一维时变冰雹云模式研究(二) 反映融化对雹谱双参数演变的影响[•]

许焕斌 王思微

(国家气象局气象科学研究院)

提 要

在電云物理和防雹研究中需要有一个较简单的模式。现有的较简单的一维模式由于没有 考虑融化作用对雹分布谱截距的影响,严重歪曲了零度层以下雹谱应有的物理图象,使人们难 以相信模拟的结果。为此,我们设计了一个能反映融化对冰雹双参数分布谱演变影响的一维 时变模式。计算结果表明本模式较为合理地描述了零度层以下的雹谱演变过程。利用这个模 式,计算了一批例子,研究了温度层结,湿度,成雨能力,及冰雹浓度对雹云发展过程的影响,得 出了一些有意义的结果。

一、引言

在電云物理防電原理以及冰雹預报的研究中,数值模拟是有力的工具。开展冰雹数 值模拟的研究工作将有助于推动雹云物理和防雹科学的发展。由于实体的或二维和三维 模式计算量太大,所以,开展参数化的一维时变雹云模式是比较现实的。为了研究雹云物 理和防雹原理,我们设计了一个反映雨和冰雹谱演变的冰雹模式^[1](简称模式A),但计算 量还是很大。在现有较简单的一维时变参数化模式(Wisner 1972)^[23]中,又不能较好地反 映電谱的演变,特别是在零度层以下,严重歪曲了融化对雹谱应有的物理演变图象,使人 难以相信在低层的冰雹演变过程的真实性。为此需设法改进。鉴于電谱的演变在零度层 以上有雹粒子的发生等因子,简单地反映其变化有困难,而在零度层以下,融化作用很突 出¹⁰,为了改进这一点,我们在 Wisner 模式的基础上采取了以下措施:

(1) 以零度层为界,上部用固定截距的指数式電谱分布 $N_i(D) = n_0 e^{-\lambda(i)D}$,而零度 层以下用截距和斜率皆可变的指数式分布 $N_i(D) = n_0(i) e^{-\lambda(i)D}$;

(2) 在零度层以下,引入雹粒子数浓度方程,内含有雹粒子的融化减少项;

(3)融化作用的结果是:冰雹总数目在减少,给定尺寸的冰雹数浓度也在减少,截距。 和斜率都在变小,这些又要与冰雹含量相容,根据这一物理图象,设计了二个判别调整子-

^{*} 本文于 1983 年 5 月 16 日收到, 1983 年 9 月 5 日收到修改稿。

¹⁾ 落速分选作用在零度层上下对非稳定降雹的雹谱影响都存在着,这里暂不考虑它的作用。

程序。判别 I 是使截距变化受融化量的制约; 判别 II 是融化量受变化了以后 的 截 距 制约。经过调整可以得出符合基本物理图象的谱演变。

二、模式的方程组

本模式与 Wisner 模式相比,主要改进或增添如下:

(1) 零度层以下雹浓度演变方程

$$\frac{\partial N_i}{\partial t} + V \frac{\partial N_i}{\partial z} = -\mu t N_i + \frac{\partial}{\partial z} (\rho_a U N_i) + P_{ng} / \rho_a$$
(1)

其中 P_{ne} 为融化造成的冰雹数变化率 [个/立方厘米·秒],此方程,在零度层以上多计算 一层,以保证零度层以下第一点可以运用此方程计算。

- (2) 分别导出了云水和水汽连续方程,并用迭代方法求凝结水量和雨水蒸发量。
- (3) 因冰雹生长有干、湿两种情况,取其小值而用之。
- (4) 引进了雨、雹和上升气流的拉格朗日边界控制方法。
- (5) 边、初条件同模式A。

三、P_{xx}项 的 决 定

假定冰雹的分布由下式决定

$$N_i(D) = N_a e^{-\lambda D} \tag{2}$$

$$N_a = N_i \cdot \rho_a \cdot \lambda \tag{3}$$

-

所以得

而

$$\lambda = \left(\frac{\pi \rho_i N_i}{I}\right)^{1/3} \tag{4}$$

冰雹因融化变小甚至消失。设直径小于 D_2 的冰雹在 Δt 时间内融化而消失,根据冰雹融化的热平衡方程可以决定 D_2 值为,

$$\int_{0}^{D_{2}} G1(1.6/D+G\ 2\ D^{-0.1})dD = 0$$
(5)

