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ABSTRACT

The Advanced Regional Eta-coordinate Model (AREM) is used to explore the predictability of a heavy
rainfall event along the Meiyu front in China during 3–4 July 2003. Based on the sensitivity of precipitation
prediction to initial data sources and initial uncertainties in different variables, the evolution of error growth
and the associated mechanism are described and discussed in detail in this paper. The results indicate that
the smaller-amplitude initial error presents a faster growth rate and its growth is characterized by a transition
from localized growth to widespread expansion error. Such modality of the error growth is closely related
to the evolvement of the precipitation episode, and consequently remarkable forecast divergence is found
near the rainband, indicating that the rainfall area is a sensitive region for error growth. The initial error
in the rainband contributes significantly to the forecast divergence, and its amplification and propagation
are largely determined by the initial moisture distribution. The moisture condition also affects the error
growth on smaller scales and the subsequent upscale error cascade. In addition, the error growth defined by
an energy norm reveals that large error energy collocates well with the strong latent heating, implying that
the occurrence of precipitation and error growth share the same energy source—the latent heat. This may
impose an intrinsic predictability limit on the prediction of heavy precipitation.
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1. Introduction

It is widely accepted that the predictability of at-

mosphere is limited to a finite lead time due to the

interior stochastic dynamics. The concept of limited

predictability due to instability in dynamic systems

was first introduced by Maxwell (1876). Thompson

(1957) defined the atmospheric predictability as the

sensitivity to initial uncertainties and model errors in

numerical weather prediction (NWP).

The atmosphere possesses motions on many

scales. The scale-dependence of predictability was val-

idated in early studies by Lorenz (1969), who indi-

cated that the mesoscale motions are less predictable

than the synoptic- or planetary-scale motions. The

great progress in computer technology allows skillful

performance of the NWP models in predicting the

synoptic-scale evolution of weather systems. However,

NWP models still have difficulty in forecasting the

“mesoscale details” that are of great concern to fore-

casters. This can be partially attributed to the imper-

fectness in numerical models, but the uncertainty in

initial conditions is thought to be a key contributor.

The numerical research focusing directly on mesoscale

predictability began with Anthes et al. (1985), who

found little divergence of simulations from different

initial conditions in a limited-area mesoscale model.

Such a slow growth of forecast divergence was subse-

quently proved to be the artificial results due to the

strong numerical diffusion and fixed lateral boundary

conditions (Errico and Baumhefner, 1987).

Recently, Zhang et al. (2002, 2003) found that the

rapid growth of initial error and the attendant upscale

error growth contaminated the mesoscale predictabil-
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ity of the snowstorm in January 2000 along the east

coast of the United States, and the moist physics

was identified to be responsible for this strong initial-

condition sensitivity of the mesoscale forecast. These

results from a single case study were subsequently gen-

eralized by Tan et al. (2004), who examined the error

growth in an idealized moist baroclinic wave amplify-

ing in a conditionally unstable atmosphere. Zhang et

al. (2006) also investigated the mesoscale predictabil-

ity of a warm-season flooding event with stronger con-

vective instability but weaker baroclinic instability.

The results deduced that convective instability deter-

mines the rapid initial error growth at smaller scales,

while baroclinic instability affects the upscale energy

transfer and the error growth at larger scales.

It can be generalized from the above studies that

understanding of the initial uncertainty impact and

the error-growth modality is of great importance for

assessing the predictability of mesoscale systems, par-

ticularly with respect to the associated precipitation.

Since the generation of heavy rainfall is closely related

to atmospheric instability and incidentally to the at-

mospheric nonlinearity, the prediction in such an un-

stable flow regime thus becomes highly sensitive to

the initial condition. For instance, investigations of

the torrential precipitation in July 1998 over Wuhan

in China (Yu et al., 2001; Bei and Zhao, 2002) em-

phasized the importance of high-quality initial condi-

tion to the successful prediction of this heavy rainfall

case.

Being one of the deadliest and costliest natural

hazards in China, flood events have resulted in great

economic losses in the past decades, and accurate pre-

cipitation prediction is therefore economically invalu-

able. As the demand is increasing for more precise

forecast in order to minimize losses due to heavy rain-

fall destruction, the investigation of the impact of ini-

tial uncertainty on precipitation predictability is im-

perative and will lay an essential foundation for skill-

ful forecast. In this sense, the evolution of initial error

growth and the associated mechanism in NWP of pre-

cipitation should be discussed and analyzed in detail.

