蒙世协,刘春岩,郑循华,等. 2012. 小麦秸秆还田量对晋南地区裸地土壤一大气间甲烷、二氧化碳、氧化亚氮和一氧化氮交换的影响[J]. 气候与环境研究, 17(4): 504-514, doi: 10.3878/j.issn.1006-9585.2012.11017. Meng Shixie, Liu Chunyan, Liang Wangguo, et al. 2012. Effects of the applied amount of wheat straw on methane, carbon dioxide, nitrous oxide, and nitric oxide fluxes of a bare soil in south Shanxi [J]. Climatic and Environmental Research (in Chinese), 17 (4): 504-514.

小麦秸秆还田量对晋南地区裸地土壤—大气间甲烷、 二氧化碳、氧化亚氮和一氧化氮交换的影响

蒙世协^{1,2} 刘春岩² 郑循华² 梁旺国² 胡荣桂¹

1 华中农业大学资源环境学院,武汉 430070

2 中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029

摘 要 采用静态暗箱采样—气相色谱/化学发光分析相结合的方法,对晋南地区盐碱地不同小麦秸秆还田量裸地 土壤夏、秋季(2008年6~10月)的甲烷(CH₄)、二氧化碳(CO₂)、氧化亚氮(N₂O)和一氧化氮(NO)交换 通量进行了原位观测。结果表明:观测期内,秸秆全还田(FS)、秸秆一半还田(HS)和秸秆不还田(NS)处理 土壤—大气间CH₄、CO₂、N₂O和NO平均交换通量分别为-0.8±2.7、-1.4±2.3、-6.5±1.8 μg(C)·m⁻²·h⁻¹(CH₄), 267.1±23.1、212.0±17.8、188.5±13.6 mg(C)·m⁻²·h⁻¹(CO₂),20.7±3.0、16.3±2.3、14.7±1.7 μg(N)·m⁻²·h⁻¹ (N₂O),3.9±0.5、3.4±0.5、3.0±0.4 μg(N)·m⁻²·h⁻¹(NO)。交换通量表现出明显的季节变化趋势,灌溉、降雨 和温度变化是影响该趋势的主要因素。相对于NS处理,FS和HS处理降低了累积CH₄吸收量(66%和59%),增 加了累积CO₂(42%和12%)、N₂O(41%和9%)和NO(30%和13%)排放量,因此,秸秆还田促进了农田土壤 总的温室气体排放。计算得到FS和HS处理小麦秸秆的CO₂、N₂O、NO排放系数分别为73.4%±1.6%和43.3%± 1.0%(CO₂)、0.37%±0.01%和0.17%±0.00%(N₂O)、0.06%±0.00%和0.05%±0.00%(NO),FS处理的排放系数显 著高于HS处理,且均低于同一实验地种植玉米、施肥农田的小麦秸秆排放系数(N₂O和NO排放系数分别为2.32% 和0.42%)。可见,在采用排放因子方法估算还田秸秆CO₂、N₂O和NO排放量时,应考虑秸秆还田量、农作物种 植和施肥因素的影响。

关键词 秸秆 裸地 温室气体 累积排放量 排放系数
文章编号 1006-9585 (2012) 04-0504-11
中图分类号 P402
文献标识码 A doi: 10.3878/j.issn.1006-9585.2012.11017

Effects of the Applied Amount of Wheat Straw on Methane, Carbon Dioxide, Nitrous Oxide, and Nitric Oxide Fluxes of a Bare Soil in South Shanxi

MENG Shixie^{1,2}, LIU Chunyan², ZHENG Xunhua², LIANG Wangguo², and HU Ronggui¹

1 College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070

2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract Using manual static opaque chamber/gas chromatograph and chemiluminescence measuring systems, the authors monitored the fluxes of methane (CH_4), carbon dioxide (CO_2), nitrous oxide (N_2O), and nitric oxide (NO) from