其中

$$G1 = \frac{4}{L_{f}} [K_{a}(T-273) + Lv\psi\rho_{a}(X-X_{so})]$$
(6)

$$G2 = 0.3 \left(\frac{4 g \rho_i}{3 C_D \rho_a}\right)^{1/4} v^{1/2}$$
(7)

有了 D_2 值以后,我们认为在原冰雹分布谱中直径小于 D_2 的那些冰雹已融化消失,因而

$$P_{N_{\rm F}} = -N_{\rm a} \exp(-\lambda D_2/2) D_2/\Delta t \tag{8}$$

鉴于求融化量和求融化消失数的参数化路径不同,最后得出来的 N;,λ 和 I 值可以 不相容。为了使其相容,就要以某个量为基准来进行调整。例如,认为冰雹融化量是可靠 的,修正融化消失数来适应;或是认为融化消失数是可靠的,修正融化量,当然还可以有交 叉调整二者的第三种方案。我们设计了前二种调整子程序。而文中所有的结果,除注明 者外,皆用第一种方案。

四、结 果

利用该模式计算的一个例子在图 1-3。

1. 把图1与模式4的图1相比,由于宏观控制方程相类同,其上升气流的大小和分 布,成雨初始高度等互相接近,但对于微观物理过程处理方式不同而显示出重要差别,这 些已在模式 A 中作了说明[1]。为了对比,我们还给出了图 4,这个图 4 是用改进了的 Wi-

图 1 模式B各参数的时间-高度剖面图

sner 模式(简称模式D)计算的结果,二者相比,降雹情况显著不同。模式D,由于没有考 虑融化减少冰雹数浓度的作用,云中含雹急速地转变成雨水,降雨量达到 40 mm, 而降雹 量只有 1.3 mm,两者之比,达到 1:30,在本模式中,零度层以下的冰雹融化明显,但不过 分,降雹总量达到 28 mm,降雨总量达到 49 mm,两者之比为 1:1.8,虽然差别如此之大, 但二个模式中,云中最大含雹量都达到了 6.3 克/千克。

由于我们的计算结果给出了很大的降雹量(28 mm),很长的降雹时间(32 分)。这与 实际情况相符合吗? 会不会又反过来影响了冰雹的融化速度和过份地有利于冰雹的降落 呢? 这可以从二方面来分析。第一,一个强的冰雹云单体常常在地面形成一个几十公里 长,几公里宽的雹击带,而局地降雹时间多为几分到十几分钟。对于一个移速为几十公 雙的雹云单体来说,是需要有一小时左右的降雹时间,换算为局地降雹量也只有7-8mm,

图 3 冰雹落地时零度层以下各格点冰雹谱随高度的演变

ŧ

图 4 模式D 各参数的时间-高度剖面图

这个量是常可以观测到的。这样的估计说明,模式给出的融化对雹谱演变的影响,如果 是有夸大的话,也还是在合理范畴之内。第二,出现这种情况,还与所采用的调整方案有 关。这里用的是以冰雹融化量为准。如果采用第二种方案,情况就会有相当大的差别(见 表 1-B),这不仅表现在降雹量上,而且反映在许多云动力和微物理过程方面。这说明要 正确地描述融化的影响还有许多细致的问题需待研究,其中包括去发展第三种调整方案; 也说明所采用的第一种方案,对冰雹因融化而消失的估计是偏低的。

2. 本模式中的下沉气流发生在近地层, 然后向上发展, 这点与模式 A 的计算结果相同; 而模式 D 的结果, 不论是 Wisner 本人的计算结果, 还是我们所复制改进的模式计算结果, 都是在零度层附近先出现下沉气流, 然后向下发展。这种差别看来是由于冰雹主要融化量发生的地方不同所致。

3. 由图 3 和图 4 看出,融化对冰雹谱演变起着显著的作用,不考虑这种作用,是会歪 **曲零**度层以下冰雹微物理结构的图象。

初看起来,图3所示的各谱分布具有几乎相同的斜率,这是由于图3只是该图右上角 物理示意图中的一小部分所致。由零度层处落下的大雹,只要足够大,在降落中不仅不会 融化消失,而且直径变化也不大,因而存在着一个准稳定点 D_M,而小些的冰雹有消失,有 位移,所以就会有右上角的物理示意图。当然,图3中所示的斜率少变,也与使用的调整 方案所决定的融化状态有关。

