使用多普勒超声成像比较栉孔扇贝与 虾夷扇贝循环生理特征^{*}

郝杰华^{1,2} 许 强^{2①} 汝少国¹ 杨红生²

(1. 中国海洋大学海洋生命学院 青岛 266003; 2. 中国科学院海洋研究所海洋生态与环境科学重点实验室 青岛 266071)

摘要 将先进的多普勒超声成像技术运用于栉孔扇贝(*Chlamys farreri*)和虾夷扇贝(*Patinopecten yessoensis*)循环生理学的研究中,首次量化了扇贝心率(HR)、血流加速度(ABF)、收缩峰值速度(PS)、舒张末期速度(ED)、血液最大瞬时血流量(Max-IBF)、血液最小瞬时流量(Min-IBF)、收缩期与舒张 期流速比(*S/D*)和阻力指数(RI)等指标,对比了两种不同耐温性扇贝的循环生理指标差异。结果表明, 两种扇贝 HR、ABF、PS、ED、Max-IBF、Min-IBF 与水温均呈正相关;在 10—25°C 间,栉孔扇贝 和虾夷扇贝 HR 范围分别为 16—39、14—31 次/min, ABF 范围分别为 1.75—15.84、0.99—7.41cm/s², PS 范围分别为 3.54—8.09、2.32—8.85cm/s, ED 范围分别为 1.51—3.15、1.09—4.23cm/s, Max—IBF 范围 分别为 0.051—0.193、0.137—0.316mL/s、Min—IBF 范围分别为 0.025—0.072、0.022—0.131mL/s、RI 范围分别为 0.49—0.69、0.42—0.54, S/D 范围为 2.28—2.83、1.75—2.12。同一温度下栉孔扇贝的 HR、ABF、PS、ED 指标水平均高于虾夷扇贝, Max-IBF、Min-IBF 水平均低于虾夷扇贝;两种扇贝 RI 和 S/D 指标均在一定范围内波动。研究显示,虾夷扇贝在较低的心脏和血流搏动节律下保持了高 效的血液流通,从而以相对较少的能量消耗维持了其机体代谢对血液循环的需求,这也与其冷水性 的生态习性相适应。

关键词 贝类;循环生理;心率;血流动力学;多普勒超声成像技术 中图分类号 Q463 doi: 10.11693/hyhz20150200044

栉孔扇贝(Chlamys farreri)和虾夷扇贝(Patinopecten yessoensis)是我国近海重要的养殖贝类。近年来,全 球气温的变化和海水温度异常波动对近海扇贝的不 利影响日趋严重(高菲, 2005)。掌握不同温度下扇贝 的血液循环生理特征,是揭示扇贝生理代谢机能变 化的有效途径,也是制订应对策略、优化养殖管理的 必然需求。循环系统生理学是动物生理学重要组成部 分,主要研究动物心脏、血管的生理特征、活动规律 及其影响因素等,研究的指标主要包括心率、血管收 缩舒张特征、血流动态(流向、流速、流量、阻力)等(杨 秀平等, 2002)。能反映心血管机能的循环系统生理学 指标是指示新陈代谢水平和机体机能状态的有效参 数(Trueman, 1967; Campbell *et al*, 2007)。但是由于缺 乏适用的技术,贝类血液循环生理的研究迟迟无法 开展,国外也仅对贻贝、腹足类等心率指标的生理节 律变化开展研究(Bakhmet *et al*, 2006; Braby *et al*, 2006; Kholodkevich *et al*, 2009; Burnett *et al*, 2013), 对其它循环生理功能的研究尚不多见。

多普勒超声成像技术是高等动物循环生理学研究的核心技术之一,可清晰呈现组织器官内部的血流信息,包括血流方向、速度、加速度等,从而实现血流状态的无损实时监测(Braby *et al*, 2006; Novelo *et al*, 2012)。近年来,该技术正逐步应用于鱼类、两栖类和其它水生动物的循环生理研究,但超声成像

