第17卷 第3期 2023年6月

葛黎黎, 吕国真, 赵桂香, 等.山西晋城"7·11"暴雨过程雨滴谱特征研究[J].沙漠与绿洲气象, 2023, 17(3): 17-25. doi: 10.12057/j.issn.1002-0799.2023.03.003

开放科学(资源服务)标识码(OSID):



# 山西晋城"7·11"暴雨过程雨滴谱特征研究

葛黎黎1,吕国真2,赵桂香3\*,李亚军1,郭栋2

(1.山西省气象信息中心,山西 太原 030006;2.山西省气象服务中心,山西 太原 030002;3.山西省气象台,山西 太原 030006)

摘 要:利用降水现象仪观测资料,对 2021 年 7 月 11 日山西晋城一次暴雨过程的雨滴谱特 征进行分析。结果表明:雨滴数浓度、雨强和谱宽随时间变化趋势基本一致;雨滴直径等级频数百 分率和质量百分率分布均呈明显的双峰或三峰结构;此次过程以直径 D < 1 mm 的小雨滴为主,但 其对雨强 R 的贡献率仅为 7.46%,而 1 mm  $\leq D < 3 \text{ mm}$  的大雨滴对 R 的贡献率达到了 77.44%;雨 滴落速主要集中在 2~5 m/s。当 R  $\geq 20 \text{ mm/h}$  时,Gamma 分布参数  $N_0$ , $\mu$  和  $\lambda$  随时间的起伏变化相 对平缓,平均变化率分别为 6.2%、46.7%和 18.0%; $\lg N_W - D_m$ 分布显示,此次低涡暴雨过程既非大陆 性对流降水,亦非海洋性对流降水; $\mu - \lambda$  之间存在较好的二项式函数关系,相关系数为 0.901。幂 函数对于降水动能参数关系  $E_t - R$  和  $E_d - R$  的拟合性能更优,二项式函数拟合对于  $E_d - D_m$ 效果更 好。采用最小二乘法得到 Z-R 拟合关系,在 R  $\geq 20 \text{ mm/h}$  时,估测效果优于经典 Z-R 关系。

关键词:雨滴谱;Gamma 分布;低涡暴雨;降水动能;Z-R 关系

中图分类号:P426.6 文献标识码:A 文章编号:1002-0799(2023)03-0017-09

地面降水是天气系统热力、动力、水汽等相互作 用的综合结果,包含了复杂的云降水微物理过程信 息<sup>[1]</sup>。雨滴谱作为这些重要信息的载体,已广泛应用 于气象、水文和遥感等领域。对其特征进行分析有利 于更准确地认识降水特性,在优化气候模式参数、雷 达定量估测降水、评估降水动能关系等应用场景均 发挥着至关重要的作用<sup>[2-4]</sup>。

已有许多学者针对暴雨过程的雨滴谱特征开展 了研究。周黎明等<sup>19</sup>对不同天气系统影响形成的暴 雨过程微物理特征进行研究,发现气旋暴雨中的雨 滴数浓度、雨强、最大直径等参量明显低于低槽冷锋 和切变线暴雨。陈磊等<sup>10</sup>研究了梅雨锋暴雨雨滴谱 特征,发现谱型以双峰型为主,几乎不存在无峰型。

收稿日期:2022-10-11;修回日期:2022-12-07

基金项目:国家自然科学基金项目(41475050)

江新安等<sup>17</sup>利用常规地面、高空、雷达以及雨滴谱资料,分析了伊犁一次短时强降水雨滴谱特征,发现此次过程雨滴数浓度大、雨滴谱宽且分布差异大。

大量研究表明,基于雨滴谱参量的 Gamma 分布 拟合结果在不同地区、不同气候条件下与雨强的关 系复杂,其结果不尽相同<sup>8-11]</sup>。Bringi 等<sup>[12-13]</sup>研究了赤 道附近以及海洋到陆地的不同气候区不同降水类型 的微物理特征,将对流降水分为海洋性和大陆性两 类。Gamma 分布形状因子和斜率参数具有很好的相 关性,但其关系随地域及降水类型变化较大<sup>[14-16]</sup>。

降水动能可以作为评估由于降雨造成的滑坡、 泥石流等次生灾害破坏程度的指标,但是一般不具 备直接测量的条件。因此,近年来基于雨滴谱的降水 动能关系研究获得了更多关注。Wen等<sup>[17]</sup>、Zeng 等<sup>[18]</sup>、Seela等<sup>[19]</sup>、Janapati等<sup>[20]</sup>分别对华东地区不同 季节、天山山顶和山脚、西太平洋热带气旋及西北太 平洋岛屿台风和非台风降水动能和雨强以及质量加 权直径的关系进行了研究。另外,*Z-R*关系是雷达估 测降水的基础。Rosenfeld等<sup>[21]</sup>认为,由雨滴谱分布差

作者简介: 葛黎黎(1987—), 女, 工程师, 主要从事气象资料融合分 析与质量控制。E-mail: <u>gl\_nuist@163.com</u>

通信作者:赵桂香(1965—),女,正高级工程师,主要从事中小尺度 数值诊断和灾害天气预报技术研究。E-mail:<u>liyun0123@126.com</u>

