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ABSTRACT

A significant attempt to design a timesaving and efficient four-dimensional variational data assimilation
(4DVar) has been made in this paper, and a new approach to data assimilation, which is noted as ‘three-
dimensional variational data assimilation of mapped observation (3DVM)’ is proposed, based on the new
concept of mapped observation and the new idea of backward 4DVar. Like the available 4DVar, 3DVM
produces an optimal initial condition (IC) that is consistent with the prediction model due to the inclusion
of model constraints and best fits the observations in the assimilation window through the model solution
trajectory. Different from the 4DVar, the IC derived from 3DVM is located at the end of the assimilation
window rather than at the beginning conventionally. This change greatly reduces the computing cost for
the new approach, which is almost the same as that of the three-dimensional variational data assimilation
(3DVar). Especially, such a change is able to improve assimilation accuracy because it does not need
the tangential linear and adjoint approximations to calculate the gradient of cost function. Therefore,
in numerical test, the new approach produces better IC than 4DVar does for 72-h simulation of TY9914
(Dan), by assimilating the three-dimensional fields of temperature and wind retrieved from the Advanced
Microwave Sounding Unit-A (AMSU-A) observations. Meanwhile, it takes only 1/7 of the computing cost
that the 4DVar requires for the same initialization with the same retrieved data.
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1. Introduction

Variational data assimilation is one of the most

efficient methods to initialize a prediction model in

the numerical weather prediction (NWP) (Bouttier

and Rabier, 1997; Courtier et al., 1994; Daley, 1991;

Navon et al., 1992; Wang et al., 2000; Zhang et al.,

2002, 2003; Thepaut et al., 1993; Zou et al., 1995;

Zou and Xiao, 1999; Zupanski, 1993). The three-

dimensional variation (3DVar) and four-dimensional

variation (4DVar) are the two typical representatives

of this kind of methods, which have been playing

more and more important roles in the NWP since the

1980s when the variational principle (Derber, 1989; Le

Dimet and Talagrand, 1986; Lewis and Derber, 1985)

was introduced in data assimilation. They produce the

best estimation of model initial state by incorporating

observations into the assimilation window with back-

ground in an optimal way. Especially, the 3DVar has

become a popular tool of initialization in many pre-

diction centers and research institutions in the world

at present, because it is much more timesaving than

the 4DVar. In this method, however, there are also

some limitations derived from the approximation of

unchangeable weather state in the assimilation win-

dow [t0-3 h, t0+3 h] and lack of model constraints.

This approximation actually treats all observations

at different times in the window as the data at the

same time t0, and mostly leads to extra errors to re-

duce the quality and accuracy of assimilation. On the

other hand, lack of model constraints results in inabil-

ity to ensure the consistence between the prediction

model and the initial condition (IC) from the assimi-

lation, and in particular, it can not globally adjust the

three-dimensional structure of the IC in the case of

sparse observations. Some constraints of simple bal-

ance equations can too hardly replace the function of

full model constraints, although they may partly act

as some dynamical constraints of model. The 4DVar

should be the best choice of initialization tool to avoid
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the limitations of 3DVar, because it includes the model

constraints for producing an IC consistent with the

prediction model and thus replaces the unchangeable

weather state by the model weather state for best fit-

ting the observations at different times in the window

through model trajectory. Inclusion of the model con-

straints, however, brings calculation of the cost func-

tion gradients tough problem. The adjoint technique

gives the best solution to this problem, but the cost

of computing gradient is still huge. It may also seri-

ously affect convergence and accuracy of the assimila-

tion due to inexistence of tangential linear approxima-

tion when dealing with on-off (or discrete) processes

of physical parameterization schemes in the predic-

tion model. Furthermore, establishment of the adjoint

model is a tough work and cannot be completed in a

short time, and thus greatly reduces the efficiency of

implementing the 4DVar. That is why it is not so pop-

ular as the 3DVar in the world. The European Cen-

ter for Medium-range Weather Forecast (ECMWF) is

one of a few centers in the world to use the 4DVar

to initialize their operational NWPs. Limited by the

huge computation of the adjoint model, the ECMWF

can only use coarser resolutions in the 4DVar system,

whose increments are interpolated to the fine grid of

the high-resolution prediction model for producing the

optimal IC. Obviously, the huge cost required for run-

ning the adjoint model has been the bottleneck slowing

down development and application of the 4DVar. How

to greatly reduce the huge computational cost of the

4DVar has become a significant issue expected to be

resolved urgently.

