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ABSTRACT

When the magnitude of sub-scale ographic forcing is comparable with explicitly ordinary dynamic forcing,
the drag effect reduced by ographic gravity wave is to be significant for maintaining dynamic balance of atmo-
spheric circulation, as well as the momentum and energy transport. Such sub-scale ographic forcing should
be introduced into numerically atmospheric model by means of drag being parameterized. Furthermore, the
currently mature ographic gravity wave drag (OGWD) parameterization, i.e., the so-called first-generation
(based on lineal single-wave theoretical framework) or the second-generation drag parameterization (includ-
ing an important extra forcing by the contribution of critical level absorption), cannot correctly and effectly
describe the vertical profile of wave stress under the influence of ambient wind shearing. Based on aforemen-
tioned consideration, a new two-wave scheme was proposed to parameterize the ographic gravity wave drag
by means of freely propagating gravity waves. It starts with a second order WKB approximation, and treats
the wave stress attenuations caused by either the selective critical level absorption or the classical critical
level absorption explicitly; while in the regions where critical levels are absent, it transports the wave stress
vertically by two sinusoidal waves and deposits them and then damps them according to the wave saturation
criteria. This scheme is thus used to conduct some sample computations over the Dabie Mountain region of
East China, as an example. The results showed that the new two-wave scheme is able to model the vertical
distribution of the wave stress more realistically.
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1. Introduction

The essential role of the gravity wave drag (GWD)

by unresolved topography in budgeting the momen-

tum and energy of the atmospheric general circula-

tion models has been well appreciated (e.g., Palmer et

al., 1986; McFarlane, 1987). In the last decades, re-

searchers made great efforts in designating orographic

gravity wave drag (OGWD) parameterization schemes

of the first and second generations (see Kim et al.,

2003; and references therein), and their implemen-

tations in global general circulation models (GCMs)

showed that the “westerly bias” and the “cold pole”

problem accompanying the insufficient model resolu-

tions of the topography can be well alleviated (Mc-

Farlane, 1987; Scinocca and McFarlane, 2000).

In all kinds of OGWD parameterization schemes,

the treatment of the GWD by means of freely propa-

gating gravity waves (FPGWs) comprises a very im-

portant component. Most of these schemes assume

that, in treating the GWD by FPGW, the waves stress

will be carried and transported upward unchanged by

a single sinusoidal wave according to the Eliassen-

Palm theorem (Eliassen and Palm, 1961); but if at

a certain level, this single sinusoidal wave meets the

wave saturation criteria (Lindzen, 1981), thence the

wave breaking is assumed to attenuated the wave

stress and the ambient wind is decelerated at that level

as a result; furthermore, if a zero wind level (i.e., the

classical critical level) is encountered in propagating

this single sinusoidal wave, the wave stress is deposited

and damped completely and the ambient wind is
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decelerated there. Even if such single wave OGWD pa-

rameterization schemes performed quite well in mod-

eling the vertical distributions of the wave stress (i.e.,

OGWD), Smith (1980), Hines (1988), Shutts (1995),

et al. pointed out that the wave energy (stress) over

the topography has a two-branch structure at almost

all levels in vertical; Moreover, Shutts (1995, 1998)

showed that the selective critical level absorption (this

seems always to occur when considering a continu-

ous gravity wave spectrum that launched by the unre-

solved topography in GCMs is just of such a kind, be-

cause each single wave has its own Doppler frequency

(DF) and these DFs vanish to zero at different heights,

making each single wave filtered out selectively at dif-

ferent levels) will make the wave stress vector misalign

with respect to the local ambient wind vector (there-

fore the assumption usually employed in single wave

schemes that the wave stress will always be directed

against the ambient wind is violated). Therefore,

Scinocca and McFarlane (2000) adopted the sugges-

tion by Hines (1988) and proposed a two-wave scheme

to model the vertical distribution of the wave stress.

Their numerical tests indicated that such a two-wave

scheme did give results more realistic than that by the

one-wave scheme (by allowing more wave stress to be

deposited into the middle atmosphere, depending on

season). However, their two-wave scheme did not treat

the selective critical level absorption explicitly, and the

angles among the wave stress vectors conveyed by the

two single sinusoidal waves and the surface wind vec-

tor once being determined (at the surface level) will

keep unchanged in propagating the wave stress up-

ward. This just contradicts the discovery in Shutts

(1998), where the two-branch structure of the wave

energy is found to vary vertically in a directionally

sheared ambient flow.