This paper explores the prediction of the heavy precip-

itation in July 2003 along the Meiyu front in China. It

is organized as follows. Model description and experi-

mental design are provided in Section 2. Sensitivity of

prediction to initial data sources and initial uncertain-

ties in different variables with different amplitudes is

discussed in Section 3. The detailed modality of error

growth and its relation to the development of precipi-

tation are discussed in Section 4. The mechanism for

error growth is analyzed in Section 5. Conclusions and

discussion are given in Section 6.

2. Mode description and experimental design

The AREM (Advanced Regional Eta-coordinate

Model) is used for this study. It is a mesoscale model

using the limited area Eta-coordinate system that can

accommodate steep terrains. This model is well mod-

ulated to the rainstorm numerical prediction in China

(Yu and Xu, 2004; Yu et al., 2004).

The predictability of heavy precipitation along

the Meiyu front in China from 0000 UTC 3 to 0000

UTC 4 July 2003 is investigated. All the numerical

simulations cover the domain 15◦–50◦N, 90◦–130◦E

with a 0.25◦ (about 37 km) horizontal resolution and

32 layers in the vertical. The cold-cloud explicit micro-

physical scheme, Betts convection adjustment scheme

(Betts and Miller, 1986), non-local boundary layer

scheme (Holtslag and Boville, 1993), Benjamin and

Seaman’s surface radiation parameter scheme (Ber-

jamin and Seaman, 1985), and multi-stratification pro-

file surface flux scheme are employed. The simulations

are all initialized at 0000 UTC 3 July 2003 and inte-

grated for 24 h with boundary conditions derived from

1◦×1◦ final analysis data of NCEP.

A series of sensitivity experiments are designed

to investigate the impact of initial conditions on the

precipitation prediction. Brief descriptions of these

experiments are given in Table 1.

It should be noted that the difference in each vari-

able between the initial condition of Exp−STN and

that of Exp−NCP has its magnitude much smaller

than the associated variable itself. Such differences

thus correspond to small perturbations. In this sense,

Exp−T and Exp−UV can be equivalently regarded as

adding small perturbations to the initial temperature-
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Table 1. A list of the sensitivity experiments

Objective Experiment Description

Sensitivity to initial data Exp−STN Initial data derived from conventional observation and reanalyzed

sources through the AREM objective analysis system

Exp−NCP Initial data derived from 1◦×1◦ final analysis of NCEP and reanalyzed

through the AREM objective analysis system

Sensitivity to initial uncertainties Exp−T Same as Exp−STN, except that the initial temperature and moisture

in thermodynamic variables distributions are derived from 1◦×1◦ NCEP data

Sensitivity to initial uncertainties Exp−UV Same as Exp−STN, except that the initial horizontal winds are derived

in dynamic variables from 1◦×1◦ NCEP data

Sensitivity to initial errors with Exp−T1, Same as Exp−STN, except for the addition of perturbations to initial

different amplitudes Exp−T05, temperature. Perturbation is defined by T
′ = T0 · Rand, where T0 is

Exp−T01, the amplitude and is set to 1, 0.5, 0.1, and 0.01 K respectively. Rand

Exp−T001 is a random number uniformly distributed within the interval –1 to 1

Contribution of initial error Exp−T01LP Same as Exp−T01 but only perturbing the initial temperature in the

in rainfall area to the forecast rainfall area (31◦–35◦N, 113◦–123◦E)

divergence and effect of initial Exp50−T01LP Same as Exp−T01LP except with the initial moisture being reduced

moisture condition on error growth by 50%

Impact of moist physics and the Expdry−T01LP Same as Exp−T01LP except with the latent heating being turned off

attendant latent heating on during the entire integration

error growth Expdryaf6h−T01LP Same as Exp−T01LP but without the latent heating after 6-h integration

and wind fields, which will not bring serious side ef-

fects to the balance among initial variables.