In this paper, a careful study on this issue was

carried out, and a significant attempt to construct

the new approach to data assimilation was made, in-

cluding the suggestion of the concept of the backward

4DVar in Section 2, followed by the proposal of the new

approach called ‘three-dimensional variational data as-

similation of mapped observation (3DVM)’ in Section

3, and introduction of the mapping method from real

observations to model grid values in Section 4, and

finally the numerical tests in Section 5.

2. The concept of backward 4DVar

The 4DVar produces an optimal IC x0
a by mini-

mizing the cost function:

J(x0

a) = min
x

J(x). (1)

Similar to available theoretical studies on the 4DVar,

it might be assumed here as well that all variables at

the model degrees of freedom are measured, and thus

the cost function is defined as

J(x) =
1

2
(x − x0

b)
TB−1

0
(x − x0

b)

+
1

2

N∑

i=1

(Mt0→ti
(x, τ) − xobs

i )TO−1

i

·(Mt0→ti
(x, τ) − xobs

i ), (2)

where x0

b is the background or the first guess at the

time t0, B0 is the covariance matrix of background er-

ror at t0, xobs
i (i = 1, 2, · · · , N) is the observation at ti

in the assimilation window [t0, tN ] (tN − t0 6 6 h), Oi

is the covariance matrix of observation error of xobs
i ,

Mt0→ti
(x, τ) is a mapping from t0 to ti by the model

integration starting from the initial state x with the

time step τ . As mentioned in Section 1, there were

some difficulties in the 4DVar, which slow down devel-

opment and application of the 4DVar. Therefore, it is

necessary to improve the available 4DVar methods or

propose new approaches. For this purpose, it is essen-

tial to know what causes these difficulties of 4Dvar,

then try to find the answer from a careful analysis on

the principle of the 4DVar.

From Eqs.(1)-(2), it was clearly known that the

optimal IC x0
a produced by the 4DVar was located at

the time t0. Compared with the time location of x0
a,

the observations in the window [t0, tN ] were all located

at the future time, except those at t0. The feedback of

the observations to the beginning of the window, how-

ever, may have to apply some kind of backward inte-

gration of the prediction model. It is the adjoint model

that played the role in implementing the backward in-

tegration and thereby caused the aforesaid difficulties.

Obviously, the ‘improper’ time location of the optimal

IC produced by the 4DVar may be the key factor to

lead to its major difficulties. Hence, change of the time

location of the optimal IC in the assimilation window

may be a good way to find a new approach to over-

come the difficulties of 4DVar.
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Here, we try to move the optimal IC of 4DVar

from the beginning to the end of the assimilation win-

dow so that the adjoint model is not needed anymore,

because the observations are not at the future time

but at the past time of the optimal IC in this case. A

new concept called the backward 4DVar was derived

from the above attempt that got information from the

observations just in an inverse way of 4DVar. For the

subsequent reasonable definition of inverse 4DVar, the

cost function of the old 4DVar may be expressed in

incremental form firstly:

J(x′) =
1

2
(x′)TB−1

0
x′ +

1

2

N∑

i=1

(Lt0→ti
x′ − y′i)

T

·O−1

i (Lt0→ti
x′ − y′i). (3)

This expression is directly deduced from Eq.(2) after

the tangential linear approximation, where Lt0→ti
x′

is the tangential linear model of the prediction model

Mt0→ti
(x, τ) and

{
x′ = x − x0

b

y′i = xobs

i − x0

i ,
(4)

where

x0

i = Mt0→ti
(x0

b , τ). (5)

According to the feature of model integration, it is easy

to prove that the tangential linear operator Lt0→ti
can

be formulated as the following:

Lt0→ti
= I + τD(Mt0→ti

(x0

b , τ)), (6)

where I is the unit operator, D(Mt0→ti
(x0

b , τ)) the tan-

gent linear tendency operator with respect to the basic

state, independent from the increment x′. Based on

the inequality ti−t0 6 tN −t0 6 6 h, it is true that the

term τD(Mt0→ti
(x0

b , τ)) in Eq.(6) is very small when

the time step τ is limited in some range, i.e.,

‖ τD(Mt0→ti
(x0

b , τ)) ‖<<‖ I ‖ . (7)

Clearly, there exists L−1

t0←ti
, the inverse operator of

Lt0→ti
, which can be expressed as:

L−1

t0←ti
= I − τD(Mt0→ti

(x0

b , τ)) + O(τ2). (8)

Using the inverse operator of Lt0→ti
, we can similarly

define the cost function of the backward 4DVar:

J̃(x̃′) =
1

2
(x̃′)TB−1

N x̃′ +
1

2

N∑

i=1

(L−1

ti←tN
x̃′ − ỹ′i)

T

·O−1

i (L−1

ti←tN
x̃′ − ỹ′i), (9)

where xN
b is the background or first guess at tN , BN

the covariance matrix of background error at tN , x̃′,

and ỹ′ may be defined as
{

x̃′ = x − xN
b

ỹ′i = xobs

i − xN
i ,

(10)

where xN
i satisfies

Mti→tN
(xN

i , τ) = xN
b . (11)

The introduction of the inverse operator of the

tangential linear operator in Eq.(9), however, makes

the new cost function more complicated than the old

one in Eq.(3) in form. Furthermore, unlike x0

i in

Eq.(5), xN
i cannot be explicitly obtained from Eq.(11),

or there may even exist no solution or non-unique so-

lution xN
i in Eq.(11) due to the nonlinearity of the

prediction model. This is the most serious problem

in the backward 4DVar, which may be the key reason

why this scheme has never been considered before. If

this problem is removed, the scheme may be a good

approach of data assimilation. An attempt to find a

solution to the problem is made in the next section.

3. The three-dimensional variational data as-

similation of mapped observation (3DVM)

Here, we introduce a new concept: mapped ob-

servation, to overcome the difficulty of the backward

4DVar. The mapped observation is a kind of data

derived from a transform or mapping of observation.

The transform or mapping may be a unit operator,

a linear interpolation, a model mapping, a tangential

linear model mapping or its inverse mapping, observa-

tion operator, or a composite mapping and so on. In

this paper, the mapping we will use is the model map-

ping, and the mapped observations xmo
i are located at

tN , produced by mapping the observations xobs

i at ti

to the end of the window:

Mti→tN
(xobs

i , τ) = xmo

i . (12)
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The tangential linear approximation is applied into the

expression derived from subtracting Eq.(11) from Eq.

(12), and the following equation may be obtained:

Lti→tN
(xobs

i − xN
i ) = xmo

i − xN
b . (13)

Setting

x̃′i = xmo

i − xN
b . (14)

It is easy to get the solution of Eq.(13):

ỹ′i = L−1

ti←tN
x̃′i, (15)

where ỹ′i is defined in Eq.(10). Substituting it into

Eq.(9), a new expression for the cost function of the

backward 4DVar is deduced:

J̃(x̃′) =
1

2
(x̃′)TB−1

N x̃′ +
1

2

N∑

i=1

(x̃′ − x̃′i)
TÕ
−1

i

·(x̃′ − x̃′i), (16)

where

Õi = Lt
i
→tN

OiL
T

t
i→tN

. (17)

Equation (16) may also be written into the non-

increment form:

J̃(x) =
1

2
(x − xN

b )TB−1

N (x − xN
b )

+
1

2

N∑

i=1

(x − xmo

i )TÕ
−1

i (x − xmo

i ). (18)

Unlike the cost function of 4DVar Eq.(2), we are

surprised to find that the model state variable x was no

longer expressed implicitly, but simply and explicitly

in the cost function of the backward 4DVar defined by

Eq.(18), just as expected. In this way, the approach of

backward 4DVar became a 3DVar scheme without any

constraints. Especially, the assimilation objects were

no longer the real observations other than the mapped

observations by the prediction model. Therefore, this

approach is named as ‘three-dimensional variational

data assimilation of mapped observation (3DVM)’. It

is not difficult to find that there were two major dif-

ferences between the 3DVM and 3DVar. Firstly, the

assimilation data used in the 3DVM were mapped ob-

servations that were all located at the end of the win-

dow, while those used in the 3DVar were real observa-

tions distributing at different times in the assimilation

window. Secondly, the 3DVM had model constraints

contributed by the model information contained in

mapped observations, and thereby its optimal IC was

consistent with the prediction model as well as best fit

the observations through the model trajectory, which

indicated its same performance as the 4DVar, while

the 3DVar included no model information because real

observations were completely independent of the pre-

diction model, and thus its optimal IC lacked harmony

with the prediction model. As a compensation of this

defect of 3DVar, some constraints of simple balance

relations were added to its cost function or considered

in its covariance matrix of background error, but they

were far away from replacing the functions of model

constraints.