五、应用和讨论

利用这个模式计算了一些宏观、微观物理条件对冰雹过程的影响。

1. 大气温度层结的影响

表1列举了在其他条件不变时,仅由于温度递减率的改变,由模式 B 算得在不同条件 下各参变量的值。

变 _量 :y(°C/100m)	W	Zmai	TWmm	Ipei		下 R ₉₁₁	ММІ	MMR	η(%)
0.65	8.61	4.2	-3.1	1.7	4.9	5.3	5.5	27.8	35.9
0.70	13.0	7.0	- 23.4	4.3	5.6	6.4	16.8	39.6	59.9
0.75	17.4	7.4	-28.0	6.6	4.9	7.2	27.6	48.7	67.5

表 1-A 温度层结结构对冰雹过程的影响

由表 1-A 看出,温度层结变化,对冰雹的形成和降落影响很显著,当温度递减率,由 $\gamma = 0.65$ °c/100 m 增加到 $\gamma = 0.75$ °c/100 m 时,最大上升气流 W_{max} 所 在 高 度 增 加 了 3.2 公里,所处温度由-3°C降到-28°C, R_{max} 在云中相当,在云下增到 1.36 倍,降水量增 大到 1.75 倍。而降水效率也在增加,由 $\eta = 35.9%$ 增加到 67.5%。

这个结果说明了低层的增温和高层的冷平流降温,对冰雹的形成有重要作用,不仅影响上升气流速度值,还会影响最大上升气流所在的高度和温度,这些都是影响冰雹形成的 重要因素。这与大气物理所(1980)^[3]由观测得到的结论相一致。

表 1-B 所示结果,是采用另一种融化作用的判别调整子程序 得出的结果。 与表 1-A 相比,随着递减率的变化,上升气流最大值等前四项 可以 说完全相同,但降水效率、降雨 量、降雹量从变化趋势和量值都相差甚大,这说明了不同融化状态的影响是很明显的,其 中包括落速的影响。 这说明 融化作用 正确 表达 的复杂性,是需要进一步深入研究的问题。

变量 y(°C/ 100m)	W	Z _{max}	TW _{was}	Intz	R _{mes} 上	R 下	ММІ	MMR	MMI/ MMR	η(%)
0.65	8.6	4.2	-3.1	1.8	5.0	5.4	3.3	27.6	0.12	40.2
0.70	13.0	7.0	-24.5	4.2	5.5	6.6	9.2	39.3	0.23	45.3
0.75	17.4	7.4	-27.9	6.6	7.7	11.2	0.7	25.6	0.03	26.3

表 1-B 温度层结结构对冰雹过程的影响

2. 湿度的影响

在其他条件不变,单改变湿度;或在不稳定能量大致相等的情况下,改变湿度和温度 递减率,计算了一组例子,列在表 2 中。

۱.

4

٩

由表 2 看出,湿度的增加,其对云体和上升气流发展的作用类似于大气温度层结的影响,但也有 3 点不同:

变量 温度	W	Z	<i>TW</i>	I	R 上	R 下	MMR	MMI	MMI/ MMR
I	15.0	6.6	- 25.0	3.9	2.87	2.1	14.1	24.1	1.71
п	20.4	7.6	- 31.0	6.2	4.44	5.48	38.3	37.3	0.97
III1)	13.7	6.8	- 17.0	5.9	7.5	9.7	86.8	11.5	0.13

表 2 湿度变化对雨、雹过程的影响

¹⁾ r=0.6°C/100 米

这里温度分布为: 貫点温度在格点 0-8, Td=Te-LK 1+J; 在格点 9-29, T_d=T_t-LK 3;在格点 30-61, T_d=T_t-LK 2。

在 I 情况下: LK1=16, LK2=25, LK3=15, r=0.80;

在 II 情况下: LK1=13, LK2=20, LK3=10, r=0.80;

在 III 情况下; LK1=8, LK2=15, LK3=5, r=0.60。

因情况 III 温度很大,所以递减率就不可能太大,不然上升气流很强,雹、雨很难落下来,作为大湿度对比,-也列入表 2 中。

(1) 随着湿度的增加,总降水量增加十分明显;

(2) 当增加湿度,减少递减率,使其不稳定能量相当时,MMI/MMR 比值显著下降。

(3)上升气流的垂直分布廓线不同,高温度递减率情况下,上升气流分布廓线呈 P型,最大上升气流速度较大;而高湿度情况下,上升气流分布廓线呈 D型或 B型,最大上升气流速度较小(见图 5)。从云物理角度看,前者有利于雹发展,而后者有利于暴雨的形成^[4]。这与天气学中,在高不稳定能区内,湿度大的地方多暴雨,而湿度小的地方多冰雹.的概念是一致的。