异引起的 Z-R 关系随地区、大气条件、降水类型的 变化而变化。

目前,针对山西暴雨的研究工作主要围绕暴雨 分类、落区、预报方法等方面展开<sup>[22-23]</sup>,基于雨滴谱 资料分析山西暴雨过程中的云降水微物理特征的研 究工作较为少见。本文利用晋城国家气象观测站雨 滴谱观测资料,从谱分布特征、Gamma 分布参数关 系、降水动能分析、Z-R 关系等方面进行分析与讨 论,得到此次暴雨过程中基于雨滴谱的一系列微物 理参量特征。为加深对山西极端强降水过程的理解 和认识、进一步做好暴雨预报预警提供参考。

#### 1 天气背景

2021 年7月11日02—15时(BT),山西晋城地 区出现极端强降水,引发多处山洪及山体滑坡。降水 持续14h,累计降水量为198.1 mm,为建站以来排 名第2;最大雨强达70.9 mm/h,为山西省国家气象 观测站有记录以来第3位。

10日20时,500 hPa 亚欧大陆中高纬地区多高 空槽活动,等5880 dagpm 线位于江淮到我国西南 地区,山西受高空槽前、西太平洋副热带高压(简称 "副高")西侧西南气流影响。高空槽位于内蒙古西部 到关中平原一带,槽线呈西北东南向,槽后冷平流明 显,高空槽在东移过程中加深发展。对应低层700 hPa,关中平原地区有一低涡,850 hPa 上存在明显 气旋性环流,低涡前部的西南气流不断加强达急流 标准,将水汽和不稳定能量持续向山西输送,使得山 西地区降水系统不断发展。地面上,受新疆以北低压 中心伸展出来的低压带前部影响。

11 日 08 时,副高外围西南气流不断加强,影响 山西的高空槽和低层低涡东移北上。同时,低涡前部 的西南气流也不断加强,700 和 850 hPa 最大风速 分别达到 22 和 14 m/s,急流左前侧存在明显的风向 切变和风速辐合。受以上系统共同影响,晋城出现强 降水。20 时 500 hPa 高空槽逐渐加深为低涡,低层 低涡继续东移北上,强降水区逐渐向华北平原移动, 山西区域的强降水趋于结束。

# 2 资料和计算方法

#### 2.1 资料来源及处理

#### 2.1.1 资料来源

雨滴谱数据来自晋城站 DSG1 型降水现象仪, 共有 32 个尺度通道和 32 个速度通道,降水粒子尺 度测量范围为 0.062~24.5 mm,速度测量范围为 0.05~20.8 m/s; 仪器采样时间为1 min, 采样截面 积为 54 cm<sup>2</sup>。

#### 2.1.2 数据处理与质量控制

(1)仪器端质量控制。考虑到设备灵敏度,在实际观测中仪器端直接剔除前两个尺度通道的数据。 对于分钟数据,若粒子数 K<10 或雨强 R<0.1 mm/h, 通常认为存在仪器噪声并予以剔除<sup>[26]</sup>。

(2)剔除超大雨滴。由于大雨滴在下落过程中极易破碎,一般认为在自然降水中罕见直径>6 mm的降水粒子<sup>[27]</sup>。而在仪器观测记录中,个别时刻出现雨滴直径>6 mm的降水粒子极有可能是因为雨滴重叠造成的误判,因此予以剔除。

(3)雨滴落速和有效采样面积修正。降水粒子的 边缘效应和溅散效应会产生粒子直径很小但速度很 高或粒子直径较大但速度偏低的异常观测结果,给 计算降水粒子的微物理特征参量以及谱分布带来误 差。根据雨滴粒子直径 D 与下落速度 V 的经验关系 曲线(Atlas 经验曲线),剔除速度值偏离经验曲线计 算值 60%的数据<sup>[28]</sup>。为减小边缘效应带来的误差,进 一步订正并得到不同直径粒子的有效采样面积 S<sup>[29]</sup>。

图 1 给出了降水过程质控前(粒子总数为 620 474 个)和质控后的雨滴数量统计结果。质控后,直径 很大但下落速度很小的粒子以及 D>6 mm 的粒子均 被剔除,剔除比例为 1.66%。

2.2 计算方法

2.2.1 雨滴谱参量

根据雨滴谱数据可以获得每分钟不同直径通道在 单位体积内的雨滴谱分布 N(D<sub>i</sub>)<sup>[30]</sup>(单位:m<sup>-3</sup>·mm<sup>-1</sup>), 公式为:

$$N(D_i) = \sum_{j=1}^{32} \frac{n_{ij}}{S_i \cdot \Delta t \cdot \Delta V_j \cdot \Delta D_i} .$$
(1)

式中: $n_{ij}$ 代表第 i 级直径通道、第 j 级速度通道的降 水粒子数, $S_i$ (单位:m<sup>2</sup>)为有效采样面积, $\Delta t$ (单位:s) 为采样时间, $V_j$ (单位:m/s)为第 j 级速度通道的下落 末速度, $D_i$ (单位:mm)为第 i 级直径通道粒子直径范 围的中值, $\Delta D_i$ (单位:mm)为直径通道间隔。进一步 可得到数浓度  $N_T$ (单位: $\uparrow/m^3$ )、雨强 R(单位:mm/ h)、雷达反射率因子 Z(单位:mm<sup>6</sup>/m<sup>3</sup>)以及雨水含量 W(单位: $g/m^3$ )<sup>[31]</sup>。