3. Analysis of the sensitivity experiments

3.1 Sensitivity to initial data sources

The 24-h accumulated precipitation valid at 0000

UTC 4 July is presented in Fig. 1. The observation

(Fig. 1a) shows that the west-east oriented rainband

has three rainfall centers located near (33◦N, 114◦E),

(33.5◦N, 117◦E), and (34◦N, 120◦E), respectively. The

simulated results show that Exp−NCP almost fails to

predict the heavy rainfall episode (Fig. 1c), while

Exp−STN performs well in simulating both the spa-

tial distribution of the rainband and the location of

rainfall centers (Fig. 1b). To further quantify the

precipitation prediction from these two experiments,

TS scores with thresholds of 5, 10, 25, and 50 mm

are calculated over the rainfall area. The result indi-

cates that Exp−STN is more skillful than Exp−NCP

for each threshold (Table 2). The strong sensitivity of

precipitation prediction to initial data sources is thus

validated. It is also suggested that the conventional

observation is a better approximation to the initial

condition, which is essential in the successful predic-

tion of this heavy rainfall event.

Because the hourly precipitation can reflect some

mesoscale details of the heavy rainfall process, a fur-

ther comparison is conducted between Exp−STN and

Exp−NCP for hourly precipitation prediction over the

severe rainfall center near (33.5◦N, 117◦E) in Anhui.

Figure 2 shows that Exp−NCP produces much weaker

precipitation and fails to simulate the “single peak”

exhibited in observation. Exp−STN, which is skillful

in 24-h accumulated precipitation prediction, repro-

duces the drastic intensifying trend of rainfall and has

its maximum hourly precipitation comparable to the

observation although its peak time lags the observa-

tion. This indicates the difficulty in predicting the

mesoscale details of the heavy rainfall in operational

forecast.

Next, the specific difference between the initial

condition of Exp−STN and that of Exp−NCP that re-

sults in the large forecast divergence of precipitation is

examined. Figure 3 shows the latitude-height sections

of the equivalent potential temperature (θse) along
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Fig. 1. 24-h accumulated precipitation (mm) valid at 0000 UTC 4 July 2003 from (a) observation, (b) EXP−STN

(control simulation), and (c) EXP−NCP.

Table 2. TS scores for EXP−STN and EXP−NCP

Threshold EXP−STN EXP−NCP

5 mm 0.54 0.29

10 mm 0.42 0.17

25 mm 0.21 0.0

50 mm 0.042 0.0

117◦E at the initial time. It is found that the θse-

isolines in Exp−NCP (Fig. 3a) are almost vertical

over the rainfall area, which corresponds to the neutral

stratification or weak convective instability. In con-

trast, the isolines in Exp−STN present a warm moist

center with high θse at lower level, and the dry cold air

prominently intrudes at about 550 hPa. Such a strat-

ification indicates strong convective instability and is

more favorable for intensive convection and the sub-

sequent precipitation, which consequently determines

the precision of precipitation prediction. Moreover,

Fig. 2. Hourly precipitation (mm) of the rainfall center

in Anhui from 0000 UTC 3 to 0000 UTC 4 July.
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Fig. 3. Latitude-height sections of θse (K) along 117
◦E of (a) EXP−STN and (b) EXP−NCP at the initial time.

Exp−STN produces stronger initial convergence (di-

vergence) at lower (upper) level over the rainfall area

(figure omitted), which is more conducive to the trig-

gering of strong convection and the generation of

heavy precipitation.

3.2 Sensitivity to initial errors with different

amplitudes

The above results suggest that Exp−STN per-

forms better than Exp−NCP in simulating the spatial

distribution and temporal variation of this precipita-

tion episode. Thus, Exp−STN can be regarded as the

control simulation (hereafter CNTL) and the following

sensitivity experiments will be based on and compared

with CNTL unless otherwise specified. In addition,

the perturbation or error referred to hereafter is thus

defined as the difference from CNTL. This method-

ology has been proved effective in discussing the pre-

dictability problems by Bian and Yang (2003).

