南京气象学院学报

一九七九年 第一期

台湾省可能最大暴雨

吴和赓 张学军 熊学农* 陈 昭 润 (华东水利学院) (福建水电局设计院)

提要

台湾省出现的新察特大暴雨,仅次于世界闻名的留尼旺特大暴雨。根据北 太平洋西部和南印度洋上大气环流背景及海洋情况条件,本文论证了台湾省的 可能最大暴雨的最高值可超过留尼旺特大暴雨。这样推论所得的可能最大暴雨 比用水汽放大法等估算得的可能最大暴雨,依据要充分一些。

引言

台湾省由台湾岛、澎湖列岛、钓鱼岛、彭佳屿、黄尾屿、赤尾屿、兰屿、火烧岛等 组成。总面积约三万六千平方公里。台湾岛与大陆隔一台湾海峡。海峡宽度平均约120公 里。台湾岛南北延伸约380公里,东西宽约20到150公里;北回归线横贯中部。终年温度 高,湿度大。

台湾属于冬夏季风气候。然而,台湾地区以台风暴雨为主;5-9月台风季节内的台风雨约为年雨量的80%。灾害性暴雨均系台风造成。本文分析论证台湾省各地,由台风造成的日可能最大暴雨及其分布。

一、降雨资料情况

大多数站的降雨资料为 1501—1947 年的,其中有13个站还包括 61-74 年的降雨资料。对51个站的降雨资料作过频率分析。其中有 5 个站的降雨记录长达44年,短的降雨 记录也有13年,其余一般降雨记录年分都在26年以上,而以30年降雨记录为最多。将历 年一次最大日雨量加以平均(H),则得最大日雨量均值。统计了124个站的日雨量均值, 除个别站的资料只有11年外,其余多数站都有 30—40 年。本文讨论分析的日雨量为值, 500毫米的,有51场次;其中日雨量>600毫米的,有29场; >700毫米的有18场; >800 毫米的,15场; >900毫米的, 11场; > 1000毫米的, 6场;大于1100毫米的,有4场**。

^{*}参加部分工作的还有华东水利学院陆地水文专业75级五位学员。

^{**}百新与宣原的Hut为同一场雨的降水量。

二、台湾地形对台风雨的影响

台湾山地和高山甚多。海拔在 500 米以上的地区约为总面积的一半。中央山池、雪山及玉山等连绵不断,约呈南北向,並偏居于台湾东部。境内海拔在3000米以上的高山约90座,而其中秀姑蛮山,高3833米;雪山高达3931米;莫里山为最高,海拔3951米。

台湾位于北太平洋西部台风路径上, 台风袭击台湾的机会颇多。根据66年(18°7-1962)的记录⁽¹⁾,袭击台湾的台风占北太平洋西部所出现的台风的19%, 而袭击台湾 的台风中有47%登陆台湾。这里所说的袭击,指台风中心在台湾岛登陆及其离开台湾岛 在 200 公里范围内, 而影响到台湾及其近海的天气及海况的台风而言。当台风接近和移 经台湾时,西南季风和东南季风往往随着台风而来,大多数最大的短时降雨就是在这种 情况下产生的。台风雨的分布主要决定于台风的路径和其出现的月份。根据74年(1897 -1970)记录, 台风可从四面八方经过或在海面擦过台湾。

当台风接近台湾或在台湾登陆时,在台湾地形作用下,台风阻塞,移动路径偏离, 台风环流内风场变形;根据流场分析,地面风场出现次生低压环流,流场断裂或涡旋分 开、出现局地涡旋,以及在台湾东南近海上出现诱生低槽等现象;而且这些现象往往有 两种以上同时出现。例如,1974年9月27日03时图上,7420号台风中心尚在巴坦群岛以 西海上,与新寮特大暴雨出现的台风位置相近;而这时分别在宜兰、大湖地区出现局地 涡旋,造成局地暴雨⁽²⁾。而且在模拟试验中,也确证出现这类局地涡旋⁽³⁾。此外,局 地涡旋出现地区还随台风中心移动而改变。

台风自东向西移动接近台湾时, 台风移动路径顺时钟向北偏转, 进入台湾后又偏向 南。自南向北移动的台风接近台湾时顺时钟向右偏, 离开台湾时逐渐恢复到原先的移动 方向⁽²⁾。

由此可见,台湾地形对台风的影响,从而对台风雨的影响极为重要,雨区分布变得极 为复杂。6312号台风在台湾北部洋面从东南向西北方向移动中,百新24小时降雨1248毫 米,中央山地以西出现大片雨区⁽⁴⁾。6718 号台风从菲律宾以东经巴士海峡进入南海过 程中,台湾处于台风倒槽控制下,在东风扰动随着台风西移而西移及静止锋天气过程同 时影响下,宜兰地区的新寮24小时下雨1672毫米⁽⁵⁾。