In order to formulate a physically more sound

OGWD parameterization scheme, in this paper, a new

two-wave scheme that treats explicitly the classical

critical level absorption, the selective critical level ab-

sorption, and the wave breaking process accompany-

ing the wave saturation was proposed for the GWD

by the FPGW. The work is organized as following:

Section 2 gives the details in designating the new two-

wave scheme; Section 3 gives the results when this new

scheme was applied over the Dabie Mountain region;

and Section 4 gives the major conclusions and further

discussions of the present work.

2. Scheme designation

Perform the 2D Fourier transform to Eqs.(A7)-

(A11) in Appendix A, then some cross eliminations

lead to

ÛH = i
(cosϕ, sinϕ)

K

∂ŵ

∂z
+ i

ŵ(sinϕ,−cosϕ)

K

·Uzsinϕ − Vzcosϕ

Un
− i

Γ1

K
(cosϕ, sinϕ)ŵ, (1)

where Un = Ucosϕ + V sinϕ = Ugcos(ϕ − χ) is the

component of the ambient wind U ≡ Ug(cosχ, sinχ)

when projected into the direction of the wave vector

K ≡ K(cosϕ, sinϕ), and i =
√
−1 is the imaginary

unit.

From Eq.(1) the wave stress per unit area can be

expressed as

τ s = − 1

XY

∞∫

−∞

∞∫

−∞

ρU ′
Hw′dxdy

= − ρ0

4π2XY

∞∫

0

2π∫

0

ÛH ŵ∗KdKdϕ

= − ρ0

4π2XY

∞∫

0

2π∫

0

i(cosϕ, sinϕ)
∂ŵ

∂z
ŵ∗dKdϕ

= − ρ0

4π2XY

∞∫

0

π/2∫

−π/2

i(cosϕ, sinϕ)(
∂ŵ

∂z
ŵ∗

−∂ŵ∗

∂z
ŵ)dKdϕ, (2)

where X, Y are respectively the length and width of

the region under consideration and the asterisk is used

to designate the complex conjugate.

Define the response function

R(K, ϕ) = Re
[ 1

2i|ŵ(K, ϕ, 0)|2
(∂ŵ

∂z
ŵ∗ − ∂ŵ∗

∂z
ŵ

)]
, (3)

where Re(s) means taking the real part of a given vari-

able s. Also note, for the ideal flow considered here,
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the E-P theorem states that dτ s/dz=0 in regions in

absence of critical level absorption and wave satu-

ration, implying that R(K, ϕ) is independent from

height in these regions.

Hence when Eq.(3) is entered into Eq.(2), and use

the lower boundary condition ŵ(0) = iK · U ĥ(k, l),

where

ĥ =

∞∫

−∞

∞∫

−∞

h(x, y)e−i(kx+ly)dxdy (4)

is the 2D Fourier transform of the orographic shape

function h(x, y), one yields

τ s = 2ρ0U
2
g (0)

∞∫

0

π/2∫

−π/2

(cosϕ, sinϕ)cos2[ϕ − χ(0)]

·K2R(K, ϕ)A(K, ϕ)dKdϕ, (5)

where

K · A =
K|ĥ|2

4π2XY
= A1(K)A2(ϕ)

=
( K

K0

)γ[ 1

2π
(C1 + C2cos2ϕ + C3sin2ϕ)

]
(6)

is the orographic spectrum of exponent form (Shutts,

1995), where K0 is some constant, set to 1 km−1 in

the present investigation.