3. 成雨能力的影响

云滴谱的总滴浓度数 N, 和离散度 D₀ 是影响云雨自动转化能力的二个参数。在其他. 条件不变的情况下,改变此值(N,/D₀)可以看一看成雨能力对冰雹过程的影响。

我们对比了二组计算个例,发现 N_o/D_o值的变化除了影响成雨时间和 成 雨 高 度 以 外,对上升气流,I_{max},R_{max},MMR,MMI 等都没有明显的影响。 但是它影响着云体发展早 期 0°C以上的云的微观结构场。表 3 给出了二 组对比例子中在 冰雹出现以后,直到冰雹. 落到零度层以下,0°C以上各点的 Σ R, Σ I, Σ W 的值,以及 Σ I/ Σ R 的比值。

表 3-1 是第一组,其最大上升气流为 14-15 m/s,相应的温度递减率 r=0.80℃/100 米。A 代表 N_e=100 个/立方厘米,D₀=0.5;B 代表 N_e=300 个/立方厘米,D₀=0.5。

从表 3 可以看出,在成雨能力强时,雹云发展的前期,零度层以上的云中降 水 粒子以. 过冷雨滴为主要成份;而在成雨能力弱时,在雹云发展前期,零度层以上的云中降水粒子, 冰相粒子占着优势地位。这种趋势随着云中上升气流值越大,越为明显。

模式计算的这个结果,为美国和苏联的雹云观测所支持^[53]。美国 NHRE 计划的观测 结果指出,那里的雹云,上升气流很强,云中零度层以上占主导地位的过冷降水 粒子 是霰 和雹,雹胚也主要是霰^[63],成雨过程弱,而苏联人的观测说他们那 里的冰雹云中,观 测 到³ 很大的过冷雨滴和很高的液水含量,而上升气流没有美国科罗拉多州的那么强。看来这.

图 5 当不稳定能大致相当条件下,不同湿度情况下的上升气流分布廓线 (1:LK1=6,LK2=10,LK3=3,r=0.55, 2:LK1=16,LK2=25,LK3=15,r=0.85)

种差别是同一物理规律的两种表现。因成雨能力和上升气流的条件不同可以形成不同微观结构的雹云。

4. 冰雹谱分布截距值 Nin 的影响

我们保持其它条件不变,改变 Nio 值,计算冰雹过程的发展,其结果列在表 4。

从表 4 看, N_{i0} 明显地影响着云内雨、雹的发展, 随着 N_{i0} 由 3.0×10^{-6} 增大到 9.0×10^{-4} , 下列参数的变化情况是:

1. 总降水量 MMI+MMR 在减少; 2. MMI 值也一直在减少; 3. MMR 先稍增加而 后减少; 4. MMI/MMR 在迅速变小; 5. 降水效率的变化, 先稍加大, 而后变小(即存在着

交	世界	1	2	3	4	5	6	7	8	9	10
A	$\sum_{i=1}^{n} I_{i}$ $\sum_{i=1}^{n} I_{i}$ $\sum_{i=1}^{n} I_{i}$	0.001 3.05 0.000	0.006 9.04 25.85 0.001	0.24 17.55 21.25 0.137	2.60 24.96 23.42 0.104	13.20 27.17 24.80 0.486	39.17 ¹⁾ 20.45 25.25 1.915				
B	$ \begin{array}{c} \Sigma I \\ \Sigma R \\ \Sigma W \\ \Sigma I / \Sigma R \end{array} $	0.001 1.30 34.65 0.001	0.09 4.31 41.04 0.021	1.22 9.33 46.60 0.131	8.51 11.72 49.86 0.726	22.67 9.51 51.59 2.384	41.14 5.09 49.94 8.083	59.81 2.42 44.40 24.715	63.72 1.68 41.51 37.93	65.24 1.33 41.78 49.05	65.63 1.27 42.08 51.68

表 3-1 第一组,最大上升气流为 14-15 m/s,相应的 y=0.80°C/100 米

1) 代表冰雹已降到零度层

表 3-2 第二组,其最大上升气流为 11.5-12 m/s,相应的 y=0.70 C/100 米

变量	时序	1	2	3	4	5	6
	Σ I		0.025	0.79	6.111)	16.77"	23.331)
	∑R		27.24	35.20	37.61	32.30	26.78
A	$\sum \mathbf{W}$		11.63	12.40	13.06	14.49	17.08
	$\sum \mathbf{I} / \sum \mathbf{R}$		0.001	0.022	0.162	0.519	0.871
	ΣI	0.001	0.014	0.57	3.99	13.88	24.37 1)
_	ΣR	5.27	12.03	20.95	27.66	25.80	20.88
В	ΣW	20.80	24.03	25.67	26.33	26.45	26.64
	$\sum I / \sum R$	0.000	0.001	0.027	0.144	0.538	1.167