^{*} 国家科技支撑计划项目, 2011BAD13B02 号; 国家自然基金委员会-山东省人民政府联合资助海洋科学研究中心项目, U1406403 号; 中国科学院战略性先导科技专项, XDA11020704 号。郝杰华, 硕士研究生, E-mail: haojiehua@126.com

技术在双壳贝类研究中的应用还很少,仅见于 Haefner 等(1996)针对贻贝的研究,阐述了不同温度 下贻贝心率和血流速度的变化特征。

本研究将多普勒超声成像技术引入贝类循环生 理研究中,选取我国北方重要的扇贝种类——栉孔扇 贝和虾夷扇贝,解析并量化了不同温度下两种扇贝 循环生理指标特征,以期揭示两种不同适温性的扇 贝在循环生理功能方面的适应性。

1 材料与方法

1.1 实验材料

1 龄栉孔扇贝(C. farreri)和虾夷扇贝(P. yessoensis) 分别在青岛胶州湾筏式养殖区和大连獐子岛底播养 殖区获得。清除扇贝表面的污物及附着生物,控温水 箱内暂养两周,暂养期间温度为(10±1)°C;盐度为 31.3。每天上午 10 点全量换水 1 次,并定量投喂小球 藻(Chlorella sp.)、金藻(Chrysophyta sp.)和三角褐指藻 (Phaeodactylum tricornutum)。 驯养 1 周后,栉孔扇贝 和虾夷扇贝分别随机挑选 6—10 只健康及规格相近 的个体用于实验(见表 1)。

表 1 栉孔扇贝和虾夷扇贝基础生物学指标

Tab.1 Basic biological indices of C. <i>farreri</i> and P. yessoensis				
指标参数	売高	売厚	湿重	血管直径
	(mm)	(mm)	(g)	(cm)
栉孔扇贝(n=10)	60.6 (± 4.1)	19.8 (± 3.4)	25.8 (± 4.4)	$0.17 (\pm 0.3)$
虾夷扇贝(n=6)	65.2 (± 6.5)	17.2 (± 3.2)	27.1 (± 5.2)	$0.26 (\pm 0.4)$

1.2 实验方法

1.2.1 温度处理 实验设置 10、15、20 和 25°C 4 个温度梯度,从 10°C 缓慢逐步加温(2°C/d)达到设定 温度,到既定温度后保持 1h,使扇贝处于相对稳定的 状态,然后测定血液循环生理学指标。采用控温水族 箱水浴控制温度,误差为±0.5°C。

1.2.2 仪器设备 实验所用仪器为 Z6 Vet 型便携 式彩色多普勒超声诊断仪(中国深圳 Mindray 公司), 探头频率为 8—14MHz。

1.2.3 测定方法 在测定扇贝时,用万向支架固 定超声探头,使探头没入水中且可自由调节探头方 向;用塑料夹固定扇贝于塑料水族箱底,待其自然张 口后调节探头的声波切面与扇贝贝壳面平行,微调 探头方向,使超声面切过扇贝出鳃血管,此时仪器显 示屏上出现扇贝血流的稳定图像,稳定 30s 后保存至 少 1min 的动态录像待后续分析。 1.2.4 彩超图像 在多普勒彩超模式下保存的扇 贝血管彩超图和心率波动图,见图 1。图中不同颜色 的血管代表不同的流动方向,其中蓝色代表入鳃血 管,红色代表出鳃血管;在心率波动曲线中,每个周 期代表一次心脏的收缩过程,波动的高低代表血管 中血液的瞬时流速,波峰处为其最大瞬时流速;其中 "62/170"表示在该分析录像时长共 170s,图像停留在 62s 处,左侧纵坐标表示套头的位置,右侧纵坐标表 示血流速度和方向。