**2.2.2** Gamma 分布拟合参数

采用 Gamma 分布<sup>[32]</sup>进行雨滴谱拟合。Gamma 分 布函数为:

$$N(D) = N_0 \cdot D^{\mu} \cdot e^{-\lambda \cdot D} .$$
<sup>(2)</sup>

式中:N<sub>0</sub>是滴谱截距参数(单位:m<sup>-3</sup>·mm<sup>-µ-1</sup>), µ是



形状因子 (无量纲参数), λ 是斜率参数(单位:mm<sup>-1</sup>)。

以上参数可由阶矩法计算得出,一般采用中间 阶矩计算的谱参数拟合的效果更好<sup>[33]</sup>,因此本文采 用 3、4、6 阶矩对以上 3 个参数进行估算。同时可以 得到质量加权直径 *D*<sub>m</sub>(单位:mm)和标准化截距参 数 *N*<sub>w</sub>(单位:m<sup>-3</sup>·mm<sup>-1</sup>)<sup>[34]</sup>。

# 2.2.3 降水动能参数

由于降水动能与 D 和 V 有关,因此可以通过雨 滴谱信息进行降水动能评估<sup>[35]</sup>。降水动能的 2 个参 数:动能通量  $E_t$ (单位:J/(m<sup>2</sup>·h))和动能含量  $E_d$ (单 位:J/(m<sup>2</sup>·mm))的定义如公式(3)、(4)所示,分别表 示雨滴从云底到达地面每平方米每小时和每平方米 每毫米产生的动能。

$$E_{t} = \frac{3600\pi}{12 \cdot 10^{6} \cdot \Delta t} \sum_{i=3}^{32} \sum_{j=1}^{32} \frac{n_{ij} \cdot D_{i}^{3} \cdot V_{j}^{2}}{S_{i}} , \qquad (3)$$

$$E_{\rm d} = \frac{E_{\rm t}}{R} \ . \tag{4}$$

3 结果分析

- **3.1** 谱分布特征
- 3.1.1 雨滴谱参量时间演变特征

图 2 给出降水过程中雨滴谱参量随时间的演 变,可以看出各参量起伏变化幅度较大。

根据 R 将降水过程分为 5 个阶段。第一阶段 02:45—06:30,为断续弱降水,以 R <3 mm/h 为主, 粒子数较少且小粒子居多,大多只有 0.5~2 mm,最大 直径为 3.25 mm,但持续时间较短;第二阶段 06:31—08:00,06:31 开始雨强逐渐增大,且最大雨强 达 153.08 mm/h,出现在 07:50,然后在 10 min 内迅 速下降至 5.58 mm/h。雨滴谱宽 D<sub>max</sub> 加大,大雨滴明

显增多,最大直径达 5.5 mm; 第三阶段 08:01—10:30,08:01 开始 R 减小且变化较为平稳,主要集中在 1~10 mm/h;第四阶段 10:31—13:00,10:31 开始 R 再次增大,其中 R>15 mm/h 的情形占 82%;第五阶段 13:01—14:43,13:04 开始 R 迅速减小直到降水停止,以 R<5 mm/h 为主。





 $R 与 N_T 和 D_{max}$ 随时间演变的总体趋势基本一致。 $N_T$ 为 9~5 700 个/m<sup>3</sup>,平均值为 951.6 个/m<sup>3</sup>,峰值 直径在 0.5 mm 左右, $D_{max}$ 峰值达 5.5 mm。如图 2b 局 部放大图所示, $D_{max}$ 在 8:24 出现峰值(5.5 mm), $N_T$ 在 08:25 出现峰值(1 786 个/m<sup>3</sup>)。这是由于大雨滴 的破碎会导致  $N_T$ 增大,因此在  $D_{max}$ 达到峰值之后, 往往会伴随  $N_T$ 峰值的出现。此次暴雨过程中出现了 多个降水峰区,其中有 2 个强降水中心(R>100 mm/ h)和一个较强降水中心(R>50 mm/h)。进入降水峰 区开始出现 D>4 mm 的大雨滴,同时小雨滴的  $N_T$ 大 幅升高。这是由于 R过大,一方面使得雨滴之间的 碰并作用更剧烈,从而形成少量大雨滴;另一方面大 雨滴的不断破碎又使得小雨滴  $N_T$ 大幅升高<sup>[36]</sup>。综 上,此次降水过程中 R的增大是由  $N_T$ 增加和  $D_{max}$ 变大共同造成的,且三者之间关系极为密切。 3.1.2 粒子尺度特征

雨滴直径等级频数百分率p和质量百分率 $P_m$ 分别用来衡量不同直径雨滴对 $N_T$ 和R的贡献率, 公式分别为:

$$P_{\rm m} = \frac{\sum_{k=1}^{M} \sum_{j=1}^{32} n_{ijk}}{\sum_{k=1}^{M} \sum_{j=1}^{32} \sum_{j=1}^{32} n_{ijk}}, \qquad (5)$$

$$P_{\rm m} = \frac{\sum_{k=1}^{M} D_i^3 \sum_{j=1}^{32} n_{ijk}}{\sum_{k=1}^{M} \sum_{i=3}^{32} D_i^3 \sum_{j=1}^{32} n_{ijk}} .$$
(6)