Introduce the normalized orographic covariance

in direction x as following

σ2
xx =

1

XY

X∫

0

Y∫

0

(∂h

∂x

)2

dxdy

=

∞∫

−∞

∞∫

−∞

A(K, ϕ)K3cos2ϕdKdϕ. (7)

When Eq.(7) is integrated explicitly using Eq.(6), one

finds

σ2
xx =

(C1 + C2/2)

2(γ + 3)Kγ
0

(Kγ+3
U − Kγ+3

L ). (8)

On same arguments, one also has

σ2
xy =

C3

4(γ + 3)Kγ
0

(Kγ+3
U − Kγ+3

L ), (9)

σ2
yy =

(C1 − C2/2)

2(γ + 3)Kγ
0

(Kγ+3
U − Kγ+3

L ), (10)

where KU 6 2πN(0)/Ug(0) and KL > 2πf/Ug(0) (f is

the conventional Coriolis parameter) are two parame-

ters introduced to place upper and lower bounds of the

unresolved orographic spectrum considered in a large

scale numerical model.

Since the FPGWs are mostly hydrostatic (Smith,

1979), then from Eqs.(B3)–(B5) in Appendix B, one

obtains

R(K, ϕ) =
N

Un

[
1 − Γ1Un

N

Unz

N
− 1

4

UnUnzz

N2

−1

8

U2
nz

N2
− 1

2

(Γ1Un

N

)2(Unz

N

)2]
= B

N

Un
. (11)

Further, by neglecting the much smaller terms multi-

plied by (Γ1Un/N)2, one then yields

B ≈ 1 −
(Γ1Un

N

Unz

N
+

1

4

UnUnzz

N2
+

1

8

U2
nz

N2

)
. (12)

When Eq.(12) is combined with the fact that R(K, ϕ)

is height independent in regions in absence of crit-

ical level absorption and wave saturation, one has

R = B0N(0)/Un(0), where B0 is B when evaluated

at the surface z = 0.

2.1 Deposition of the OGWD

Shutts (1995) once pointed out, when the ambient

wind alters its direction along with height, that single

waves (with their wave vectors) being perpendicular

to the ambient wind vector will be filtered out and de-

posit their wave stress into the background flow, im-

plying, in such circumstances, the vertical divergence

of τ s is inevitable.

Therefore, for a certain level shown in Fig.1: be-

cause the wave components inside the regions cir-

cumscribed by line ΦL = min
0,z

{χ̃ − π/2} and line

ΦU = max
0,z

{χ̃ − π/2} are filtered off by the ambient

flow below height z, where

χ̃ =

{
χ |χ| 6 π/2,

χ − sgn(χ)π π/2 < |χ| 6 π,
(13)

one only needs to consider wave components with their

arguments satisfying ΦU 6 ϕ 6 ΦL + π in computing

the wave stress. As a result, one may define
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Fig.1. A schematic show of the selective crit-

ical level absorption, where χ
U

and χ
L

are the

maximum and minimum arguments that the

wind vector had rotated over before reaching

level z. This means that the wave components

inside the blackened region circumscribed by

ΦU and ΦL have been filtered off by the am-

bient flow below level z. This figure is drawn

following the Fig.2 in Shutts (1995).

Fig.2. A schematic show for the two-wave

approximation at level z, where χ is the wind

direction at that level.

τ s = T

ΦL+π∫

ΦU

(cosϕ, sinϕ)B0cos(ϕ − χ(0))A2(ϕ)dϕ

= TE(χ(0)) ·
ΦL+π∫

ΦU

f(ϕ)dϕ, (14)

for the wave stress at level z, where

T =
(γ + 3)Kγ

0

Kγ+3
U − Kγ+3

L

[
ρ0N(0)Ug(0)

KU∫

KL

K2

·A1(K)dK

]
= ρ0N(0)Ug(0)

[
γ + 2

γ + 3

·K
γ+3
U − Kγ+3

L

Kγ+2
U − Kγ+2

L

]−1

= ρ0N(0)Ug(0)κ−1. (15)

E(χ) is defined in Appendix C, and κ is some wave-

number-like parameter (for its determination, readers

may refer to Gregory et al. (1998) and Tang (2006)).