图 1 多普勒彩超模式下扇贝血管的彩超图和心率波动图 Fig.1 The Doppler color picture showing scallop vascular and heart rate fluctuation

1.2.5 指标体系 实验扇贝的血流指标、计算方法 及其循环生理学意义指征如下:

(1) 心率(Heart Rate, HR, 次/min)

每分钟的心动周期即为扇贝的心率(HR), 心率 的大小能反映心脏的泵血能力。

(2) 收缩峰值速度(Peak Systolic Velocity, PS, cm/s)

代表所测量血管内血液瞬时峰值流速。

(3) 舒张末期速度(End-Diastolic Velocity, ED, cm/s)

代表所测量血管内血液最低瞬时速度。

(4) 血流加速度(Acceleration of Blood Flow, ABF, cm/s²)

单位时间内血流速度的提升率,即 ABF=(PS-ED)/t,能反映血流速度变化快慢和心脏的泵血机能。

(5) 血液最大瞬时流量(Maximum Instantaneous Blood Flow, Max-IBF, mL/s)

Max-IBF 表示扇贝血流收缩峰值速度对应的血管的瞬时最大血流量,与血管的直径和血液流速相关。

(6) 血液最小瞬时流量(Minimum Instantaneous Blood Flow, Min-IBF, mL/s)

Min-IBF 表示扇贝血流舒张末期速度对应的血管的瞬时最小血流量,与血管的直径和血液流速相关。

(7) 阻力指数(Resistive Index, RI)

阻力指数的意义为 RI=(PS-ED)/PS, 其值的大小

可以用来判断血液或血管的机能是否异常。

(8) S/D

S/D 表示血管收缩峰值速度与血管舒张末期速 度的比值,即 S/D=PS/ED;其值的大小可以用来判断 扇贝的血管是否受到损伤。

1.3 统计方法

使用 SPSS 19.0 进行单因素方差分析,显著性差 异定义为 *P*<0.05,数据以平均值±标准差(Mean±SD) 表示。同时分别对不同扇贝基础循环指标进行相关性 分析。

2 结果与分析

2.1 温度对栉孔扇贝和虾夷扇贝 HR 的影响

温度对栉孔扇贝和虾夷扇贝 HR 的影响总体相 似。栉孔扇贝和虾夷扇贝的 HR 与温度正相关,且温 度对栉孔扇贝和虾夷扇贝的 HR 均影响显著(图 2, P<0.05)。在同一温度下,栉孔扇贝的 HR 大于虾夷扇 贝;在 10—25°C 之间,栉孔扇贝变化范围为 16—39 次/min,虾夷扇贝变化范围为 14—31 次/min。在 10—20°C 范围内相邻两个温度设置下,栉孔扇贝 HR 有显著差异(P<0.05), 20°C 与最高温 25°C 无显著差异 (P>0.05);在 15—25°C 范围内相邻两个温度设置下, 虾夷扇贝 HR 有显著差异(P<0.05), 15°C 与最低温 10°C 无显著差异(P>0.05)。

2.2 温度对栉孔扇贝和虾夷扇贝 ABF 的比较

栉孔扇贝和虾夷扇贝 ABF 与温度呈正相关,且 温度对栉孔扇贝和虾夷扇贝 ABF 均影响显著(图 3, P<0.05)。栉孔扇贝 ABF 整体大于虾夷扇贝;在 10—25°C内, 栉孔扇贝变化范围为 1.75—15.84cm/s², 虾夷扇贝变化范围为 0.99—7.41cm/s²(*P*<0.05)。栉孔 扇贝在 15—25°C 范围内, 相邻两个温度设置下 ABF 无显著差异 (*P*>0.05), 与最低温 10°C 差异显著 (*P*<0.05); 虾夷扇贝则在 10—20°C 范围内, 相邻两个 温度设置下 ABF 无显著差异(*P*>0.05), 与最高温 25°C 差异显著(*P*<0.05)。

