首页 | 官方网站   微博 | 高级检索  
     

雷达定量测量降水在佛子岭流域径流模拟中的应用
引用本文:张亚萍,程明虎,徐慧,王嘉涛.雷达定量测量降水在佛子岭流域径流模拟中的应用[J].应用气象学报,2007,18(3):295-305.
作者姓名:张亚萍  程明虎  徐慧  王嘉涛
作者单位:1.中国气象科学研究院, 北京 100081
摘    要:以位于合肥雷达西南100 km的佛子岭闭合流域 (1813 km2) 及该流域的6个子流域为研究区域, 用地面雨量计和雷达-雨量计联合校准两种方法进行流域面雨量计算, 将两种方法计算的面雨量分别作为TOPMODEL (TOPography based hydrological MODEL) 降水-径流模型的输入, 对模型输出结果进行比较。个例分析表明:雷达-雨量计联合测量降水的精度是否高于单独用地面雨量计计算的精度, 在一定程度上取决于用于校准的地面雨量计数目和代表性; 即使雨量计计算的整个流域面雨量与雷达-雨量计联合校准后的结果接近, 对应子流域面雨量的结果仍然会存在差别; 不同方法计算的某一子流域面雨量的差别越大, 则TOPMODEL水文模型输出的该子流域径流深的差别也越大。

关 键 词:天气雷达    降水-径流模型    TOPMODEL
收稿时间:2006-06-22
修稿时间:2006-06-222007-01-06

Application of Radar Rainfall Estimates to Runoff Simulation in Foziling Basin
Zhang Yaping,Cheng Minghu,Xu Hui,Wang Jiatao.Application of Radar Rainfall Estimates to Runoff Simulation in Foziling Basin[J].Quarterly Journal of Applied Meteorology,2007,18(3):295-305.
Authors:Zhang Yaping  Cheng Minghu  Xu Hui  Wang Jiatao
Affiliation:1.Chinese Academy of Meteorological Sciences, Beijing 1000812.Nanjing University of Information Science & Technology, Nanjing 2100443.Chongqing Municipal Meteorological Bureau, Chongqing 4011474.Bureau of Hydrology, Huaihe River Commission, Ministry of Water Resources PRC, Bengbu 233001
Abstract:It is well acknowledged that the accuracy of stream flow predictions from a hydrologic model is heavily dependent on the accuracy of the precipitation inputs. Particularly, high variability of rainfall exists both in time and space, and mountainous basins have in general fast response time. Therefore, hydrological models taking into account the rainfall variability should play an important role in flood alert systems in mountainous basins. In this sense, weather radar inform ation is a key element in flood forecasting. The studied closed basin, Foziling (1813 km2), has a basin-to-radar distance of 100 km from southwest of the Hefei CINRAD/SA radar (31.866°N, 117.257°E). Comparisons of raingage-based and radar-gage-based simulated discharges using TOPMODEL (TOPography based hydrological MODEL) are performed for the Foziling basin and its 6 subcatchments. Rainfall observations of the basin are available from 12 raingauges operated by Bureau of Hydrology, Huaihe River Commission, Ministry of Water Resources PRC. In order to utilize true independent data sources for verification purposes, 6 gauges are withheld from the estimation scheme and used for verification instead. The radar data are selected from an S-band Doppler weather radar located at Hefei, Anhui Province throughout the period from June 20 to July 12, 2003. The TOPMODEL rainfall-runoff model used in this study is a semi-distributed watershed model that simulates the variable-source-area mechanism of storm runoff generation and incorporates the effects of topography on flow paths. For the application of the TOPMODEL, the topographic index is computed based on 1:250000 DEM (Digital Elevation Model). To some extent, whether the merged radar-gage estimates are better than the gage-only estimates or not is relative to the density and representativeness of the raingage network; even when the raingage-only and radargage mean areal rainfall estimates show nearly the same value for the Foziling basin, there is discrepancy between raingage-only and radar-gage estimates of mean areal rainfall for each subcatchment; for certain subcatchment, the greater the discrepancy between the raingage-only and radar-gage mean areal rainfall estim ates, the bigger the divergence between the corresponding simulated runoff depths from TOPMODEL. Therefore, even when a relatively dense raingauge network exists, the rain gauge data alone do not provide an initial rainfall state that is detailed enough for accurate hydrologic simulation, and radar information is essential to provide accurate flow estimates using a rainfall-runoff model. In fact, a density of about 1 raingauge per 300 km2, which is the case of the Foziling basin after the 6 verification raingauges are withheld, is insufficient to reproduce the spatial precipitation pattern of the event studied. Conclusions from the study may be specific to the target case, which is based on the characteristics of the QPE (Quantitative Precipitation Estimation) inputs and the TOPMODEL hydrologic model, or specific hydrologic characteristics of the Foziling basin. In the future, additional events, other hydrological models and some more robust radar-raingauge correction procedures will be investigated.
Keywords:TOPMODEL
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号