式中:M 为统计时间段内雨滴谱资料分钟数;n<sub>ji</sub>为 第 k 分钟第 i 级直径通道和第 j 级速度通道下的雨 滴个数。

此次降水各阶段中,*p*的分布形态都呈明显的 双峰或三峰结构(图 3a)。第1阶段为双峰结构,主 峰值 0.937 mm;第 2~5阶段为三峰结构,主峰值 0.562 mm。各阶段都在 1.375 mm 处出现峰值,是由 于大雨滴破碎时分裂成几个较大雨滴和许多小雨滴 造成的。而在第 2、4强降水阶段,2.75 mm 处出现不 明显的峰值,此时 *R* 位于峰区,雨滴在下落过程中 发生的碰并作用更为剧烈,导致雨滴的尺度反而变 大,小雨滴和较大雨滴数量减少。总的来看,大雨滴 数目增多时对应着 *R* 出现峰区,减少时 *R* 处于谷 区。

由图 3b 可知,第 2、4 强降水阶段表现为明显的 双峰结构,且曲线高度一致,主峰在 2.75 mm 处;第 1、3、5 阶段为三峰结构,峰值依次为 1.062、1.375 和 2.75 mm,主峰在 1.375 mm 处。第 3、5 阶段 *p* 的分 布形态不同,但是 *P*<sub>m</sub> 的分布却较为一致,主要是因 为这 2 个阶段大雨滴出现的频数相近,而质量与雨 滴直径的三次方成正比,大雨滴频数上的细微变化 被放大。

为进一步揭示雨滴的尺度分布与 N<sub>T</sub>和 R 之间 的关系,根据直径 D 的大小将雨滴划分为 5 个尺 度档 (D<1.0 mm、1.0 mm≤D<2.0 mm、2.0 mm≤D< 3.0 mm、3.0 mm≤D<4.0 mm、D mm≥4.0 mm),统计 不同尺度下频数百分率和质量百分率。结果表明, D<1.0 mm 的小雨滴最多,对 N<sub>T</sub>的贡献率达71.47%, 但对 R 的贡献仅有7.46%;1.0 mm ≤D<4.0 mm 的雨 滴对 R 的贡献率高达90.49%, 但是对 N<sub>T</sub> 的贡献却 只有 28.51%。1.0 mm≤D<2.0 mm 的粒子所占比例 虽不足 1/3,但对 R 的贡献却很大。大雨滴的作用较 为显著,对R的贡献极大,D>2.0 mm的雨滴尽管占 比只有 3.8%,但是对 R 的贡献却达到了 52.8%。说 明虽然大雨滴少,但其尺度大,对R的贡献率不能 忽略。此次暴雨过程中主要以 D<1.0 mm 的小雨滴 为主,但对 R 贡献最大的则是少数 1.0 mm≤D< 4.0 mm 的大雨滴,特别是 1.0 mm ≤ D < 3.0 mm 的雨 滴,对R的贡献率接近80%。

3.1.3 粒子速度特征

V 直接决定了降水动能,对研究降水下落的条件、雨滴碰并过程等具有重要意义。图 4 为速度谱分 布以及各直径通道粒子平均速度和标准差。V 主要 集中在 2~5 m/s 之间,极值位置对应直径为 1.375 mm, 对应速度为 4.4 m/s。

与 Atlas 经验曲线对比发现:D<0.437 mm 或 D≥3.25 mm 时,平均速度大于经验曲线对应速度; 0.437 mm≤D<1.187 mm 时,两者对应速度基本一 致,偏差在 0.2 m/s 以下;1.187 mm≤D<3.25 mm 时, 平均速度小于经验曲线对应速度。这可能是由于以 下几方面原因造成的:(1)在实际降水过程中,大雨 滴拖曳小雨滴加速下落,同时大雨滴的破碎也会产 生下落速度很快的小雨滴;(2)雨滴的碰并作用使得 雨滴直径变大,而下落速度并未发生变化,同时受到



图 3 降水各阶段 p(a)和 mp(b)分布统计



上升气流作用,使雨滴下落实际速度小于模拟条件 下的速度值;(3)特大雨滴的凝结增长作用大于破碎 蒸发作用,从而雨滴的体积和下落速度都在持续增 大;(4)仪器误差等因素也会导致测量结果偏离经验 曲线。气流运动、空气密度等因素均会对自然降水过 程中雨滴的下落速度、形状以及轨迹产生较大影响 <sup>[37]</sup>,从而导致速度谱存在显著差异的同时偏离其在 实验室模拟条件下的测量值。

**3.2** Gamma 分布参数关系

# **3.2.1** *N*<sub>0</sub>, μ 和 λ 演变特征

Gamma 分布的 3 个参数  $N_0$   $\mu$  和  $\lambda$  随 R 的变化 特征在很多研究中的结论存在较大差异。Tokay 等<sup>®</sup> 认为,R>20 mm/h 时  $N_0$   $\mu$  和  $\lambda$  均偏向大值, 当 R 较 小时三者均偏向小值; Caracciolo 等<sup>®</sup>认为  $N_0$  和  $\lambda$  与 R 的增大呈反向相关, 而  $\mu$  呈正向相关。Nzeukou 等<sup>[0]</sup> 则认为  $N_0$  和  $\mu$  与 R的增大呈正向相关, 而  $\lambda$  呈反向 相关。林文等<sup>111</sup>研究认为当 R>10 mm/h 时, $\mu$  和  $\lambda$  随 着 R的增大而减小,R越大, $\mu$  和  $\lambda$  两者越偏向小值。