图 3 不同温度下栉孔扇贝和虾夷扇贝的 ABF Fig.3 The ABF of *C. farreri* and *P. yessoensis* in different temperatures

2.3 温度对栉孔扇贝和虾夷扇贝血管 PS 及 ED 的影响

栉孔扇贝和虾夷扇贝的 PS 值随温度的增加呈上 升趋势(见图 4)。在同一实验温度下,栉孔扇贝的 PS 大于虾夷扇贝;在 10—25°C 内,栉孔扇贝变化范围 为 3.54—8.09cm/s,虾夷扇贝变化范围为 2.32— 8.85cm/s。栉孔扇贝在 10—20、15—25°C 内,相邻两 个温度设置下 PS 无显著差异(*P*>0.05), 20°C 与最低温 10°C 差异显著(*P*<0.05);虾夷扇贝则在 10—20°C 范 围内,相邻两个温度设置下 PS 有显著差异(*P*<0.05), 20°C 与最高温 25°C 无显著差异(*P*>0.05)。

温度对栉孔扇贝和虾夷扇贝的 ED 影响不明显 (见图 5)。在 10—25°C 内,栉孔扇贝变化范围为 1.51—3.15cm/s,虾夷扇贝变化范围为 1.09—4.23cm/s。 栉孔扇贝在 10—20°C 内,相邻两个温度设置下 ED 无 显著差异(P>0.05), 20°C 和 25°C 与最低温 10°C 差异 显著(P<0.05); 虾夷扇贝则在 10—20°C 内,相邻两个 温度设置下 ED 无显著差异(P>0.05), 20°C 和 25°C 与 最低温 10°C 差异显著(P<0.05)。

2.4 温度对栉孔扇贝和虾夷扇贝瞬时血流量的影响

栉孔扇贝和虾夷扇贝的 Max-IBF 随温度升高呈 增加的趋势(见图 6);同一温度下,虾夷扇贝的 Max-

图 4 不同温度下栉孔扇贝和虾夷扇贝血管的 PS Fig.4 The PS of C. farreri and P. vessoensis in different temperatures

不同温度下栉孔扇贝和虾夷扇贝血管的 ED 的比较 图 5 The ED of C. farreri and P. yessoensis in different Fig.5 temperatures

IBF 大于栉孔扇贝。在实验温度梯度内栉孔扇贝的 Max-IBF、在 10°C 下最小值为 0.098mL/s, 25°C 下的 最大值为 0.210mL/s, 20°C、25°C 与 10°C 间差异显著 (P<0.05)。虾夷扇贝在实验温度梯度内、10°C下的最 小值为 0.226mL/s, 20°C 下出现峰值 0.297mL/s, 25°C 又略呈下降趋势, 实验温度梯度范围内血流量差异 不显著(P>0.05)。

栉孔扇贝和虾夷扇贝的 Min-IBF 变化趋势与最 大瞬时趋势相近(见图 7)。在实验温度内, 栉孔扇贝 在 10°C 下为其最小值, 25°C 为其最大值, 分别为 0.047、0.071mL/s、且温度范围内血流量差异不显著 (P>0.05)。栉孔扇贝在 10°C 下为其最小值, 25°C 为其 最大值,分别为 0.084、0.133mL/s, 且温度范围内血 流量差异不显著(P>0.05)。

2.5 温度对栉孔扇贝和虾夷扇贝 RI 及 S/D 的影响

温度对栉孔扇贝和虾夷扇贝的 RI 影响不明显(图 8, P>0.05);在10-25°C内,栉孔扇贝RI变化范围为

不同温度下栉孔扇贝和虾夷扇贝的 Max-IBF 图 6 Fig.6 The Max-IBF of C. farreri and P. vessoensis in different temperatures

图 7 不同温度下栉孔扇贝和虾夷扇贝的 Min-IBF Fig.7 The Min-IBF of C. farreri and P. vessoensis in different temperatures