三、可能最大暴雨

特定流域上,特定季节里,一定历时,在物理上可能而在理论上为最大雨深(毫米),称可能最大暴雨。在相对平坦的地区,在相同降雨天气条件下,把实际暴雨分布型移到 水利工程设计流域,考虑到天气过程的演变,经过水汽、地形调正等,可得可能最大暴 雨。在山地区域,由于地形对降雨的影响,估算山地区域的可能最大暴雨,必须更多地 考虑地形的作用。

1 水汽放大法估算可能最大暴雨

以一个地点一定天气条件下,最大露点相应的可降水,与一次大暴雨下露点的相应可 降水之比,作为水汽放大率。实测暴雨量乘以水汽放大率,便得该地点的可能最大暴雨。

由于手头无每日定时露点资料,只能在历史天气图上读一些站的气温和相对湿度 (*)、(*)以计算露点,发现暴雨期内最大露点为 27℃(例如: 恒春, 1915 年10月 30日13时,1921 年9月14日13时均是),相应的可降水为95毫米,从面与暴雨时实测露 点相应的可降水分别求得各站的水汽放大率和可能最大暴雨。一般说,水汽 效 大 率 为 1.08—1.81,大多数站的水汽放大率为1.17,並经高度订正。例如表1 所示。

地名	草漯	百新	苎原	新寮	竹崎	阿里山	湖可	大武	大南	天送碑
实测雨量	953	1248	1193	1672	1010	1164	1240	880	639	1060
放大率	1.17	1.17	1. 10	1.17	1.22	1.21	1.28	1.14	1.81	1.17
可能最大 暴 雨	1115	1460	1312	1956	1229	1411	1587	1007	1157	1240

表1, 若干地方的水汽放大率与可能最大暴雨(毫米/24小时)

*本站未经高度订正

其中,暴雨高值区主要有北部的百新、萱原到新寮一大片;玉山山地以西,阿里山、 幼叶林及大浦等地;及潮可、大武一带。这些结果是在这样的假定下求得的,即台风天 气系统保持原有状态,不因为水汽凝结潜热释放导致的反馈作用而改变。

Wu^[9]提出,台湾的外包露点为26.5℃。我们认为此值偏低。他所得的可能最大暴 **雨值约为实测**最大点雨量外包值的1.1 倍。从其所作图中也可看到,24 小时可能最大暴 **雨约为1600毫米。**然而,他未利用新寮〔站〕暴雨资料,故他所得结果必然偏低。

2 暴雨移地法估算可能最大暴雨

1956年9月8日,在5623号台风影响下,冲绳嘉手纳出现24小时1(71.9毫米暴雨, 而且是出现在平地上的⁽¹⁰⁾。我们试图把它移到台湾地区,但必须考虑台湾地形对暴雨 的影响,即1071.9毫米暴雨移到新寮时,新寮的雨有多少。若已知地形雨,加上嘉于纳 的雨量,並经一定放大,例如水汽放大,就可估算得新寮的可能最大暴雨,从而加以推 广,估算台湾其他地方的可能最大暴雨。

冲绳地势低,所有地方的海拔都在666米以下。而嘉手纳附近 10 英里范围内,丘陵 **地的海拔都**不到266米^[10]。如果 562。号台风出现于台湾,经计算得的迎风坡上地形雨 ¹ 列如表2.

编号	位	171 .111.	最大地形雨(毫	米)平均地形雨(毫米)
5 1	121.45°E,24.95°N-1	121.2°E, 24.4°N	224.3	111.1
2	121.4°E, 24.4°N —1	21.2°E, 23.8°N	133.3	103.2
3	121.2°E, 23.8°N —	120.95°E,23.4°N	200.1	121.0
4	120.95°E,23.4°N —	120.6°E, 22.85°N	154.04	118.3
5	120.85°E,22.8°N —	120.65°E,22.2°N	.152.7	88.8

表2

由于迎风坡各高度段内的平均坡 度无大变化,因此不同地段内的地形 雨可借线性内插而得。令山顶降雨最 大,平地上雨量为零。新寮距一号地 形剖面约45公里,山脊上雨量为224.3 毫米,离山脊65公里处雨量为224.3 毫米,离山脊65公里处雨量为零,则 经过内插,在562.号合风影响下,新 凉的地形雨为93.5毫米。这值显然太 偏小,这是由于用了平均地形坡度,, 及未考虑局地涡旋对降雨量的贡献所 致。