由图 5 可知,此次降水过程  $N_0$ , $\mu$  和  $\lambda$  随时间起 伏变化趋势基本一致。降水前期和后期起伏较大,特 别是降水结束阶段。这与降水开始和结束时段云底 较高、云下蒸发大,从而造成谱型变化不稳定有关。 这 2 个阶段也是其他微物理量起伏变化较大的时 期,且 R < 1 mm/h,各参数平均变化率均超过 30%, $\mu$ 甚至达到了 95.7%;而在  $R \ge 20 \text{ mm/h}$ 的强降水阶 段,各参数起伏变化相对平缓, $N_0$ , $\mu$  和  $\lambda$  的平均变 化率分别为 6.2%、46.7%和 18.0%。因此,Gamma 分 布各参数之间不是相互独立的变量,并且他们随 R 的变化情况与地域和降水类型有关。



图5 Gamma 分布拟合参数随时间的演变特征

## **3.2.2** lgN<sub>W</sub>-D<sub>m</sub>分布特征

图 6 为不同雨强下的 lgN<sub>w</sub>-D<sub>m</sub>分布,同时标注 了 Bringi 等<sup>[12-13]</sup>提出的大陆和海洋对流范围以及对 流一层状降水分离线和层状降水平均分布。





由图 6 可知, 对流和层状降水之间存在显著差 别。 $\lg N_W - D_m$ 分布在 R<10 mm/h 时表现出较大的变 化,较对流降水更加分散,表明此次低涡系统存在层 状云降水,对流降水的 lgNw、Dm 以及分布谱宽均更 大,结果与 Bringi 等[12-13]的研究结果相似。但是,通过 将此次过程对流系统(R>10 mm/h)的 lgNw 和  $D_m$  值 与其研究结果进行比较,发现低涡对流系统的雨滴 谱分布特征实际上既不是典型的海洋对流系统也 不是典型的大陆对流系统和 D<sub>m</sub>分别为 4.008 6 m<sup>-3</sup>· mm<sup>-1</sup>和1.8877 mm。与海洋(大陆)对流降水相比, 低涡对流系统的雨滴谱分布具有较低(较高)的雨滴 浓度和较大(较小)的雨滴。雨滴谱出现不同特征主 要是由于晋城位于太行山南麓的特殊地理位置,而 低涡系统由西南向东北移动穿过晋城地区,因此该 谱特征可能是低涡系统受地形影响的对流系统特 征。

**3.2.3** *D*<sub>m</sub>-*R* 和 lg*N*<sub>W</sub>-*R* 关系

为检验  $D_m$ 、lg $N_W$  与 R 的相关性,图 7 给出了此 次降水过程  $D_m$ -R 和 lg $N_W$ -R 关系,同时提供了使用 最小二乘法拟合的幂指数曲线,以获得 2 个参数关 于雨强的定量描述。 $D_m$ -R 存在较好的正相关性, $D_m$ 的增大伴随着 R 的快速增长,这可能与强降水中的 雨滴碰并增多有关。当 R>90 mm/h 时, $D_m$  逐渐稳定 并趋于一个常数。lg $N_W$ -R 拟合指数数量级较小,指 数关系较不明显,相关性较差,其变化范围随着  $D_m$ 或 R 的增加而减小。在 R 较小时,其变化范围大于  $D_m$ 的变化范围; 在  $D_m$  趋于稳定的大雨强值时 lg $N_W$ 较大。



图7  $D_m$ -R分布(a)和  $\lg N_W$ -R 分布(b)及拟合曲线

#### **3.2.4** μ-λ 关系

*μ*-λ 关系能够更好地反映真实降水雨滴谱分布 的变化。选取 *R*>5 mm/h 且 *K*>1 000 的对流云降水 样本进行分析<sup>[14]</sup>,得到*μ*-λ 关系:

 $\lambda = 0.032 \ 9\mu^2 + 0.519 \ 7\mu + 1.891 \ 6 \ . \tag{7}$ 

图 8 给出了 μ-λ 的分布和拟合关系。为了对 比,还给出了 Zhang 等<sup>[14]</sup>得到的美国 Florida 地区夏 季降水拟合结果、陈子健等<sup>[15]</sup>得到的河北低涡系统 拟合结果以及 Chang 等<sup>[16]</sup>得到的台风系统拟合结果。

由图 8 可知,此次降水过程的拟合曲线较 Zhang 等<sup>[14]</sup>的曲线斜率偏小,即在 λ 相同的情况下 对应的µ和 D<sub>m</sub>更大,说明此次降水过程雨滴直径 更大;相比 Chang 等<sup>[16]</sup>的拟合曲线,在 3<µ<6 时雨滴 直径基本一致,其他情况下雨滴直径均更大;由于地 理位置接近且降水类型一致,因此此次过程的拟合 曲线与陈子健等<sup>[15]</sup>的拟合曲线相似。