0.49—0.69、 虾夷扇贝 RI 变化范围为 0.42—0.54。 栉 孔扇贝在 4 个温度点的 RI 无显著的差异(P>0.05); 在 虾夷扇贝中, RI 整体差异不大, 但 15°C 与 20°C 之间 的 RI 具有显著性差异(P<0.05)。

温度对栉孔扇贝和虾夷扇贝的 S/D 影响不明显 (图 9, P>0.05), 10-25°C内, 栉孔扇贝 S/D 变化范围 为 2.28—2.83、 虾夷扇贝 S/D 变化范围为 1.75—2.12。 栉孔扇贝在4个温度点的S/D无显著的差异(P>0.05); 在虾夷扇贝中, S/D 整体差异不大(P>0.05), 但 15°C 与 20°C 之间的 S/D 具有显著性差异(P<0.05)。

2.6 栉孔扇贝和虾夷扇贝生理指标相关性对比分析

对四种基础生理指标进行相关性分析发现、两 种扇贝存在十分相近的规律。心率与血流加速度、收 缩峰值血流速度均呈显著正相关,即心率越快,血流 加速度越大、收缩峰值血流速度越高。血流加速度与 收缩峰值血流速度呈极显著正相关、即血流加速度 越大, 收缩峰值血流速度越高(表 2, 表 3)。

图 8 不同温度下栉孔扇贝和虾夷扇贝的 RI Fig.8 The RI of *C. farreri* and *P. yessoensis* in different temperatures

图 9 不同温度下栉孔扇贝和虾夷扇贝的 S/D Fig.9 The S/D of C. farreri and P. yessoensis in different temperatures

	表 2 栉孔扇贝循圦生理指标相关性分析
Tab.2	Correlation result of the circulatory physiological index
	of C farreri

生理指标	HR	ABF	PS	ED		
HR	1					
ABF	0.865**	1				
PS	0.726**	0.672**	1			
ED	0.345^{*}	0.162	0.744^{**}	1		

*表示 5%水平上显著相关, **表示 1%水平上显著相关。其中, HR 为心率、ABF 为血流加速度、PS 收缩峰值速度、ED 为舒张末期速度

Tab.3 Correlation result of the circulatory physiological index of *P. yessoensis*

		2			
生理指标	HR	ABF	PS	ED	
HR	1				
ABF	0.893**	1			
PS	0.844**	0.840^{**}	1		
ED	0.804^{**}	0.800^{**}	0.952**	1	

*表示 5%水平上显著相关,**表示 1%水平上显著相关。其中,HR 为心率、ABF 为血流加速度、PS 收缩峰值速度、ED 为舒张末期速度 3 讨论

3.1 多普勒超声成像技术的应用

反映心血管机能的循环系统生理学指标可有效 地指示生物新陈代谢水平和机体机能状态。但是受监 测技术的限制,以往对贝类循环生理指标的研究仅 限于心率,研究方法多采用呼吸描记法(Trueman, 1967; Braby *et al*, 2006)、体积描记法(Dietz *et al*, 1980) 和直接观察法(Harrison, 1977a, b),其缺点是只能间 接测定,且需要破坏贝壳结构,会对测定指标产生影 响。本研究创新引入医用多普勒超声成像技术,准确 测量了扇贝心脏搏动特征、血液动力学以及血管机能 等多个指标,该技术对待测生物无创伤,可重复连续 获得血流生理数据,具有安全、方便等优点。该技术 的应用大大方便了贝类循环生理学的研究,为下一 步双壳贝类的循环生理学研究开辟了新出路。