We begin with the comparison between Exp−T

and Exp−UV. The results (figure omitted) indicate

that Exp−T has a larger RMSE in the precipitation

forecast during the entire integration. This implies

that the prediction of the heavy rainfall is more sen-

sitive to initial uncertainties in thermodynamic vari-

ables. In comparison, the initial moisture is perturbed

in another experiment, and the results (figure omit-

ted) show that the initial uncertainties in the temper-

ature field still lead to a larger forecast error than that

of the simulation with the initial moisture perturba-

tion. In this sense, the initial temperature is chosen

to be the sensitive variable that is to be perturbed

and a series of sensitivity experiments (i.e., Exp−T1,

Exp−T05, Exp−T01, and Exp−T001) are conducted

to investigate the forecast sensitivity to the initial tem-

perature errors with different amplitudes. The initial

temperature perturbation is independent at each grid

point and each model level.

Figure 4 shows the time series of precipitation

forecast RMSEs resulted from initial temperature per-

turbations with different amplitudes. It is found that

the simulation with a smaller initial temperature per-

turbation gives a faster error growth rate. For in-

stance, the magnitude of the forecast error due to 0.01-

K initial temperature perturbation is comparable to

that due to 1-K initial perturbation by 24 h. This

Fig. 4. Time series of RMSE of precipitation forecast

from different experiments.
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implies that a sufficiently small initial error in the

temperature field could also result in noticeable fore-

cast errors. Actually, for 24-h accumulated precipi-

tation, the case of 0.01-K initial temperature pertur-

bation leads to an unappreciable displacement of the

rainband, but the corresponding localized precipita-

tion bias reaches a maximum of 25 mm at mesoscale,

indicating the complete displacement of the local rain-

fall centers. That is to say, a very small (e.g., 0.01 K)

initial error is not negligible.

To further illustrate the influence of initial error

amplitude on precipitation prediction, we introduce

an integrated norm for error (difference), namely, the

domain-integrated difference total energy (DTE), as

defined by Zhang et al (2003):

DTE =
∑
(δu2

i,j,k + δv2

i,j,k +
Cp

Tr

δT 2

i,j,k), (1)

where δu, δv, and δT are the differences in wind com-

ponents and temperature between CNTL and the per-

turbed simulation, Tr = 287 K is the reference tem-

perature, Cp = 1004 J kg
−1 K−1 is the specific heat

at constant pressure, and i, j, and k run over the hori-

zontal points and vertical layers. Figure 5 presents the

time series of DTE at 500 hPa. During the initial stage

(about 5 h), the smaller the initial error is, the faster

it grows. Particularly, DTE in Exp−T001 grows most

rapidly after 16 h, and its magnitude is comparable

to that in Exp−T1. Thus, the smaller perturbations

(errors) tend to grow more rapidly and maintain the

growth over a longer period. The DTEs corresponding

to different initial errors span a range of values on the

same order of magnitude by 24 h rather than on the

four orders of magnitude shown initially.

The dependence of error growth rate on the initial

error amplitude indicates that the mechanism for error

growth is nonlinear, which is consistent with the phys-

ical arguments by Lorenz (1969). For the initial small-

amplitude errors (e.g., the case of 0.01-K initial per-

turbation), the effect of diffusion is weaker and smaller

than the effect of nonlinearity in the initial stage. The

smaller perturbation consequently grows faster and

steadily throughout the entire forecast. Therefore,

such forecast sensitivity to sufficiently small errors

in the initial condition highlights the importance of

Fig. 5. Time series of DTE (m2 s−2) at 500 hPa from

different experiments.

high-quality initial data to fine precipitation predic-

tion and hence calls for the improvement in observa-

tion instrument precision and the development of data

assimilation techniques.

4. Modality of error growth and its relation

to precipitation development

4.1 Evolution and propagation of error growth

Since the forecast divergence due to initial error

growth should be examined not only in terms of the

error magnitude amplification, but also in terms of the

error-growth evolution and propagation, the detailed

modality of error growth is described and discussed in

this section.

Figure 6 presents the evolution of temperature

difference at 500 hPa between Exp−T01 and CNTL.

Generally, the significant error growth first appears in

local patches and subsequently spreads over a larger

area. Combined with the evolvement of the precipi-

tation episode, it is of great interest that the evolu-

tion of error growth exhibits three distinctive stages.