There were also two significant differences be-

tween the 4DVar and 3DVM. The optimal ICs at dif-

ferent time, which were obtained from the same ob-

servations, were the marked difference of the two ap-

proaches. The 4DVar produced the optimal IC at the

beginning of the assimilation window, in contrast to

the 3DVM at the end of the window. When these

two ICs were used to predict the state of atmosphere

at the time tp(tp � tN ), the cost of the model in-

tegration starting from the IC of 3DVM will be tN -

t0 less than that starting from the IC of 4DVar. It

meant that the initialization by 3DVM not only saved

model integration time, but also reduced accumulated

model error to some extent. The second remarkable

difference between the two approaches was their neces-

sary or unnecessary requirement of adjoint technique.

The 4DVar must use the adjoint model to calculate

the gradient of cost function, which caused its huge

computing cost and even led to on-off problem when

dealing with discontinuous physical processes, while

the 3DVM needed no adjoint technique and greatly

saved computing time as its cost was comparable to

the 3DVar’s. This will be verified in numerical tests

which will be described later. The next issue was how

to determine the error covariance matrix of mapped

observation. There were two ways to do it. The first

was to determine the matrix according to Eq.(17). To

avoid the use of tangential linear model, the predic-

tion model was applied to replace the tangential linear

model in Eq.(17).
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According to the definition of observation error covari-

ance, the matrix can be decomposed into the following

form:
{

Qi = EiE
T

i

Ei = (ei,1, ei,2, . . . , ei,j0),
(19)

where ei,j is the jth error anomaly sample and j0 the

total number of sample. Using the above formulae,

Eq.(17) may be expressed as:

Q̃i = ẼiẼ
T

i , (20)

where

Ẽi = (Lti→tN
ei,1, Lti→tN

ei,2, . . . , Lti→tN
ei,j0)

= [Mti→tN
(xobs

i + ei,1) − xmo

i ,

Mti→tN
(xobs

i + ei,2) − xmo

i , . . . ,

Mti→tN
(xobs

i + ei,j0) − xmo

i ]. (21)

If there were a great deal of samples, the computing

cost to produce the error covariance matrix of mapped

observation according to Eqs.(20)-(21) would be much

large, thus this method was not viable and not rec-

ommended in this paper. Here, the second method

was suggested to calculate the matrix Õi by directly

estimating the observation error of xmo

i using the sta-

tistical method similar to that for the estimation of

the observation error of xobs

i . The advantage of this

method was consideration of influence of the model er-

rors in Õi, which may lead to better assimilation effect

than the 4Dvar, while not increase the extra comput-

ing cost, comparing with that for calculation of the

matrix Oi.

4. Mapping from real observations to model

grid values

The new assimilation approach was theoretically

studied in Sections 2 and 3 under the assumption that

all variables at the model degrees of freedom were mea-

sured. Once it was applied to initializations for real

operational predictions and numerical modeling, how-

ever, the above assumption was not true in general.

Usually, there were different kinds of observations with

various and irregular distributions in space and time,

some were sparse, some dense. How to assimilate these

real observations using the 3DVM became the key

point to evaluate viability of the new approach. Ac-

cording to the basic principle of the 3DVM, the first

thing that has to be done was to map these irregularly

distributed observations into the regular model grid.

In stead of the ideal observations xobs

i in the afore-

said discussion, N real observations yobs

i were irregu-

larly distributed in the assimilation window [t0, tN ],

with respect to the model state variables by an ob-

servation operator Hi. If there existed a model state

variable xH
i , satisfying the following equation:

Hi(x
H
i ) = yobs

i . (22)

then xH
i may be called a mapping of the observation

yobs

i into the model grid. Generally, the solution to

Eq.(22) is an undetermined problem because the di-

mension of the observation is much smaller than that

of the model degrees of freedom. Here, the 3DVar

without any constraints was applied to get the opti-

mal solution xH
i of Eq.(22) using the first guess or

background field xi
b:






J3DV(xH
i ) = min

x
J3DV(x)

J3DV(x) =
1

2
(x − xi

b)
TB−1

i (x − xi
b)

+
1

2
[Hi(x) − yobs

i ]TO−1

i

·[Hi(x) − yobs

i ].

(23)

In order to keep the consistency between the first

guesses or the background fields at different times in

the assimilation window, an available analysis x0
a at

the beginning of the window was chosen to be the first

guess x0

b at this time, and then the other first guesses

xi
b and xN

b were produced from the model predictions

starting from the beginning of the window and using

x0
a as the IC. This method may meet the requirement

of the 3DVM, of which analysis or optimal IC was at

the end of the window. We used the following formu-

lae to describe the production of the consistent first

guesses:




x0

b = x0
a

xi
b = Mt0→ti

(x0
a, τ)

xN
b = Mt0→tN

(x0
a, τ).