3.2 温度变化对两种扇贝心脏机能和血流动力学特 征的影响

扇贝心率的高低能反映出扇贝心脏的泵血能力、 本实验中扇贝的心率与实验温度呈正相关, 这与其 它双壳贝类(紫贻贝、河蚌、紫踵劈蚌)的研究结果一 致(Nicholson, 2002; Pandolfo et al, 2009)。心率的高低 与儿茶酚胺类激素的调控密切相关。温度升高可以显 著提高栉孔扇贝和牡蛎血淋巴中儿茶酚胺的含量 (Lacoste et al, 2001a, b; Chen et al, 2008), 儿茶酚胺 通过儿茶酚胺-β 受体-cAMP 系统刺激心脏、可刺激 心肌细胞、使心率加快、收缩力增强、传导速度增快、 心输出量增加(Schlaich et al, 2005)。该现象也已在 鱼类、蟹类等其它生物的研究中得以证实, Campbell 等(2007)研究结果表明鱼类心率提高能直接导致单位 时间的心输出量增加、血液循环速度加快、使鱼类可 应对较高的机体代谢水平。De Wachter 等(1996)在研 究不同温度对螃蟹心率、每搏输出量、动脉血管的流 量中发现、当温度从 12°C 升至 20°C 时、心率、 每搏 输出量、动脉血管的流量显著增加。

与扇贝心率提升对应的是动脉血液加速度提高, 继而血液循环速率提升。相对于血流加速度的显著增加,在15—25°C之间,栉孔扇贝 PS、ED、Max-IBF 和 Min-IBF 均基本保持稳定,表明尽管血液输送总量 增加,但仍保持相对稳定的动力学状态;虾夷扇贝在 该温度段内血液动力学稳定状况相对较差,收缩期 峰值血流速度仅在20—25°C 下保持稳定,舒张期血 流速率在25°C 时已有显著升高,最高血流量也出现 下降趋势,表明其血液动力学已出现异常迹象,扇贝 机体可能已进入高温胁迫应激状态。

3.3 温度变化对两种扇贝血管机能的影响

RI 指标能反映血管某一横断面血流弹性阻力状态,可以对血管机能和是否出现异常进行定量评价, 当血液或血管机能异常时,血管阻力增加,舒张期血 流减少, RI 值增大;当 RI 值增大至 0.8 以上时,可以 断定血液或血管已受到损害(胡庆鹰等, 2009)。*S/D* 值 已广泛应用于胎儿动脉状态的监测,当 *S/D≥*3 时, 表明脐动脉血管出现异常(刘瑛等, 2005;李仲瑞等, 2012)。本实验结果表明,栉孔扇贝和虾夷扇贝的 RI 和 *S/D* 值随着温度的升高而增大,但变动范围较小, RI 值在 0.6 以下,变动范围 0.1 以内, *S/D* 值变动范围 在 0.3—0.5,结合其它循环生理指标可确定测得的 RI 和 *S/D* 值应处于扇贝的正常范围内,扇贝血管没有器 质性损伤,血液循环机能正常。但指示扇贝血管出现 异常的 RI 和 *S/D* 阈值是多少、脊椎动物的正常值范 围是否适用于扇贝还需要开展进一步实验进行界定。

4 结论

一般来说, 生活在寒冷区域的无脊椎动物其新 陈代谢速率较温暖区域的偏低、其生态学意义是最 大程度减少身体的能量损耗,有助于其适应低温环 境。栉孔扇贝为暖温型种类、主要分布于我国黄渤海 到东海沿岸以及日本(北海道)以南和朝鲜沿海(王祯 瑞, 2002a)、适温范围为 4—26°C, 20°C 左右为其最适 生长温度(王玲玲, 2006); 虾夷扇贝则为典型的冷水 性种类、自然分布区较栉孔扇贝更偏北、主要分布在 我国黄海北部和日本北部沿海、俄罗斯远东海及朝鲜 半岛海域(王祯瑞, 2002b), 适温范围为 0-25°C, 15°C 为其最适生长温度(常亚青等, 2007)。两种扇贝 的耐温性在循环系统生理特征上明显体现。虾夷扇贝 HR、ABF 和 PS 均低于栉孔扇贝, 而 Max-IBF 和 Min-IBF 均高于栉孔扇贝, 虾夷扇贝的血流阻力也要 低于栉孔扇贝、表明虾夷扇贝在较低的心脏和血流 搏动节律下保持了高效的血液流通、从而以相对较 少的能量消耗维持了其机体代谢对血液循环的需求、 这也与其冷水性的生态习性相适应。