3 综合法估算可能 最大暴雨

1) 综合法所得结果 根据计算 所得万年一遇雨量、水文气象方法估 算得的可能最大暴雨及实 测 最 大 雨 量,进行综合分析和调整,最后得到 可应用的可能最大暴雨的 地 理 分 布 招。见图 1、图 2和图 3。主要站的可

图1. 台湾省24小时最大雨量均值, H₂₄分布图 能最大暴雨见表3。

由表3可见,新寮的可能最大暴雨大于留 尼旺岛上锡拉奥斯(Cilaos)24小时雨量1870毫 米。现在需要论证此值是否可能出现。

2) 合理性分析

锡拉奥斯位于留尼旺岛上主要山資南部的 一个河谷台地上,海拔1312.3米,其北3--5公 里,山脊高3069米,平均坡度为0.44。1952年 3月15--16日在热带气旋影响下,强劲的西南 风、南风,沿着朝南开口的陡坡滑升,在飘来雨 和狭管效应同时作用下,一天降雨1870毫米^[9] 施瓦兹(Schwarz)^[11]估计,在这次降雨中 有75--100%为地形雨增量,在这次暴雨中地 形雨起了主要作用。在另一方面,百新位于山谷 内,谷口朝北:百新海拔1636米,而其两侧山 脊高达2333米,两处相距1.5公里左右,平均

图 3. 台湾省24小时可能最大点暴雨分布图

坡度约为0.46,比前者稍大;此处 偏北风最有利于降雨。例如,11日 07-08时,实测雨量为90.9毫米, 而估计台风中心附近一小时最大雨 量为40-50毫米,则地形雨约占 1/2。无疑,百新在西风之下亦有 飘来雨和狭管效应引起的雨量增 量¹⁴¹。由此可知,在小地形上说, 台湾可能出现比留尼旺暴雨还要大 的雨。

台风季节,台湾附近海面温度 较高,8、9月的最高月平均海面温 度为27.8℃。留尼旺岛位于21°S附 近,3月海面最高月平均温度为 27.2℃。这就表明,一般而论, 台湾附近台风中的可能的空气湿度 比留尼旺附近热带气旋中的空气湿 度要大,因而在同样条件下,台 湾的可能最大暴雨比留尼旺暴雨要 大。

北太平洋西部,夏秋海面温度 的正距平值相当大。例如1967年 秋,新寮特大暴雨出现季节里,台 湾附近海温正距平中心 在 我 国 东

海,正距平值为+3°F^[12](见图 4)。这也许是台湾附近台风特别强,带来的雨特大的 理由之一。

全世界热带气旋出现时,风速大于17米・秒⁻¹次 数・年⁻¹亦以太平洋西部为最多,30.5次(1959-1968);而印度洋西南部很少,7.8次(1931-1960)。 在同样条件下,以这样的风速配合有利的地形,台湾境 内雨量大于留尼旺境内的可能性也复存在。

台风强度对台风暴雨的作用是显而易见的。台风愈 强大,台风暴雨也愈强愈广^[13]。现在虽未查得造成留 尼旺特大暴雨的热带气旋的中心气压,故无法使之与造 成台湾暴雨的强台风相比。但单单就百新和新寮特大暴 雨说,当时台风中心的气压分别为 930 和 951 毫巴。这 些气压值在北太平洋西部台风中为常见的,而在本地区

图4.1967年秋,平均海面温度距 平图,数值以°F计。

衣 3												
站名	新寮	潮可	阿里 山	百新	苎原	玉里 支	天送 碑	恒春	台北	台南	新竹	澎湖
测站高程(米)	i I	697	2215		1212		129	22	8.0	12.7	20	9.4
观测系列年数	/	21	33	/	24	13	32	44	44	44	40	44
系列最大值, H _M	1672	1240	922	1248	1193	782	1060	594	748	550	410	723
	380	480	420	350	300	360	280	260	200	220	180	180
变差系数	0.60	0.50	0.54	0.60	0.60	0.52	0.60	0.50	0.54	0.50	0.50	0.60
米用值 C _s /C _v	2	2	2	2	2	2	2	2	2	2	2	2
万年一迂值,H _{0.01%}	2300	2310	2220	2120	1820	1820	1640	1250	1060	1060	870	1090
估水汽放大法	1956	1587	1411	1460	1312		1240					
算暴雨移罡法	1765											
方 水汽输送率法	2230			1760		ı.	1690					
法气象综合法	1980	1790	1540	1730	1830	1430	1640	1270	1390	1230	106 0	1250
	1800	1600	1400	1500	1300	1400	1200	1250	1100	1100	900	1100
PMF * 伯 昇 氾 田	2300	2300	2200	2100	1800	1800	1700	1270	1400	1200	1100	1300
PMP 采 用 值	1900	1850	1800	1750	1700	1650	1600	1400	1300	1200	1100	1200
PMP/\overline{H}	5.00	3.86	4.28	5.00	5.66	4.60	5.72	5.40	6.50	5.46	6.11	6 .66
PMP/H0.01%	0.83	0.80	0.81	0.83	0.93	0.91	0.98	1.12	1.23	1.13	1.27	1.10
PMP/H _M	1.13	1.49	1.95	1.40	1.43	2.12	1.51	2.36	1.74	2.19	2.68	1.83