(24)

After mapping the observations into the model

gird, another important thing is to supply the lacked
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information at some model grid points, because weak

or non-observation information may be obtained from

the mapping at these grid points due to the sparseness

of observations.

The lack of observation information at some

model grid points meant the values of increment

x′
obs

= xH
i − xi

b obtained from Eq.(23) at these points

were zero. The method to supply the values at data-

void grid points was simply to make 20- to 50-step for-

ward integration by the prediction model with the IC

xH
i . At each step, the values of the predicted model

state variables were replaced by the values of xH
i at

the model grid points where the values of x′
obs

were

not zero. In this way, the observation information was

reflected to those model grid points without observa-

tion information through the dynamical and physical

constraints of the prediction model. After the above

process, all variables at the model degrees of freedom

at ti were ‘measured’, and a complete ‘observation’

xobs
i was obtained, which satisfied the assumption of

the 3DVM. Therefore, we can finally produce an opti-

mal IC by the 3DVM.

5. Numerical tests and discussion

In order to test the viability of the 3DVM, three

numerical experiments were designed for 72-h predic-

tions of track and intensity of the TY9914 (Dan). The

experiments had different ICs and aimed at compari-

son of the performances and computing costs between

the 3DVM and the 4DVar. The first was the control

experiment, noted as ‘CTRL’, which directly used the

background field from NCEP/NCAR reanalysis as the

IC. The second was the experiment of which the IC

was produced by the 3DVM assimilation. The third

was the experiment initialized by the 4DVar assimi-

lation. The observations used in the two assimilation

experiments were three-dimensional fields of tempera-

ture and wind retrieved from the Advanced Microwave

Sounding Unit-A (AMSU-A). The MM5 was used as

the prediction model in the three experiments, and

the adjoint model of the MM5 was applied into the

4DVar assimilation experiment. Because the observa-

tion data were available only at one time point, they

are extended from one time to 11 time points equally

distributed in the window [t0 −10m, t0] with the same

values, as in the paper (Zhang et al., 2003). To fairly

compare the two assimilation experiments, same ex-

tension was made for the 4DVar assimilation experi-

ment in the time window [t0, t0 + 10m].

Figure 1 shows the typhoon tracks from the three

experiments and observation of the TY9914 (Dan).

Obviously, the simulated typhoon tracks by both the

3DVM and the 4DVar experiments were improved

comparing with the results of CTRL. In particular, the

track produced from the experiment with the 3DVM

was the closest to the observation. It was also found

Fig.1. 72-h (00UTC 6-00UTC 9 October 1999) prediction

of track of the typhoon Dan (the time interval is 6 h).

Fig.2. 72-h prediction of intensity of the typhoon Dan

(unit: m s−1; time interval: 6 h).
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Table 1. Comparison of computing costs between the 3DVM and the 4DVar

Items to evaluate computational cost Assimilation schemes

3DVM 4DVar

Time step for forward or adjoint integration (in minute) 1 1

Length of assimilation window (in minute) 10 10

Number of iteration for assimilation 1 34

Number of steps for forward integration by prediction model 30+10=40 10×34=340

Number of steps for inverse integration by adjoint model 0 10×34=340

Number of interpolations from observation location to model grid 35 10×34=340

Number of adjoint interpolations from model grid to observation location 35 10×34=340

CPU time on a single processor (in minute) 44 325

Fig.3. Horizontal distribution of sea level pressure at initial time (contour interval: 5 hPa). (a) 3DVM, (b) 4DVar.

in Fig.2 that both the 3DVM and 4DVar experiments

produced evolutions of intensity better than the CTRL

did, and the experiment with the 3DVM produced the

best simulation of typhoon intensity. The better per-

formance of the 3DVM in modeling typhoon track

and intensity than that of the 4DVar may be bene-

fited from its stronger potential in simulation of vortex

structure, because the 3DVM experiment produced a

lower central pressure and a clearer vortex structure

in the field of sea-level pressure than the 4DVar ex-

periment did (see Fig.3).

Meanwhile, the 3DVM approach required much

less computing cost than 4DVar did. The CPU time

of the 3DVM was only about 1/7 of that of 4DVar.

Please refer to Table 1 for details about the costs of

both the assimilation approaches.

The much timesaving property and very good

performance of the 3DVM in the numerical modeling

of the typhoon Dan indicated its great potential in

future operational NWP and research work.
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