Furthermore, if we define

[τ s]
+ = TE(χ(0)) ·

χ̃∫

ΦU

f(ϕ)dϕ

[τ s]
− = TE(χ(0)) ·

ΦL+π∫

χ̃

f(ϕ)dϕ, (16)

then the wave stress vector τ s at level z can be re-

solved into (and thus transported by) two single sinu-

soidal waves (denoted by wave numbers µ+ and µ−),

whose strengths are determined by

∣∣[τ s]
+
∣∣ =

1

2
ρ(z)(µ+)2N(z)Ug(z)κ−1

∣∣cosΦ
+∣∣(h+

m)2

∣∣[τ s]
−

∣∣ =
1

2
ρ(z)(µ−)2N(z)Ug(z)κ−1

∣∣cosΦ
−∣∣(h−

m)2, (17)

Φ
+ = atan2

(
[τsy ]+, [τsx ]+

)
,

Φ
− = atan2

(
[τsy ]−, [τsx ]−

)
,

Φ
+

=
∣∣Φ+ − χ

∣∣, Φ
−

=
∣∣Φ− − χ

∣∣. (18)

In order to employ the wave saturation criteria,

we then compute the non-dimensional amplitudes

F+ =
∣∣∣

N(z)h+
m

Ug(z)cosΦ
+

∣∣∣, F− =
∣∣∣

N(z)h−
m

Ug(z)cosΦ
−

∣∣∣ (19)

for the two single waves defined in Eqs.(16)–(18).

Hence when Eqs.(17)–(19) are evaluated at sur-

face (z=0), and using the constraints

F+ = max
(N(0)h0

Ug(0)
, Fc

)
,

F− = min
(N(0)h0

Ug(0)
, Fc

)
, (20)
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one obtains

µ+ =
[ 2|[τ s]

+(0)|κ
ρ0N(0)Ug(0)

∣∣cosΦ
+∣∣(h+

m(0))2

]1/2

µ− =
[ 2|[τ s]

−(0)|κ
ρ0N(0)Ug(0)

∣∣cosΦ
−∣∣(h−

m(0))2

]1/2

(21)

h+
m(0) =

∣∣cosΦ
+∣∣min

(
h0,

FcUg(0)

N(0)

)

h−
m(0) =

∣∣cosΦ
−∣∣min

(
h0,

FcUg(0)

N(0)

)
,

where h0 is defined in Eq.(C10) in Appendix C, and

Fc is some dimensionless critical height (with a value

of 0.4 in the present investigation).

2.2 Computing procedures

Following are the procedures to implement the

new two-wave OGWD parameterization scheme:

1) Compute the lunching wave stress vector τ s(0)

with Eq.(14); set χ̃ = χ̃(0); ΦL = ΦU = χ̃(0 ) − π/2

determine µ+and µ− with Eq.(21).

2) Suppose the wave stress vector τ s(zn) for the

n-th level is ready, thence perform the following pro-

cedures at the (n + 1)-th level.

If zn+1 > ztop, then go to 3); else if χ(zn+1) =

χ(zn) + π, then the classical critical level is encoun-

tered, set τ s(zn+1)=0, go to 3); otherwise perform the

following procedures:

1© Compute χ̃(zn+1), and determine

ΦL = min
{
ΦL(zn ), χ̃(zn+1 ) − π

2

}
,

ΦU = max
{
ΦU (zn ), χ̃(zn+1 ) − π

2

}
.

2© Compute [τ s]
+ and [τ s]

− using Eq.(16), and

set Tref=T and τ sref = [τ s]
+ + [τ s]

−.

3© Calculate Φ
+, Φ

− and Φ
+
, Φ

−
through Eq.

(18).

4© Inverse Eq.(17) and determine h+
m and h−

m.

5© Compute F+ and F− from Eq.(19), do the

functions F+ = min(F+, Fc) and F− = min(F−, Fc),

inverse Eq.(19) and determine h+
m and h−

m, and then

enter the updated h+
m and h−

m into Eq.(17) to obtain

the updated |[τ s]
+| and |[τ s]

−|, thus one obtains

τsx(zn+1) = |[τ s]
+|cosΦ+ + |[τ s]

−|cosΦ−,

τsy(zn+1) = |[τ s]
+|sinΦ

+ + |[τ s]
−|sinΦ

−,

the component form for wave stress vector τ s(zn+1),

at the same time, one also obtains T = Tref |τ s(zn+1)|/

|τ sref |.
6©Repeat procedure 2).

3) The vertical profile of τ s is obtained.