* PMP, 可能最大降水, 在这里指可能最大暴雨而言。

·曾出现过更强的台风,见表4^[14]。由上表可见,这类强台风有在台湾出现的可能性很大,虽然未举各台风的移动路径和发展过程,但下更大的暴雨依然有可能。

猆	4
\mathcal{A}	4

北太平洋西部强台风

序列	地点	经	纬」	£	观测方法	时	间	名称	中心气压 (毫巴)
1	吕宋之东	18.0°N	, 135.3	°E	A/C下投式探空仪	1958年9月	24日	"lda"	877
2	吕宋以东 约400公里	17.0°N	,130°1	Ξ	S,S,Sapoeroes	1927年8月	18日		886.7
3	琉球之东	2.5°N	,135°]	Ξ	S.S. "No.4 Kaiyo- Maru"	1944年10月	6日		898
4	官古岛	24.8°N	,125.3	°E	陆地站观测	1959年9月	15日	"Sarah"	908.4
5	Muroto Misaki (九州)	33.3°N	,134.2	2° E	陆地站观测	1934年9月2	21日		911.8

由于天气、降水资料未能收集齐全,分析结果尚存在问题,例如,雨量资料主要为 1940年以前的;天气分析,中小尺度地形与雨量分布的关系,知之不多。地形雨占总雨 量的多少等等尚有待进一步研究。虽然如此,从北太平洋西部大气环流和海况背景看来,

台湾的台风雨(包括受台风影响)超过留尼旺特大暴雨的实况值,完全有可能。

附:查阅历史天气图时,,江苏省南京气象台和南京大学气象系,及抄台湾省降 水资料时,福建省气象局,给予很大方便,一并在此致谢。

参考文献

- (1) Chu-Ching Lin, 1972: How the Taiwan terrain affects the weather. in (Synoptic Analysis and Forecasting in the Tropics of Asia and the South-West Pacific), WMO-No.321, 444-450.
- (2) Chu, K.K., S.T. Wang and H.P.Pao, 1978: Surface wind fields and moving tracks of typhoon when encountering the island of Taiwan. in «11th Technical Conference on Hurricanes and Tropical Meteorology», 84-87. AMS.
- (3) Pao, H.P., and R.R. Hwang, 1978: Effects of mountains on a typhoon vortex: A laboratory study. in «11th Technical Conference on Hurricanes and Tropical Meteorology», 88-91. AMS.
- (4) Paulhus, J.L.H., 1965: Indian Ocean and Taiwan rainfall set new records, Mon. Wea. Rev. 93 (5) = 331-335.
 - (5) 中国科学院大气物理所暴雨组编著,1977:《中国暴雨》,第二册,211-217(油印本)...
- (6) U.S. Weather Bureau, Historical Weather Maps. Northern Hemisphere Sea Level. 1899~1939.
 - (7) 中央气象台:历史天气图(已发布的)。
 - 〔8〕 南京气象台: 历年工作天气图 (库藏)。
 - (9) Chian Min Wu, 1973: A typhoon flood computation model in Taiwan. in «International Association for Hydraulic Research, International Symposium on River Mechanics». Vol. 2, 171-182.
 - Jordan, C.L. and M.Shiroma, 1959: A record rainfall at Okinawa. Bull. Amer. Met. Soc., 40 (12), 609-612.
 - (11) Schwarz, F.K., 1973: A proposal for estimating tropical storm probable maximum precipitation (PMP) for sparse-data regions. in «Floods and Droughts», 62-82, Edited by E.F. Schulz, V.A. Koelzer and Khalid Mahmood.
 - (12) Namias, J., 1969: Use of sea-surface temperature in long-rangeprediction. in «Sea-Surface Temperature», WMO Tech. Note No. 103,1-19.
 - (13) (同[6],第一册,155-156(油印本).
 - (14) Tse, Y.W., 1972: Typhoon climatology. in «Synoptic Analysis and Forecasting in the Tropics of Asia and the South-West Pacific».
 WMO-No.321, 105-121.