参考文献

- 王玲玲,2006. 栉孔扇贝秋季苗种的培育及生长发育和摄食生 理生态的初步研究. 青岛:中国海洋大学硕士学位论文, 13—15
- 王祯瑞, 2002a. 中国动物志 无脊椎动物 第三十一卷 软体动

物门 双壳纲 珍珠贝亚目. 北京: 科学出版社, 175—177 王祯瑞, 2002b. 中国动物志 无脊椎动物 第三十一卷 软体动

- 物门 双壳纲 珍珠贝亚目. 北京: 科学出版社, 244—245
- 刘 瑛, 郑忠宝, 呼新华, 2005. 彩色多普勒血流图监测胎儿 脐动脉血流 S/D 比值异常的价值. 兵团医学, (3): 44—45
- 李仲瑞, 陶春梅, 2012. 脐血流 S/D 值监测与评价. 中国现代 医生, 50(14): 133—134
- 杨秀平,肖向红,2002.血液生理.见:杨秀平主编.动物生理 学.北京:高等教育出版社,72—82
- 胡庆鹰,崔 炜,吴格日勒等,2009.彩色多普勒超声检查肾 动脉阻力指数、搏动指数的研究进展.中国医药导报, 6(23):76—77
- 常亚青, 陈晓霞, 丁 君等, 2007. 虾夷扇贝(Patinopecten yessoensis) 5 个群体的遗传多样性. 生态学报, 27(3): 1145—1152
- Bakhmet I N, Khalaman V V, 2006. Heart rate variation patterns in some representatives of Bivalvia. Biology Bulletin, 33(3): 276—280
- Braby C E, Somero G N, 2006. Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (*genus Mytilus*). Journal of Experimental Biology, 209(13): 2554–2566
- Burnett N P, Seabra R, de Pirro M et al. 2013. An improved noninvasive method for measuring heartbeat of intertidal animals. Limnology and Oceanography: Methods, 11(2): 91-100
- Campbell H A, Fraser K P P, Peck L S et al, 2007. Life in the fast lane: the free-ranging activity, heart rate and metabolism of an Antarctic fish tracked in temperate waters. Journal of Experimental Marine Biology and Ecology, 349(1): 142—151
- Chen M Y, Yang H S, Xu B et al, 2008. Catecholaminergic responses to environmental stress in the hemolymph of Zhikong scallop Chlamys farreri. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309A(6): 289—296
- De Wachter B, McMahon B R, 1996. Temperature effects on heart performance and regional hemolymph flow in the crab *Cancer magister*. Comparative Biochemistry and Physiology Part A: Physiology, 114(1): 27–33
- Dietz T H, Tomkins R U, 1980. The effect of temperature on heart rate of the freshwater mussel, *Ligumia subrostrata*.
 Comparative Biochemistry and Physiology Part A: Physiology, 67(2): 269–271
- Haefner Jr P A, Sheppard B, Barto J et al, 1996. Application of ultrasound technology to molluscan physiology: Noninvasive monitoring of cardiac rate in the blue mussel, *Mytilus edulis* Linnaeus, 1758. Journal of Shellfish Research, 15(3): 685–688
- Harrison P T C, 1977a. Laboratory induced changes in the heart rate of *Lymnaea stagnalis* (L.). Comparative Biochemistry and Physiology Part A: Physiology, 58(1): 43-46
- Harrison P T C, 1977b. Seasonal changes in the heart rate of the freshwater pulmonate *Lymnaea stagnalis* (L.). Comparative