通讯作者 刘春岩, E-mail: lcy@post.iap.ac.cn

收稿日期 2011-02-15 收到, 2011-05-10 收到修定稿

资助项目 中华人民共和国科学技术部国家科技支撑计划 2008BAD95B13

作者简介 蒙世协, 男, 1984年出生, 硕士研究生, 主要从事环境生态研究。E-mail: mengshixie520@yahoo.com.cn

the bare soil of a wheat-maize rotation field applied with different amounts of wheat straw in south Shanxi from 20 June to 6 October 2008. During the measuring period, the mean fluxes of CH₄, CO₂, N₂O, and NO were -0.8 ± 2.7 , -1.4 ± 2.3 , and $-6.5\pm1.8 \ \mu\text{g}$ (C)·m⁻²· h⁻¹ (CH₄), 267.1±23.1, 212.0±17.8, and 188.5±13.6 mg (C)·m⁻²· h⁻¹ (CO₂), 20.7±3.0, 16.3±2.3, and 14.7±1.7 $\ \mu\text{g}$ (N) · m⁻²· h⁻¹ (N₂O), and 3.9±0.5, 3.4±0.5, and 3.0±0.4 $\ \mu\text{g}$ (N) · m⁻²· h⁻¹ (NO), respectively, at the full straw-amended (FS), half straw-amended (HS), and no straw-amended (NS) treatments. The fluxes presented significantly seasonal fluctuations, which were mainly regulated by the irrigation, precipitation, and variation of soil temperature. Compared with NS, FS and HS reduced the accumulative absorption of CH₄ (66% and 59%), and increased the accumulative emissions of CO₂ (42% and 12%), N₂O (41% and 9%), and NO (30% and 13%). The straw-amended treatments enhanced the total greenhouse gas emissions from the agricultural soil. The calculated CO₂, N₂O, and NO emission factors of applied wheat straw at FS and HS were 73.4%±1.6% and 43.3%±1.0% (CO₂), 0.37%±0.01% and 0.17%±0.00% (N₂O), and 0.06%±0.00% and 0.05%±0.00% (NO), respectively. The emission factors at FS were significantly higher than at HS. The emission factors at FS and HS were much lower than that (emission factors of N₂O and NO were 2.32% and 0.42%, respectively) for the same field with chemical fertilization and maize growing. Therefore, the effects of the applied amounts of crop straw, fertilization, and crop growing should be taken into account in the estimation of CO₂, N₂O, and NO emissions induced by crop straw based on emission factor methodology.

Key words straw, bare soil, greenhouse gas, cumulative emission, emission factor

1 引言

受人为活动的影响,自工业革命以来,大气中 的甲烷(CH₄)、二氧化碳(CO₂)、氧化亚氮(N₂O) 和一氧化氮(NO)等气体浓度正逐年增加。CH4、 CO₂和N₂O是直接温室气体;NO既是间接温室气 体,又是酸雨、硝酸盐气溶胶等的前体物(Denman et al., 2007)。除工业生产外,农业活动是最重要 的人为温室气体排放源,占全球人为排放总量的 10%~12% (Smith et al., 2007)。农业活动导致的 N₂O和NO排放,主要来自于施肥农田,其排放量约 为2.8、1.6 Tg(N)·a⁻¹(Bouwman et al., 2002; Denman et al., 2007)。农田与大气间的CO2交换量很大,但 净交换量基本平衡,约为0.04 Gt (CO₂) ·a⁻¹ (Smith et al., 2007)。旱地是大气CH4的汇,稻田则是大气 CH4 重要的排放源, 其排放量约为31~112 Tg (CH₄) ·a⁻¹ (Denman et al., 2007) 。农田土壤排 放或吸收的CH4、CO2、N2O和NO是碳、氮生物地 球化学循环过程的产物,其排放或吸收速率受管理 方式(如施肥、灌溉、耕作和秸秆利用方式)和环 境条件(如光照、温度、降雨和土壤理化性质)的 影响 (Snyder et al., 2009)。