3. Results

In this section, we will implement the new two-

wave OGWD scheme designated above to compute the

wave stress profile over the Dabie Mountain region un-

der different ambient wind profiles.

Tang (2006) found, over the Dabie Mountain

region, that the orographic parameters are γ =

−1.75, C1=2190 m2km, C2=–373.4 m2 km, C3 = −4.3

m2 km, and κ = 1.30 × 10−4m−1. They will be used

to compute τ s(z) under the following wind profiles,

which are

Case 1:

U = U0 + αz, V = 0, (22a)

Case 2:

U = U0, V = αz, (22b)

and Case 3:

U = U0cosβz, V = U0sinβz. (22c)

In all the three cases defined in Eq.(22), the buoyancy

frequency is set constant, with a value N=0.01 s−1,

and the density profile is

ρ = ρ0exp(−z/H), (23)

where ρ0=1.22 kg m−3 and the scale height H=8 km.

Further, we set U0=10 m s−1, |α| =
√

10 × 10−3

s−1, and |β| =
√

10 × 10−4 m−1, which lead to the

Richardson number Ri=10 for the three cases.

3.1 The wave stress profiles

Following the computing procedures listed in Sec-

tion 2.2, Fig.3 gives the vertical structure of τ s

(i.e., the OGWD) in corresponding to the wind profile

given by Eq.(22a). Here, because the wind is backward

sheared (i.e., α < 0) in this computation, it shows that

the classical critical level at height zc =
√

10 × 103 m

prevents any wave action to be leaked upward; further-

more, since there’s no wave saturation level between

the lower surface and height zc =
√

10 × 103 m, the

wave stress vector τ s decreases linearly from the sur-

face to the classical critical level.
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Fig.3. Results for Case 1, only the backward

sheared wind is considered, and at the classi-

cal critical level zc =
√

10 × 103 m, the wave

stress τs is completely attenuated.

Corresponding to the wind profiles by Eq.(22b),

Fig.4 gives the τ s profiles for both the forward sheared

wind (i.e., α >0) and the backward sheared wind (i.e.,

α <0). We found, due to the wind’s rotation against

height, the wave stress vector τ s gradually misaligns

with respect to the wind vector, for both the forward

and backward sheared winds. For instance, at the level

z=20 km (see from the rotating direction of the wind

analytical solution for the linearly sheared wind, that

the wave stress induced by an isolated circular bell-

shaped mountain also varies in the same way as we

here found against height. The latter also proves that

the new two-wave OGWD scheme presented here is

efficient in treating the selective critical level absorp-

tion.

Figure 5 gives the vertical structure of τ s cor-

responding to the wind profile by Eq.(22c). Similar

to the wind profiles by Eq.(22b), it shows that the

OGWD (i.e., the waves stress) is continuously attenu-

ated due to the rotation of the wind vector against

Fig.4. Results for Case 2, (a) and (b) are for backward sheared wind, (c) and (d) are for forward sheared
wind. The wave stress vector τs always falls behind U (seen from the latter) as the height increases, at z=20
km, the former falls behind the latter about 50◦.
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the height, and the misalignment between the wind

vector and the stress vector is also very significant.

However, above the level z=9935 m, no modification

to the ambient flow is allowed because the OGWD is

completed deposited from below.

As a further example, we then compute the wave

stress profile over the Dabie Mountain region when the

wind profile is given as a zonal average in winter in

middle latitude in the Northern Hemisphere, and the

density and the stratification is given by the Ameri-

can Standard Atmosphere 1976. The result is shown

in Fig.6, where it is found that there are three at-

tenuation regions by 0–0.5, 20–26.5, and 51.5–80 km.

Further analysis reveals that the region by 51.5–80 km

is just the location of the westerly in top of the strato-

sphere. On the other hand, we know the attenuation

of the wave stress (i.e., OGWD) rightly means the am-

bient flow is decelerated there, which means the new

two-wave OGWD parameterization scheme is efficient

in alleviating the “westerly bias”.

4. Conclusion and discussion

Starting with a second order WKB approximation

to the Taylor-Goldstein equation, Eq.(B1), a new two-

wave scheme to parameterize the OGWD by FPGWs

was presented. It was then used to compute the

OGWD over the Dabie Mountain region under dif-

ferent ideal wind profiles and a zonal average during

winter in middle latitude in the Northern Hemisphere.