1) 代表冰雹已降到零度层

表 4 Ni。值对冰雹过程的影响

交 N.o	W	Z	Τ	Init	R Ł	<i>R</i> ∎ •• [™]	W	ммі	MMR	MMI/ MMR	η	SS₩
9.0×10 ⁻⁴	18.1	7.4	- 27.9	7.5	10.7		3.2	0.2	23.1	0.01	0.315	2.19
3.0×10 ⁻⁴	17.4	7.4	- 27.9	6.6	7.7	11.2	3.2	0.7	25.6	0.03	0.462	1.67
3.0×10^{-5}	16.7	7.4	- 28.1	4.2	5.7	6.2	3.2	28.2	49.1	0.57	0.520	1.58
3.0×10 ⁻⁶	16.6	7.4	-28.1	2.5	6.1	6.4	3.2	30.4	47.5	0.64	0.510	1.52

一个具有最大降水效率的极值);6. 总凝结量则一直在变大;7. I_{max} 一直在增加;8. R_{max} 先稍减少,而后增加。

综合来看, N_{i0} 的增加, 虽云中平均分布斜率 λ 值也在变化, 但总的来说, 是冰粒子的 浓度增加了。随着冰粒子浓度的增加, 总凝结量在增加, 云中冰雹比含量也在增加, 但降 水效率则在降低, 究其原因, 主要是冰粒子的落速减少了, 因此推出, 在一定的 N_{i0} 变化范 围内, 冰相粒子的落速对降雹量和降水效率影响很大, 大的落速可以使云中水份迅速地达 到地面且融化量小, 地面降雹量大。

N,冰雹数浓度(个/克)	V上升气流速度(厘米/秒)
μ,夹捲率	ρ.——空气密度
U——冰雹落速	P,。——冰雹数发生率(个/厘米³·秒)
N.——冰雹谱分布截距	λ——冰雹谱分布斜率
I——冰雹比含量	ρ _i 冰雹密度
C _p ——阻力系数	L ₁ ——溶化比热
v动粘系数	₩水汽扩散系数
K.——热传导系数	

文中符号说明

参考文献

- [1] 许焕斌,王思微,一维时变冰雹云模式研究(一): 反映雨和冰雹大小分布谱双参数演变,气象学报, Vol. 43, No. 1, 13-25,1985年。
- [2] Wisner, C., H. D. Orville and C. Myers, An numerical model of a hailbearing cloud, J. Atmos. Sci., 29, 1160-1181, 1972.
- [3] 黄美元,王昂生等,人工防雹导论,60,科学出版社,1980。
- [4] 许焕斌,王思微,杨亚蔖,从暴雨的云物理数值模拟着暴雨形成中的某些问题,强对流天气文集,180—188, 气象出版社,1983。
- [5] Knight, C. A., G. B. Foote and P. W. Summers, Results of randomized hail suppression experiment in Northeast Colorado. Part 9:Overall discussion and summary in the context of physical research, J. Appl. M., 18, 1629-1639, 1979.
- [6] Knight, C. A. and N. C. Knight, Results of a randomized hail suppression experiment in Northeast Colorado. Part 5: Hailstone embryo types, J. Appl. M., 18, 1583-1588, 1979.

A NUMERICAL MODEL OF HAIL-BEARING CONVECTIVE CLOUD(2) HAILSTONE BIPARAMETER SIZE-DISTRIBUTION EVOLUTION CAUSED BY MELTING

Xu Huanbin Wang Siwei

(Academy of Meteorological Science, SMA, China)

Abstract

In the general parameterization models of hailcloud the value of intercept of hailstone size-distribution was defined by a constant and the melting effect on the decrease of hailstone number had not been considered, so that the feature of hail microstructure at below 0° C level was distorted. To improve the model we have developed a numerical model of a hail-bearing cumulus which is one dimensional and time-dependent, with a biparameter size-distribution associated with the melting of hailstones. The computed results of this model show that the feature of hail-microstructure below 0° C level is more appropriate and that the air humitity can influence cloud's updraft distribution profile which is important for the formation of hail or rain.