农作物秸秆利用方式复杂,可分为再循环利 用方式和非再循环利用方式两大类。再循环利用 方式主要包括直接还田和间接还田,即先用作家 畜饲料或制沼气原料,然后将粪肥或沼气渣还田; 非再生循环利用方式主要包括田间直接焚烧(Cao et al., 2008), 生物质燃料, 如直接用于农户生活 燃料和生产生物乙醇、生物碳、生物燃气等生物 质能(Kim and Dale, 2004), 以及作为工业原料 等。近年来,由于中国政府禁止田间直接焚烧, 因此,再循环利用方式如秸秆直接还田被广泛采 用,秸秆直接还田能够增加土壤肥力和养分利用 效率,同时对农田碳、氮循环过程及上述气体排 放和吸收产生不同影响,而这些影响也可能因土壤 类型、施肥量、气候条件和秸秆种类而异(Huang et al., 2004; Al-Kaisi and Yin, 2005; Malhi et al., 2006; Yao et al., 2009)。

小麦和玉米是中国最主要的粮食作物,其产量 占全国粮食总产量的21.3%和31.4%,播种面积占粮 食作物播种面积的22.1%和28.0%(中华人民共和国 统计局,2009)。华北地区是我国主要的小麦玉米 产区,一年两熟冬小麦--夏玉米轮作制度较为普遍 (Li et al., 2010)。小麦、玉米播种前,前茬秸秆大 多粉碎后翻耕至土壤中,目前国内对小麦或玉米秸 秆直接还田对作物生长、作物产量、肥效、土壤理 化性质影响的研究较多(Malhi and Lemkeb, 2007; 赵鹏和陈阜, 2009; 赵鹏等, 2010), 但秸秆直接 还田对土壤一大气CH4、CO2、N2O和NO交换通量 影响的研究很少,对以上多种气体进行综合研究更 鲜见报道。本文将对晋南地区冬小麦一夏玉米轮作 农田小麦秸秆全还田、一半还田和不还田处理裸地 土壤一大气间CH₄、CO₂、N₂O和NO交换通量进行 原位观测,以期能定量评估秸秆不同还田量对以上 4种气体的综合影响。

2 方法与材料

2.1 研究样地概况及实验处理

实验点位于山西省永济市董村农场(34°55.51'N, 110°42.59'E)。该农场地处山西省最南端,海拔约 348 m。2000~2008 年的年平均降水量为 562.4 mm, 年平均气温 14.8 ℃ (Liu et al., 2010)。该地区主要 农作物为冬小麦、夏玉米和棉花,为了减小重茬效 应,通常在一片地上连作3~5年棉花后,实行3~ 5 年冬小麦--夏玉米轮作,如此循环往复。本研究 使用的实验地于 2001~2005 年种植棉花, 2005 年 10月开始实行冬小麦一夏玉米轮作。实验地土壤为 潮褐土或称斑纹简育干淋溶土 (龚子同等, 2007), 质地为粉砂质粘土,粘粒 (<0.002 mm)、粉砂粒 (0.002~0.02 mm) 和砂粒(0.02~2 mm) 含量分 别为 31.8%±0.9%、38.9%±0.6%和 29.3%±1.4%(平均 值±标准误差)。土壤呈碱性(pH 值为 8.7),有机碳 含量为 11.3±0.6 g·kg⁻¹, 全氮含量为 1.12±0.05 g·kg⁻¹ (0~10 cm), 容重为 1.17±0.04 g·cm⁻³ (0~6 cm)。

实验地于 2008 年 6 月 6 日收割冬小麦(临汾 615), 收获后田间留茬 2~4 cm, 收获秸秆干重为 6419.2±141.5 kg·ha⁻¹ (1 ha=1 hm²=10⁴ m²), 秸秆 全碳、氮含量分别为 45.7%和 0.7%。实验区周围大 田收割时用农机将秸秆粉碎后抛撒回田,并于次 日播种玉米时将秸秆翻入土壤(0~20 cm); 6月 9日和8月12日实施喷灌,灌溉量分别为100.5、 28.6 mm; 7月19日追施尿素120 kg (N) ·ha⁻¹; 10 月6日收获玉米。实验区内,收获秸秆粉碎后备用; 共设置3个处理,即秸秆全部还田(FS)、一半还 田(HS)和不还田(NS),每个处理均设3个重 复(面积为 12 m²),随机布置在田间,各用埋入 土壤的塑料薄膜隔开; 2008 年 6 月 19 日将粉碎的 秸秆均匀撒入相应实验小区,全部人工翻耕(深度 约 20 cm)。实验观测期为 2008 年 6 月 20 日至 10 月6日(共109d),期间各小区及其保护行未种作 物,禁止杂草生长,喷溉但不施肥,灌溉量和周围 大田相同。