The results showed that this new two-wave scheme did

reveal the misalignment between the wave stress vec-

tor and the local ambient wind when the ambient wind

alters its direction along with height. Further, the new

scheme also proved itself capable of alleviating the

Fig.5. Results for Case 3, under both the counterclockwise ((a) and (b)) and the clockwise rotation ((c)

and (d)) of the ambient wind vector along with height, the wave stress vector τs vanishes at height z=9935

m, because the ambient wind U has just rotated with half a circle from below and the continuous selective

critical levels absorb the waves stress completely.
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Fig.6. Zonal average wind in winter (a) in middle latitude in the Northern Hemisphere; and the corre-
sponding wave stress profile (b) computed from the wind profile of (a) together with the American Standard
Atmosphere 1976.

“westerly bias” by producing wind deceleration in

top of the stratosphere where the westerly locates.

However, to formulate a complete second generation

OGWD parameterization scheme, there is still much

work to do, which will be our future efforts.
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APPENDIX

A. Governing equations for the perturbations

When the momentum, mass, and thermal-

dynamic equations for the ideal, steady, fully com-

pressible, non-rotating, and hydrostatic flow are lin-

earized to the first order accuracy, one obtains

U · ∇H(U ′
H) + w′U z = −1

ρ̄
∇Hp′ (A1)

1

ρ̄

∂p′

∂z
+

ρ′

ρ̄
g = 0 (A2)

U · 5H

(ρ′

ρ̄

)
+

w′

ρ̄

dρ̄

dz
+ ∇H · U ′

H +
∂w′

∂z
= 0 (A3)

U · 5H

(θ′

θ̄

)
+ βw′ = 0, (A4)

for the perturbations. In above, the primed are the

perturbations and the bared are the ambient variables.

U ′
H ≡ (u′, v′) is the perturbed horizontal velocity,

and U ≡ (U, V ) is the horizontal ambient velocity;

β = d(lnθ̄)/dz, ∇H(·) is the horizontal gradient op-

erator and others are in their conventional meanings.

The subscript z is used to designate partial derivative

with respect to variable z.

To close the dynamic system by Eqs.(A1)–(A5),

we further introduce

−ρ′

ρ̄
=

θ′

θ̄
− 1

c̄2
s

p′

ρ̄
. (A5)

Now perform the following transform

(UH , w, ρ, b) =

√
ρ̄

ρ0

(
U ′

H , w′,
ρ′

ρ̄
, g

θ′

θ̄

)

φ =

√
ρ0

ρ̄

p′

ρ0
, (A6)

to Eqs.(A1)–(A5), and employ the small Mach num-

ber approximation in the mass equation Eq.(A3) (see

Tang (2006) for details), the final version of the gov-

erning equations for the perturbations are found as

U · ∇H(UH) = −∇Hφ − wU z (A7)

( ∂

∂z
+ Γ1

)
φ − b = 0 (A8)

( ∂

∂z
− Γ1

)
w = −∇H · UH (A9)

U · ∇H(b) + N2w = 0 (A10)

ρ = − b

g
+

φ

c2
s

, (A11)

where ρ0 = ρ̄(z = 0), Γ1 = −β − S/2, S = ρ̄z/ρ̄.

B. The WKB approximation

First perform the 2D Fourier transform to Eqs.

(A7) and (A11), then after some cross eliminations,

the Taylor-Goldstein equation (Tang, 2006) is ob-

tained

ŵzz +
(N2

U2
n

− Γ2
1 − 2Γ1

Unz

Un
− Unzz

Un

)
ŵ = 0. (B1)

Under the assumption of the slowly variation of U

along with height, a WKB approximation (Li and

Zhou, 1998) satisfying the radiation condition at the

upper boundary to Eq.(B1) may be found

ŵ(Z) = ŵ(0)exp

{
iε−1

∫ Z

0

∞∑

j=1

εjmj(ξ)dξ

}
, (B2)

where Z = εz, ε is some small parameter, being pro-

portional with R
−1/2
i , and the zeroth, first, and second

order vertical wave-numbers mj(j = 0, 1, 2, · · · ) are

m0 =
N

Un
(B3)

