1984. Apollo-16 site geology and impact melts: Implications for the geologic history of the lunar highlands. Journal of Geophysical Research, 89(Suppl.1): C95-C107

    [42]

    Sun LZ, Ling ZC and Liu JZ. 2014. The spectral characteristics and remote detection of minerals in lunar Orientale Basin. Earth Science Frontiers, 21(6): 188-203 (in Chinese with English abstract)

    [43]

    Taylor LA, Mao HK and Bell PM. 1974. Identification of the hydrated iron oxide mineral akaganéite in Apollo 16 lunar rocks. Geology, 2(9): 429-432

    [44]

    Wang X, Chen JP, Xu YB et al. 2012a. Inversion of contents of TiO2 and MgO in Sinus Iridum area of lunar surface based on Chang'E data. Earth Science Frontiers, 19(6): 28-36 (in Chinese with English abstract)

    [45]

    Wang X, Chen JP, Li JF, Shi R and Wu Z. 2012b. Information extraction of the Chang'E-1 Interference Imaging Spectrometer (IIM) 2C data. Spectroscopy and Spectral Analysis, 32(4): 1145-1150 (in Chinese with English abstract)

    [46]

    Warner JL, Simonds CH and Phinney WC. 1976. Genetic distinction between anorthosites and Mg-rich plutonic rocks: New Data from 76255. Lunar Sci. VII 02/1976; 7:915

    [47]

    Whitten J and Head JW. 2015. Lunar cryptomaria: Mineralogy and composition of ancient volcanic deposits. Planetary and Space Science, 106: 67-81

    [48]

    Wilshire HG, Stuart-Alexander DE and Jackson ED. 1973. Apollo 16 rocks: Petrology and classification. Journal of Geophysical Research, 78(14): 2379-2392

    [49]

    Wu YZ. 2014. Reflectance spectroscopy of the Moon and its application. Earth Science Frontiers, 21(6): 74-87 (in Chinese with English abstract)

    [50]

    Xue B, Yang JF and Zhao BC. 2004. The study of spectral feature of major minerals on the lunar surface. Progress in Geophysics, 19(3): 717-720 (in Chinese with English abstract)

    [51]

    Yu YM, Gan FP, Zhou P et al. 2009. A comparison of spectral features between lunar and Earth's rocks and minerals and a brief introduction to the information extraction methods. Remote Sensing for Land & Resources, (4): 45-48, 52 (in Chinese with English abstract)

    [52]

    Zhang MH, Chen C, Lan RP and Chen HH. 2007. A preliminary analysis the distribution of metallic elements on the lunar surface. Earth Science Frontiers, 14(5): 277-284 (in Chinese with English abstract)

    [53]

    Zhang W and Bowles NE. 2013. Mapping lunar TiO2 and FeO with M3 data. In: Proceedings of European Planetary Science Congress. London: EPSC, 8: EPSC2013-374

    [54]

    Zhang XW, Jiang Y, Liu H et al. 2014. Spectrometric study of lunar pyroclastic deposits. Earth Science Frontiers, 21(6): 137-149 (in Chinese with English abstract)

    [55]

    Zhao BC, Tang Q and Xue B. 2013. Key technologies of CE-2 CCD stereo camera. Spacecraft Recovery & Remote Sensing, 34(4): 43-51 (in Chinese with English abstract)

    [56]

    Zhou XF. 2014. Compositional study of Mare Imbrium basalts of the Moon based on remote sensing data. Master Degree Thesis. Nanjing: Nanjing University (in Chinese)

    [57]

    丁孝忠, 王梁, 韩坤英等. 2014. 基于ArcGIS的月球数字地质填图: 以月球北极地区为例. 地学前缘, 21(6): 19-30

    [58]

    杜劲松, 陈超, 梁青等. 2010. 月球表层及月壳物质密度分布特征. 地球物理学报, 53(9): 2059-2067

    [59]

    范恩, 储珺, 王璐. 2009. 月球表面多光谱数据最佳波段选择研究. 计算机与现代化, (4): 39-43, 47

    [60]

    焦中虎. 2012. 可见光-近红外遥感在月表物质信息提取的应用——以Aristarchus和南极-艾肯盆地为例. 硕士学位论文. 北京: 中国地质大学

    [61]

    李力, 刘少峰, 韦蔚等. 2012. 基于多源遥感数据的弯曲月溪形貌特征解译. 国土资源遥感, (3): 16-21

    [62]