2.2 观测方法

本研究采用Wang and Wang (2003)、Yao et al. (2009) 描述的静态暗箱采样—气相色谱分析方法 测定CO₂、N₂O、CH₄的交换通量,采用静态暗箱采 样—化学发光分析方法观测NO的交换通量。本研

究使用的不锈钢采样箱(50 cm×50 cm×50 cm)外 覆绝热材料, 气温变化最剧烈时能够保证观测过程 中箱内温度变化小于2℃。每个采样箱均配有不锈 钢底座,座壁深入土壤20 cm,距离地表10 cm以下 的每个侧壁上开有9个直径2 cm的圆孔,底座顶端 有深、宽均为3 cm的水槽, 注水后可保证底座与箱 体密封,观测期底座一直埋设在田间。采样开始前, 用气泵(抽取约2L气体贮存于气袋中)和针筒(50 mL气体样品)在静态暗箱采样口高度各抽取一个本 底样品,然后将采样箱放置在底座上,记录罩箱 的时间,随后每间隔8 min左右用针筒从采样箱 内抽取50 mL气体样品,共采集4次,最后用气泵 (NMP830KNDC, KNF Neuberger, Inc., Freiburg, Germany)再次采集箱内气体样品(约2 L),并贮 存于气袋(容积5L,大连光明气体化工技术中心, 大连,中国)中,准确记录每次从箱内取样时间和 取样时箱内温度。所有处理样品采集完毕后,立刻 拿到现场实验室内,用气相色谱(Agilent 5890, Agilent Technologies Inc., U.S.A)分析针筒内样品的 N₂O、CH₄和CO₂浓度,用化学发光氮氧化物分析仪 (42C, Thermo Electron Corporation, Waltham, MA, U.S.A) 测定气袋内样品NO和二氧化氮(NO₂)浓 度。本研究使用的气相色谱采用氮气作载气,为避 免样气中CO2对电子捕获检测器(ECD)检测N2O 的影响,ECD内被注入高浓度CO2补充气(浓度约 为10%; 流量为1~2 mL·min⁻¹) (Wang et al., 2010)。 罩箱前、后采集气袋样品的NO和NO₂浓度通过线性 拟合计算得到NO和NO;通量。采用暗箱采样和镀铝 膜气袋贮存样品可以阻止NO2光解生成NO,但是 NO会被罩箱初始的臭氧(O₃)、超氧化氢(HO₂) 和过氧基有机物(RO₂)等氧化生成NO₂,因此应 将计算得到的NO2和NO通量相加作为最终NO交换 通量(Liu et al., 2009)。此外,在高峰排放期、土 壤孔隙度较大或NO产生层接近土壤表面时,采用 线性拟合计算得到的NO交换通量会低于实际的排 放通量(Liu et al., 2009), 然而采用非线性计算方 法至少需要取样3次(Hutchinson and Mosier, 1981)。 由于分析NO浓度需要大量气体样品(约2L),多次 取样将改变箱内压力状况,因此本研究在罩箱前采 集本底样品作为箱内初始浓度, 罩箱后仅取样一 次,同时为避免取样改变箱内压力状况,箱顶部安 装有平衡管(内径为7.38 mm,长度为12.3 cm, Hutchinson and Mosier, 1981), 取样时将平衡管打

开,其余罩箱时间关闭平衡管,并采用公式(1) 矫正罩箱后的NO浓度(*C*, Liu et al., 2009)