图 8 μ-λ 分布和拟合曲线

#### 3.3 降水动能与 R 和 D<sub>m</sub> 的关系

多数关于降水动能的研究都是基于单一物理量 或单一拟合关系的。本文采用非线性最小二乘法得 到 *E*<sub>t</sub>-*R*、*E*<sub>d</sub>-*R*和 *E*<sub>d</sub>-*D*<sub>m</sub>的经验关系,并分析了不同 拟合关系的性能优劣。

 $E_t$ -R和 $E_d$ -R分布及其拟合关系分别如图 9a、 9b所示。由图 9a可知,与线性拟合相比,幂函数拟 合曲线不论 R大或小均能表现出更好的性能。图 9b 显示,幂函数性能表现同样更为出色。 $E_d$ 随 R的增 加而增加,但增幅随 R增大而减小。当 R>90 mm/h 时,基本稳定于 20~25 J/(mm<sup>2</sup>·mm),这种现象对应 于雨滴碰并和破碎过程接近平衡的状态,雨滴的 D和 V几乎保持恒定,R的增加主要得益于  $N_T$ 的增加<sup>[17]</sup>。 表 1 给出了  $E_t$ -R和 $E_d$ -R在不同拟合关系下的系 数(a,b,c)、相关系数(r)以及均方根误差(RMSE)和 归一化均方根误差(NRMSE)。针对  $E_t$ -R分布,尽管 幂函数和线性拟合的相关性均很好,但是幂函数具 有更低的 RMSE 和 NRMSE。

如图 9c 所示,采用二阶多项式和幂函数拟合分 别得到  $E_d$ - $D_m$  经验关系。表 1 同样给出了  $E_d$ - $D_m$  的 经验关系系数和统计参数,二阶多项式拟合具有更 小的 RSME 和 NRSME。

# **3.4** Z-R 关系

汪学渊等<sup>[38]</sup>、黄兴友等<sup>[39]</sup>通过地面雨滴谱资料 计算得到 Z-R 关系,以提高雷达定量估测降水准确

22



图 9  $E_t - R(a) \cdot E_d - R(b)$ 和  $E_d - D_m(c)$ 分布及拟合曲线

(8)

|                           | 拟合关系                                  | 统计参数   |         |        |       |    |        |       |
|---------------------------|---------------------------------------|--------|---------|--------|-------|----|--------|-------|
|                           |                                       | a      | b       | с      | r     |    | RMSE   | NRMSE |
| $E_t - R$                 | $E_t = aR^b$                          | 12.696 | 1.149   | /      | 0.989 | 15 | 63.497 | 0.016 |
| $E_{\rm d}$ –R            | $E_t = aR + b$                        | 24.75  | -49.433 | /      | 0.985 | 68 | 72.965 | 0.019 |
|                           | $E_{\rm d} = a R^b$                   | 9.888  | 0.21    | /      | 0.762 | 17 | 2.884  | 0.107 |
|                           | $E_d = a + b e^{cR}$                  | 24.27  | 15.493  | 0.061  | 0.759 | 58 | 2.899  | 0.107 |
| $E_{\rm d}$ – $D_{\rm m}$ | $E_d = a \lg R + b$                   | 6.659  | 10.147  | /      | 0.722 | 19 | 3.117  | 0.116 |
|                           | $E_{\rm d}=aD_{\rm m}^2+bD_{\rm m}+c$ | 0.94   | 11.735  | -4.577 | 0.976 | 16 | 0.913  | 0.033 |
|                           | $E_{\rm d} = a D_{\rm m}^{\ b}$       | 8.290  | 1.453   | /      | 0.974 | 6  | 0.942  | 0.035 |

表1 E-R、E-R和E-D 经验关系系数及统计参数

性。目前业务雷达系统采用标准关系式 Z=300R<sup>14</sup> 定量估测降水。本文采用最小二乘法拟合本次降水过程雨滴谱 Z-R 关系:

 $Z=450.3R^{1.23}$ .

与标准关系进行对比,当 R<20 mm/h 时,两者 较为一致;但 R 较大时则差别明显,标准关系拟合 曲线位于最小二乘法拟合曲线上侧,表明给定 Z 时 估测的 R 值偏小,即低估降水强度,不适用于此次 极端降水过程。在实际预报中也确实出现了降水落 区预报准确,但是量级预报偏小的情况。寻求一个 适合的 Z-R 关系,对于改进局部地区特定季节降水 的估测、提高雷达估测降水精度十分必要。

#### 4 结论

通过分析 2021 年 7 月 11 日山西晋城一次暴雨 过程雨滴谱资料,得到如下结论:

(1)R 与  $N_{\rm T}$  和  $D_{\rm max}$  的关系极为密切,三者随时 间变化趋势基本一致。雨滴粒子尺度分布以双峰和 多峰结构为主,峰值主要在 0.5 mm 左右;各时段都 在 1.375 mm 处出现峰值,强降水阶段在 2.75 mm 处均出现不明显的峰值。D < 1.0 mm的小雨滴对 $N_{\rm T}$ 的贡献为 71.47%,对R 贡献仅为 7.46%;D > 2.0 mm的雨滴占 3.8%,对R的贡献率达到 52.8%。V 主要集中在 2~5 m/s,极值位置对应D和 V分别为 1.375 mm 和 4.4 m/s。0.437 mm  $\leq D < 1.187 \text{ mm}$ 时,平均速度与经验曲线对应速度基本一致,其他情况下均有不同程度波动。