The first stage lasts from 0 to 6 h (Fig. 6a), dur-

ing which the initial random perturbation has decayed

everywhere except for a small region with prominent

precipitation. Moreover, the area with localized error

growth moves eastward as the associated rainfall area

in north Anhui gradually moves eastward and lingers

near north Jiangsu, with the fact that the error in-

creases as the precipitation strengthens. During the

second stage (from 9 to 15 h; Figs. 6b, c), as the

rainfall near north Jiangsu declines, the error growth
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Fig. 6. 500-hPa temperature difference between Exp−T01 and CNTL (contoured every 0.1 K; dashed for negative;

shaded for CNTL 3-h accumulated precipitation in mm) valid at (a) 6 h, (b) 9 h, (c) 15 h, and (d) 24 h.

over the corresponding region slows. Meanwhile, a

meso-β rain cell with a spatial scale of about 200 km

appears in southwest Henan and it increases both in its

precipitation amount and the spatial coverage, lead-

ing to the formation of a northeast-southwest oriented

rainband. In phase with this rainfall development, the

error growth over the associated area increases in both

its magnitude and areal extent, with the larger error

collocated well with the rainfall center. In the final

stage (15 to 24 h; Fig. 6d), the newly-born rainband

near Henan maintains its intensity as it rapidly moves

eastward to north Anhui, and it merges with the pre-

vious declining rainfall-area over north Jiangsu where

the reinforcement of precipitation occurs consequently.

In accordance with the evolution of precipitation, the

area with significant error growth in southwest Henan

moves eastward along the same path as the moving

rainband, and the previously slowing error growth near

north Jiangsu begins to amplify further.

The correspondence between the evolution of er-

ror growth and the evolvement of the precipitation

episode can therefore be reflected in Fig. 6. In terms

of the above multi-stage error growth, larger differ-

ences are concentrated in the vicinity of the rainband

along the Huaihe River basin during 0 to 15 h, thus

the first two stages can be concluded to be the period

characterized by localized error growth. The error in-

creases prominently in both its magnitude and areal

extent after 15 h in the subsequent period. Meanwhile,

the drastic intensification of precipitation also appears

after 15 h. This implies the important role of the pre-

cipitation evolvement in affecting the error growth and

its propagation.

The above behavior of error growth is mani-

fested not only in temperature but also in wind fields.

Since the difference of wind velocity can be regarded

as the proxy of difference kinetic energy, the associ-

ated multi-stage error growth in wind also reflects the
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error-energy evolution. Besides, similar error-growth

modality can be observed in Exp−T1, Exp−T05, and

Exp−T001. It therefore suggests that since sufficiently

small errors in the initial condition are inevitable, such

a transition of error growth from local patches to larger

coverage ultimately contaminates the mesoscale fore-

cast and leads to the predictability limit of heavy pre-

cipitation.

4.2 Correspondence between error growth and

the precipitation episode

It has been revealed in this study that the optimal

error growth appears near the rainfall area and that

the area coverage of significant error growth varies in

phase with the evolution of precipitation. Therefore,

the rainfall area is the sensitive region for error growth.

It can be deduced that the initial uncertainty in the

rainfall area is an important and direct contributor to

large forecast divergence. To validate this, sensitiv-

ity experiments Exp−T01LP and Exp50−T01LP are

designed, where the latter aims at reducing the ini-

tial moisture to delay the triggering of convection and

the generation of precipitation. It should be noted

that the error (perturbation) referred to in this sec-

tion for Exp−T01LP denotes the difference between

Exp−T01LP and CNTL, while that for Exp50−T01LP

denotes the difference between Exp50−T01LP and the

corresponding dry control simulation with initial mois-

ture reduced by 50% but with unperturbed initial tem-

perature.

The comparison between Exp−T01LP and

Exp50−T01LP reflects the correspondence between

the meridional propagation of error growth and the

evolution of precipitation. Clearly, although the ini-

tial uncertainties appear in the rainfall area, the er-

ror growth also exhibits the transition from local-

ized patches to wide clumps with a larger areal ex-

tent and presents a strong northward propagation

(Fig. 7a). This results in the error growth north

to the rainband reaching a larger amplification, con-

sistent with the facts in Fig. 6d. As the precipita-

tion episode is delayed and declined due to the re-

duced initial moisture (Fig. 7b), the associated signifi-

cant error growth in Exp50−T01LP appears later than

that in Exp−T01LP, and both the magnitude and the

meidional propagation extent are greatly weakened.