εm1 =
N

Un
·
(
− Γ1Un

N
· Unz

N
− i

2

Unz

N

)
(B4)

ε2m2 =
N

Un

{[
− 1

4

(
UnUnzz

N2
+

U2
nz

2N2

)

−1

2

(
Γ1Un

N

)2

·
(

Unz

N

)2]
− i

[
Γ1Un

2N

·UnUnzz

N2
+

Γ1Un

2N
· U2

nz

N2

]}
. (B5)

C. Some formulas and relevant results used in

this work

Definition of E(χ) (referred in Eq.(14)) and some

further relevant results are

B0 = β1 + β2cos2ϕ + β3sin2ϕ

=

[
1 − Γ1(U0U0z + V0V0z)

2N2(0)
− U0U0zz + V0V0zz

8N2(0)

−U2
0z + V 2

0z

16N2(0)

]
−

[
Γ1(U0U0z − V0V0z)

2N2(0)

+
U0U0zz − V0V0zz

8N2(0)
+

U2
0z − V 2

0z

16N2(0)

]
cos2ϕ

−
[
Γ1(U0V0z − V0U0z)

2N2(0)
+

U0V0zz − V0U0zz

8N2(0)

+
U0zV0z

8N2(0)

]
sin2ϕ, (C1)
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D1 = 2C1β1 + C2β2 + C3β3,

D2 = 2(C2β1 + C1β2),

D3 = 2(C3β1 + C1β3),

D4 = C2β2 − C3β3,

D5 = C2β3 + C3β2, (C2)

E1x = 2D1 + D2 + D3tanχ,

E2x = 2(D1 + D2) + D4 + D5tanχ,

E3x = 2D3 + D5 + (2D1 − D4)tanχ,

E4x = 2D4 + D2 − D3tanχ,

E5x = 2D5 + D3 + D2tanχ,

E6x = D4 − D5tanχ,

E7x = D5 + D4tanχ, (C3)

E1y = 2D1 − D2 + D3ctanχ,

E2y = 2(D2 − D1) − D4 + D5ctanχ,

E3y = 2D3 − D5 + (2D1 − D4)ctanχ,

E4y = 2D4 − D2 − D3ctanχ,

E5y = 2D5 − D3 + D2ctanχ,

E6y = −D4 − D5ctanχ,

E7y = −D5 + D4ctanχ, (C4)

Ex(χ) = [Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7],

Ey(χ) = [Ey1 Ey2 Ey3 Ey4 Ey5 Ey6 Ey7],

E(χ) =
Kγ+3

U
−Kγ+3

L

8π(γ+3)Kγ

0

[
Ex(χ)cosχ

Ey(χ)sinχ

]
(C5)

f(ϕ) = [1 cos2ϕ sin2ϕ cos4ϕ sin4ϕ cos6ϕ sin6ϕ]T.

In particular, when the ambient flow is assumed ver-

tically homogenous, the above become

B0 = β1 = 1, β2 = β3 = 0

D1 = 2C1, D2 = 2C2,

D3 = 2C3, D4 = D5 = 0, (C6)

E1x = 2D1 + D2 + D3tanχ, E2x = 2(D1 + D2)

E3x = 2D3 + 2D1tanχ, E4x = D2 − D3tanχ,

E5x = D3 + D2tanχ, E6x = E7x = 0, (C7)

E1y = 2D1 − D2 + D3ctanχ, E2y = 2(D2 − D1)

E3y = 2D3 − 2D1ctanχ, E4y = −D2 − D3ctanχ

E5y = −D3 + D2ctanχ, E6y = E7y = 0. (C8)

With Eqs.(C6)–(C7), it is easy to verify

τ s(0) = T (0)κ−1

[
σ2

xxcosχ + σ2
xysinχ

σ2
yysinχ + σ2

xycosχ

]
, (C9)

h2
0 =

1

XY

X∫

0

Y∫

0

h2dxdy =

∞∫

−∞

∞∫

−∞

A(k, l)dkdl

=

∞∫

0

2π∫

0

A(K, ϕ)KdϕdK. (C10)