(2)Gamma 分布参数  $N_0$ ,  $\mu$  和  $\lambda$  随时间变化趋势一致,降水前期和后期起伏较大;强降水阶段,各值起伏变化较平缓。对流降水相对层云降水具有更大的  $D_m$ 、lg $N_W$ 和分布谱宽。与国外经典对流云滴谱相比,此次降水过程既非海洋对流系统也非大陆对流系统。 $D_m$ 的增大伴随着 R 的快速增长,并在大雨强时趋于稳定;lg $N_W$ 与 R 的指数关系不明显,其变化范围随着  $D_m$ 的增加而减小。采用二项式函数可以得到更适合本地的  $\mu$ - $\lambda$  拟合关系。

(3)通过降水动能关系分析, *E*<sub>t</sub>-*R*和*E*<sub>d</sub>-*R*幂函数拟合性能更优, *E*<sub>d</sub>-*D*<sub>m</sub>二阶多项式拟合效果更好。

(4)采用最小二乘法对 Z-R 关系进行拟合,当 R<20 mm/h 时,拟合关系与经典关系较为一致,但 R 较大时经典关系会低估低涡类暴雨雨强。

## 参考文献:

- [1] 申高航,高安春,李君.雨滴谱及双偏振雷达等资料在一次强降水过程中的应用[J].气象,2021,47(6):737-745.
- [2] 张祖熠,杨莲梅.伊宁春季层状云和混合云降水的雨滴谱 统计特征分析[J].沙漠与绿洲气象,2018,12(5):16-22.
- [3] 赵城城,张乐坚,梁海河,等.北京山区和平原地区夏季雨 滴谱特征分析[J].气象,2021,47(7):830-842.
- [4] 杨涛,张祖熠,杨莲梅.基于雨强分级的乌鲁木齐雨滴谱 特征研究[J].沙漠与绿洲气象,2022,16(4):64-71.
- [5] 周黎明,王庆,李芳.山东不同天气系统下暴雨雨滴谱特 征分析[J].自然灾害学报,2017,26(6):217-223.
- [6] 陈磊,陈宝君,杨军,等.2009—2010年梅雨锋暴雨雨滴 谱特征[J].大气科学学报,2013,36(4):481-488.

- [7] 江新安,王敏仲.伊犁河谷汛期一次短时强降水雨滴谱特 征分析[J].沙漠与绿洲气象,2015,9(5):56-61.
- [8] TOKAY A, SHORT D A.Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds[J].Journal of Applied Meteorology and Climatology, 1996, 35(3): 355-371.
- [9] CARACCIOLO C, PRODI F, BATTAGLIA A, et al. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm [J]. Atmospheric Research, 2006, 80(2-3):165-186.
- [10] NZEUKOU A, SAUVAGEOT H, OCHOU A D, et al. Raindrop size distribution and radar parameters at Cape Verde[J].Journal of Applied Meteorology and Climatology, 2004,43(1):90-105.
- [11] 林文,林长城,李白良,等.登陆台风麦德姆不同部位降水强度及谱特征[J].应用气象学报,2016,27(2):239-248.
- [12] BRINGI V N, CHANDRASEKAR V, HUBBERT J, et al.Raindrop size distribution in different climatic regimes from disdrometer and dual -polarized radar analysis[J].Journal of the Atmospheric Sciences, 2003, 60 (2):354-365.
- [13] BRINGI V N, WILLIAMS C R, THURAI M, et al. Using dual-polarized radar and dual-frequency profiler for DSD characterization: a case study from Darwin, Australia [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2107-2122.
- [14] ZHANG G F, VIVEKANANDAN J, BRANDES E A, et al. The shape-slope relation in observed Gamma raindrop size distributions: statistical error or useful information?
  [J].Journal of Atmospheric and Oceanic Technology, 2003,20(8):1106-1119.
- [15] 陈子健, 胡向峰, 陈宝君, 等. 河北省中南部暴雨雨滴谱 特征[J]. 干旱气象, 2019, 37(4): 586-596.
- [16] CHANG W Y, WANG T C C, LIN P L.Characteristics of the raindrop size distribution and drop shaperelation in typhoon systems in the Western Pacific from the 2D video disdrometer and NCU C-bandpolarimetricradar[J].Journal of Atmospheric and Oceanic Technology, 2009, 26 (10): 1973-1993.
- [17] WEN L, ZHAO K, ZHANG G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2–D video disdrometer and micro rain radar data[J]. Journal of Geophysical Research: Atmospheres, 2016,121(5):2265–2282.
- [18] ZENG Y, YANG L M, ZHOU Y S, et al. Characteristics

of orographic raindrop size distributionin the Tianshan Mountains, China [J].Atmospheric Research, 2022, 278 – 290.