The close correspondence between the error growth

amplification and the precipitation intensity further

indicates the rainfall-dependent nature of the error

growth. Considering the unavoidable initial error and

the relationship between error growth and precipita-

tion development, the sophisticated numerical model

inevitably “favors” the forecast divergence due to ini-

tial error growth and hence leads to the prediction

limit of precipitation.

In order to further quantify the variation of error

growth, power-spectrum analysis of DTE is performed

for the above two experiments. For Exp−T01LP (Fig.

8a), the DTE spectrum peaks at the wavelength of

300 km during the first 12 h, which corresponds to the

period of localized error growth. After 15 h, 300-km

and smaller-scale components of the DTE spectrum

Fig. 7. Latitude-time section averaged within 113◦–123◦E for the wind velocity difference (contoured every 0.1 m s−1)

and the accumulated precipitation (mm; shaded) on 3 July 2003 in (a) Exp−T01LP and (b) Exp50−T01LP.
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Fig. 8. Power spectrum of DTE at 500 hPa for (a) Exp−T01LP and (b) Exp50−T01LP.

become saturated while the larger-scale errors grow

steadily. The peak of the spectrum thus migrates from

smaller (500–600 km by 21 h) to larger scale (around

1000 km by 24 h). This validates the upscale cascade

of the error growth. Considering the results in Section

4.1, the modality of rainfall-dependent error growth

can be further elucidated as follows. Over the first 15

h, the error grows rapidly and reaches saturation on

smaller scale, which indicates the localized growth pe-

riod. During the remaining time, both the scale of the

error variation and its areal extent increase, which in-

dicates the error spreading period. Thus, such upscale

error growth contaminates the mesoscale forecast and

limits the precipitation predictability.

Figure 8b shows the DTE spectrum for Exp50−

T01LP. It is found that the DTE on all scales de-

creases over the first 2 h and this is most prominent

at the wavelength of 200–300 km. The DTE growth

relative to the initial time does not appear until 9 h.

Clearly, as the reduced initial moisture delays and at-

tenuates the precipitation episode, the associated er-

ror growth begins at a later time with a smaller mag-

nitude. Moreover, the optimal error growth on the

smaller scale (wavelength) becomes less significant.

Thus, the change of heavy rainfall due to reduced

moisture consequently affects the magnitude, propa-

gation, and scale variation of the error growth.

5. Error growth mechanism

It has been proved in previous sections that the

error growth is closely related to the precipitation

evolvement, but the key physical processes, i.e., the

mechanism for error growth, is not clear. Obviously,

moist physics is essential in triggering convection and

associated precipitation. Besides, the feedback by la-

tent heat release is also crucial to the maintenance of

heavy rainfall. In an attempt to further investigate the

role of moist physics and the attendant latent heating

in producing significant error growth, two “fake dry”

experiments are performed, in which the latent heat-

ing of condensation is set to zero for a certain lead

time.

In Expdry−T01LP, the latent heating is turned

off throughout the 24-h integration. This results in

much smaller error growth with a reduced propagation

extent compared with Exp−T01LP (figure omitted).

Figure 9 shows that in the absence of latent heating,

the growth of DTE over the rainfall area is greatly

reduced during the first 5 h and the subsequent slow

DTE growth gradually reaches saturation. While in

Expdryaf6h−T01LP, the latent heating is not allowed

after 6 h. This causes the errors to quickly decay and

dissipate after 6 h (figure omitted), and the associ-

ated DTE enhances rapidly before 6 h, then decreases

quickly, and finally becomes saturated (Fig. 9).

A further comparison of the DTE growth among

Exp−T01LP, Exp50−T01LP, Expdry−T01LP, and

Expdryaf6h−T01LP is shown in Fig. 9. It reveals

that affluent initial moisture corresponds to rapid

error growth in the initial stage and larger ampli-

fication of error growth by the end of the simulations
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(Exp−T01LP versus Exp50−T01LP). The compar-

ison between two moist simulations (Exp−T01LP

and Exp50−T01LP) and two fake dry experiments

(Expdry−T01LP and Expdryaf6h−T01LP) indicates

that latent heating is responsible for the significant

error growth and is able to sustain the error growth

after the difference energy has already been produced.