    连懿, 陈圣波, 孟治国等. 2014. 基于嫦娥二号微波辐射计数据月球中低纬度亮温异常区地质分析研究. 地球学报, 35(5): 643-647

    [63]

    凌宗成, 张江, 武中臣等. 2013. 月球Aristarchus地区的物质成分与岩石类型分布. 中国科学(物理学 力学 天文学), 43(11): 1403-1410

    [64]

    凌宗成, 刘建忠, 张江等. 2014. 基于"嫦娥一号"干涉成像光谱仪数据的月球岩石类型填图: 以月球雨海-冷海地区(LQ-4)为例. 地学前缘, 21(6): 107-120

    [65]

    刘剑, 欧阳自远, 李春来等. 2006. 中红外光谱在月球探测中的应用. 矿物学报, 26(4): 435-440

    [66]

    刘菁华, 王祝文, 陈圣波等. 2014. CE-1伽马能谱测量中4种月球岩石的能谱特征分析. 地学前缘, 21(6): 121-128

    [67]

    刘建军, 李春来. 1999. 月球物质波谱特征研究进展. 矿物岩石地球化学通报, 18(2): 45-50

    [68]

    刘建军, 任鑫, 谭旭, 李春来. 2013. 嫦娥二号CCD立体相机数据预处理与数据质量评价. 武汉大学学报(信息科学版), 38(2): 186-190

    [69]

    刘建忠, 凌宗成. 2012. 月面岩石类型的划分——以虹湾地区为例. 见: 第十届全国月球科学与比较行星学陨石学与天体化学学术研讨会会议论文集. 桂林: 中国空间科学学会

    [70]

    欧阳自远, 李春来, 邹永廖等. 2010. 绕月探测工程的初步科学成果. 中国科学(地球科学),40(3): 261-280

    [71]

    乔乐, 肖龙, 赵健楠. 2012. 月球虹湾地区地质特征多样性解译. 见: 第十届全国月球科学与比较行星学陨石学与天体化学学术研讨会会议论文集. 桂林: 中国空间科学学会

    [72]

    乔乐, 肖龙, 赵健楠, 黄倩. 2013. 月球虹湾地区地质特征解译及岩浆活动历史研究. 中国科学(物理学 力学 天文学), 43(11): 1370-1386

    [73]

    王翔, 陈建平, 许延波等. 2012a. 基于嫦娥数据的月球虹湾区域TiO2、MgO含量反演. 地学前缘, 19(6): 28-36 文中引用没有区别2012a还是b?

    [74]

    王翔, 陈建平, 李剑锋, 史蕊, 伍曌. 2012b. 嫦娥一号干涉成像光谱仪(IIM)2C级数据信息提取. 光谱学与光谱分析, 32(4): 1145-1150

    [75]

    孙灵芝, 凌宗成, 刘建忠. 2014. 月球东海盆地的矿物光谱特征及遥感探测. 地学前缘, 21(6): 188-203

    [76]

    吴昀昭. 2014. 月球反射光谱学及应用. 地学前缘, 21(6): 74-87

    [77]

    薛彬, 杨建峰, 赵葆常. 2004. 月球表面主要矿物反射光谱特性研究. 地球物理学进展, 19(3): 717-720

    [78]

    于艳梅, 甘甫平, 周萍等. 2009. 月地岩矿光谱特征对比及月表信息提取方法简介. 国土资源遥感, (4): 45-48, 52

    [79]

    张明皓, 陈超, 兰瑞平, 陈欢欢. 2007. 月球表面多种金属元素的分布特征初探. 地学前缘, 14(5): 277-284

    [80]

    张薛伟, 蒋云, 刘寒等. 2014. 月球火山碎屑堆积物光谱研究. 地学前缘, 21(6): 137-149

    [81]

    赵葆常, 唐茜, 薛彬. 2013. "嫦娥二号"卫星CCD立体相机的关键技术. 航天返回与遥感, 34(4): 43-51

    [82]

    周贤锋. 2014. 月球雨海玄武岩物质成分遥感研究. 硕士学位论文. 南京: 南京大学

  • 加载中
计量
  • 文章访问数:  6284
  • PDF下载数:  6172
  • 施引文献:  0
出版历程
收稿日期:  2015-07-01
修回日期:  2015-10-08
刊出日期:  2016-01-31

目录