- [19] SEELA B K, JANAPATI J, LIN P L, et al.Raindrop size distribution characteristics of the western Pacific tropical cyclones measured in the Palau islands [J].Remote Sens, 2022, 14:470.
- [20] JANAPATI J,SEELA B K,LIN P L, et al.Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, anisland in the northwestern Pacific [J].Hydrology and Earth System Sciences, 2021, 25:4025–4040.
- [21] ROSENFELD D, ULBRICH C W. Cloud microphysical properties, processes, and rainfall estimation opportunities [J].Meteorological Monographs, 2003, 30(52):237–258.
- [22] 闫慧,赵桂香,董春卿,等.集合预报方法在山西暴雨预 报中的应用试验[J].干旱气象,2017,(2):321-329.
- [23] 王振华,戴有学,郝寿昌.基于暴雨强度公式对山西暴雨 空间分布的分析[J].暴雨灾害,2018,37(6):528-533.
- [24] 闫慧,赵桂香.山西一次持续暴雨天气过程诊断与集合 预报检验[J].干旱气象,2020,38(1):137-147.
- [25] 张丽花, 延军平, 陈利民. 近 52 年山西暴雨气候变化特征分析[J]. 自然灾害学报, 2014, 23(4): 142-148.
- [26] TOKAY A, BASHOR P G. An experimental study of small-scale variability of raindrop size distribution [J]. Journal of Applied Meteorology and Climatology, 2010, 49 (11):2348-2365.
- [27] 金祺,袁野,纪雷,等.安徽滁州夏季一次飑线过程的雨 滴谱特征[J].应用气象学报,2015,26(6):725-734.
- [28] ATLAS D, SRIVASTAVA R C, SEKHON R S. Doppler radar characteristics of precipitation at vertical incidence[J].Reviews of Geophysics, 1973, 11(1):1-35.
- [29] JAFFRAIN J, BERNE A.Experimental quantification of the sampling uncertainty associated with measurements from parsiveldisdrometers[J].Journal ofHydrometeorology, 2011, 12(3):352–370.
- [30] 冯婉悦,王智敏,杨莲梅,等.乌鲁木齐两种类型降水的 雨滴谱特征[J].沙漠与绿洲气象,2021,15(3):55-61.
- [31] CHEN B J, YANG J, PU J P. Statistical characteristics of raindrop size distribution inthemeiyu season observed in Eastern China [J].Journal of the Meteorological Society of Japan, 2013, 91(2):215–227.
- [32] ULBRICH C W.Natural variations in the analytical form of the raindrop size distribution [J].Journal ofClimate and Applied Meteorology, 1983, 22(10): 1764–1775.
- [33] 郑娇恒,陈宝君.雨滴谱分布函数的选择:M-P和 Gamma 分布的对比研究[J].气象科学,2007,27(1):17-25.
- [34] 濮江平,张伟,姜爱军,等.利用激光降水粒子谱仪研究

雨滴谱分布特性[J].气象科学,2010,30(5):701-707.

- [35] KINNELL P I A. Rainfall intensity -kinetic energy relationships for soil loss prediction 1 [J].Soil Science Society of America Journal, 1981, 45(1): 153-155.
- [36] 林文,牛生杰.宁夏盛夏层状云降水雨滴谱特征分析[J]. 气象科学,2009,(1):97-101.
- [37] 牛生杰.云降水物理研究[M].北京:气象出版社,2012.
- [38] 汪学渊,阮征,李效东,等.雨滴谱仪与风廓线雷达反射 率对比试验[J].气象,2016,42(1):107-114.
- [39] 黄兴友,印佳楠,马雷,等.南京地区雨滴谱参数的详细 统计分析及其在天气雷达探测中的应用[J].大气科学, 2019,43(3):691-704.

# Raindrop size distribution Characteristics of "7·11" Rainstorm in Jincheng, Shanxi

GE Lili<sup>1</sup>, LYU Guozhen<sup>2</sup>, ZHAO Guixiang<sup>3</sup>, LI Yajun<sup>1</sup>, GUO Dong<sup>2</sup>

(1.Shanxi Meteorological Information Center, Taiyuan 030006, China;
2.Shanxi Meteorological Service Center, Taiyuan 030002, China;
3.Shanxi Meteorological Observatory, Taiyuan 030006, China)

Abstract Based on the observation data of precipitation phenomenometer, the raindrop size distribution (DSD)characteristics of a rainstorm on July 11,2021 in Jincheng, Shanxi were analyzed. The results show that the variation trends of number concentration, rainfall intensity and the maximum diameter with time were generally consistent. The frequency percentage patterns and the quality percentage patterns of different raindrop diameter classes presented obvious bimodal or trimodal structure. The small raindrops with diameter less than 1.0mm were the main raindrops of the rainstorm process but contributed only 7.46% to rainfall intensity, while large raindrops with diameter of 1.0~ 3.0mm contributed 77.44% to rainfall intensity. The falling velocity was mainly concentrated in the range of 2~5 m/s. $N_0$ , $\mu$  and  $\lambda$  of Gamma distribution changed gently with time when rainfall intensity was greater than 20mm/h, the average rates of change were 6.2%, 46.7% and 18.0%.  $lgN_W - D_m$  distribution showed that the low-vortex rainstorm was neither continental convection nor maritime convection. There was a good binomial relation between  $\mu$  and  $\lambda$ , the correction coefficient was 0.901. The power function had better fitting performance for  $E_t - R$  and  $E_d - R$  of precipitation kinetic energy, and the binomial function worked better for  $E_{\rm d} - D_{\rm m}$ . The least square method was used to obtain the Z-R fitting relationship, and the estimation effect was better than that of the classical Z-R relationship when  $R \ge$ 20 mm/h.

**Key words** raindrop size distribution; Gamma distribution; low -vortex rainstorm; rainfall kinetic energy; Z-R relationship