Biochemistry and Physiology Part A: Physiology, 58(1): 37-41

- Kholodkevich S V, Kuznetsova T V, Trusevich V V et al, 2009. Peculiarities of valve movement and of cardiac activity of the bivalve mollusc *Mytilus galloprovincialis* at various stress actions. Journal of Evolutionary Biochemistry and Physiology, 45(4): 524—526
- Lacoste A, Jalabert F, Malham S K *et al*, 2001a. Stress and stress-induced neuroendocrine changes increase the susceptibility of juvenile oysters (*Crassostrea gigas*) to *Vibrio splendidus*. Applied and Environmental Microbiology, 67(5): 2304–2309
- Lacoste A, Malham S K, Cueff A *et al*, 2001b. Stress-induced catecholamine changes in the hemolymph of the oyster *Crassostrea gigas*. General and Comparative Endocrinology, 122(2): 181–188

- Nicholson S, 2002. Ecophysiological aspects of cardiac activity in the subtropical mussel *Perna viridis* (L.) (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 267(2): 207–222
- Novelo N D. Tiersch T R, 2012. A review of the use of ultrasonography in fish reproduction. North American Journal of Aquaculture, 74(2): 169–181
- Pandolfo T J, Cope W G, Arellano C, 2009. Heart rate as a sublethal indicator of thermal stress in juvenile freshwater mussels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154(3): 347–352
- Schlaich M P, Kaye D M, Lambert E et al, 2005. Angiotensin II and norepinephrine release: interaction and effects on the heart. Journal of Hypertension, 23(5): 1077–1082
- Trueman E, 1967. Activity and heart rate of bivalve molluscs in their natural habitat. Nature, 214(5090): 832-833

APPLICATION OF DIGITAL ULTRASOUND IMAGING TO COMPARE THE CIRCULATION PHYSIOLOGY BETWEEN CHLAMYS FARRERI AND PATINOPECTEN YESSOENSIS

HAO Jie-Hua^{1, 2}, XU Qiang², RU Shao-Guo¹, YANG Hong-Sheng²

(1. College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; 2. Key Laboratory of Marine Ecology and Environment Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China)

Abstract We applied digital ultrasonic Doppler imaging to study circulatory physiology of two scallop species *Chlamys farreri* and *Patinopecten yessoensis*. First, we quantified several indices, including heart rate (HR), acceleration of blood flow (ABF), peak systolic velocity (PS), end-diastolic velocity (ED), maximum instantaneous blood flow (Max-IBF), minimum instantaneous blood flow (Min-IBF), resistive index (RI) and systolic and diastolic velocity ratio (*S/D*). Difference in these indices between the two species was compared, indicating that HR, ABF, PS, ED of both species showed a positive correlation with temperature. The thresholds of eight circulatory physiological indices between 10 and 25°C for *C. farreri* and *P. yessoensis* were as followed, respectively, HR 16—39, 14—31 beat/min; ABF 1.75—15.84, 0.99—7.41 cm/s²; PS 3.54—8.09, 2.32—8.85 cm/s; ED 1.51—3.15, 1.09—4.23 cm/s; Max-IBF 0.051—0.193, 0.137—0.316 mL/s; Min-IBF 0.025—0.072, 0.022—0.131 mL/s; RI 0.49—0.69, 0.42—0.54; and *S/D* 2.28—2.83, 1.75—2.12. At a same temperature, *C. farreri* showed greater values of HR, ABF, PS, and ED, but smaller Max-IBF, Min-IBF than *P. yessoensis*. The two species showed a fluctuation in RI and *S/D* within a certain range. Therefore, *P. yessoensis* has a more efficient circulatory function characterized by higher blood flow with relatively lower heart rate. In other words, *P. yessoensis* can meet the demand of blood circulation with less energy consumption of metabolism, which fits well with its adaptation to a cold-water environment.

Key words scallop; circulatory physiology; heart rate; blood flow; Doppler ultrasound imaging technology