In addition, Fig. 10 shows the spatial distributions

of DTE and latent heat at 24 h. It is found that the

areas of large DTE collocate well with the strong la-

tent heating. Since DTE defines the error growth in

an energy norm and the feedback by latent heating is

essential in maintenance of heavy rainfall, it can be

concluded that the error growth and the occurrence of

precipitation share the same energy source—the latent

Fig. 9. Time series of DTE in the rainfall area from

different experiments.

Fig. 10. Spatial distribution of DTE (contours; m2 s−2)

from Exp−T01LP and latent heat (shaded; J) from CNTL

valid at 24 h.

heat. This indicates that the unstable flow regime

favorable for heavy rainfall also corresponds to the

rapid error growth in precipitation prediction. In this

sense, the forecast divergence due to error growth asso-

ciated with the interior thermodynamic and dynamic

instability of the atmosphere is inevitable and the pre-

dictability of heavy precipitation is inherently limited.

6. Conclusions and discussion

Based on a case study, this paper analyses the

sensitivity of precipitation prediction to initial condi-

tions. The influence of initial error amplitude on the

prediction and the detailed modality of error growth

associated with the heavy rainfall evolvement are in-

vestigated and discussed. The results have identified

the key physical process and mechanism for the sig-

nificant error growth and also validated the inherent

difficulty in fine-scale precipitation prediction. The

main conclusions are as follows.

The prediction of this heavy rainfall event is

highly sensitive to the initial uncertainties in ther-

modynamic variables. The error growth rate increases

as the initial error amplitude decreases, which indi-

cates that the mechanism for error growth is nonlinear.

After a certain lead time, the forecast divergence due

to growth of initial smaller-amplitude errors is com-

parable to that due to larger initial errors.

The significant error growth concentrates in the

vicinity of the rainfall area, with the areas of large

forecast difference collocated well with the intensive

rainfall centers. Particularly, the evolution of error

growth is in phase with the evolvement of precipita-

tion. The attendant error-growth transition from local

patches to wide spreading clumps leads to the forecast

divergence over larger areas. This consequently limits

the mesoscale predictability of heavy precipitation.

The close correspondence between error growth

and precipitation evolvement also validates the impor-

tant contribution of initial uncertainties over rainfall

area to the precipitation forecast divergence. The

rainfall-dependent error growth presents an upscale

cascade and has its optimal amplification on a certain

spatial scale (wavelength) during the forecast.

The moist physics and the attendant latent heat-

ing are responsible for the significant error growth.
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The areas with large error energy collocates well with

the strong latent heat release, implying that the la-

tent heating serves as the energy source for the error

growth. As the feedback by latent heating is also es-

sential to sustained heavy rainfall, it can be deduced

that the error growth and the occurrence of precipita-

tion share the same energy source—latent heating.

The conclusions here are in general agreement

with previous studies (Zhang et al., 2003; Tan et al.,

2004; Bei and Zhang, 2007) though this study focuses

on the relationship between the error growth modal-

ity and precipitation evolvement. It is of interest that

the amplification and propagation of error growth is

closely related to the intensity and evolution of rain-

fall process. Particularly, latent heating is found to be

the shared energy source for error growth and the oc-

currence of precipitation. As sufficiently small errors

is inevitable in the initial condition, their growth as-

sociated with moist process and the attendant latent

heating thus impose an intrinsic predictability limit

on heavy rainfall forecast. Besides, the faster growth

rate of smaller initial errors may be worth further in-

vestigations.

Presumably, these conclusions imply that the fine

prediction of precipitation is inherently difficult. How-

ever, this does not mean there is nothing that can be

done to improve the forecast skill. Implementation of

high-resolution observation network and development

of efficient data assimilation techniques are ways to

make the initial condition a better approximation to

the true atmosphere and to improve the forecast skill

for a finite time in NWP. In addition, another alterna-

tive is to develop probabilistic or ensemble forecasting

schemes for the quantitative estimation of precipita-

tion predictability.
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