 $C = [C_{t} \cdot (V_{c} + V_{s}) - C_{0} \cdot V_{s}] / V_{c}, \qquad (1)$

其中, C₀和C_t分别为罩箱前后测定的NO浓度; V_c 为采样箱体积(125 L); V_s为取样体积(2 L)。

气相色谱分析N₂O、CH₄和CO₂浓度需要的取样 量小(50 mL),加之采样箱顶部安装有平衡管,因 此,可进行多次(5次)取样,使用非线性拟合方 法计算交换通量(Valente et al., 1995; Liu et al., 2010)。利用箱高(50 cm)、罩箱时间(32 min)、 气相色谱和氮氧化物分析仪检测精度(N₂O: 4 ppb; CH₄: 20 ppb; CO₂: 4 ppm; NO: 0.4 ppb) 计算得到的CH₄、CO₂、N₂O和NO通量的检测下限 分别为10.0 ug (C)·m⁻²·h⁻¹、2.0 mg (C)·m⁻²·h⁻¹、4.7 ug (N)·m⁻²·h⁻¹和0.2 ug (N)·m⁻²·h⁻¹,低于以上检测 下限的通量在计算累积排放量时仍被保留,但仅代 表非常低的排放通量。

采样观测频率为每2~3 d一次,每次采样均在 08:00(北京时间,下同)至09:00之间进行,采用 公式(2)计算各目标气体的累积交换量(F)

$$F = K \cdot \sum_{i=2}^{n} [X_{i-1} + \Delta t_{i-1} (X_{i-1} + X_i)/2], \qquad (2)$$

其中, K为单位换算系数, n为排放通量观测次数, $X_i n X_{i-1}$ 为第i n i - 1次排放通量观测值, Δt_{i-1} 为相邻 两次观测的间隔天数。公式(3)和公式(4)分别 计算观测期间FS和HS处理的目标气体的还田秸秆 排放系数(EF_s)

$$EF_{\rm s} = (F_{\rm FS} - F_{\rm NS})/S, \qquad (3)$$

$$EF_{\rm s} = (F_{\rm HS} - F_{\rm NS})/S, \tag{4}$$

其中, F_{FS} 、 F_{HS} 和 F_{NS} 分别为FS、HS和NS处理目标 气体累积排放量,S为还田秸秆的碳或氮含量。

通量观测同时,本研究采用便携式水分(ML2x, ThetaKit, Delta-T Devices, Cambridge, UK)和温度 测定系统(JM624,天津今明仪器有限公司,天津, 中国)对各处理土壤湿度(0~6 cm)、土壤温度(5 cm)和箱内气温进行观测。另外,实验地旁设置的 自动气象站可高频(每分钟至每小时一次)记录实 验地的气温、土壤温度(5 cm)、降水量和大气压力。

2.3 数据分析

SPSS Statistics Client 19.0 (SPSS Inc., Chicago, USA)和Origin 8.0 (Origin Lab Corporation, USA) 被用于统计数据分析。各处理土壤—大气CH₄、CO₂、 N₂O和NO交换通量的差异显著性检验使用重复测

量设计的方差分析,土壤温度、土壤湿度和通量间的相关关系采用线性和非线性回归方法,回归系数显著性检验采用F检验。

3 结果

3.1 环境因子

观测期实验地日平均气温在 11.5~31.5 ℃之间,日平均土壤温度(5 cm)与气温变化趋势一致, 由观测期开始至结束,温度逐渐递减,但土壤温度 变幅明显小于日平均气温(15.4~29.2 ℃,图 1a)。 观测期总降雨量为 224.2 mm,占全年降雨量的 51.8%。观测期间仅进行一次灌溉(秸秆还田后第 54 天),灌溉量为 28.6 mm,因此观测期总水分输 入量为 252.8 mm。土壤充水孔隙率(water-filled pore space, WFPS, 0~6 cm)变化在 18.3%~63.2% 之间,其变化趋势主要受降水和灌溉的影响,观测 期平均值(±标准误差)为 36.1%±1.2%(图 1b)。

3.2 交换通量季节变化

土壤-大气 CH4 交换通量在-38.3~29.3 μg(C)·m⁻²·h⁻¹之间变化,表现出明显的季节变化格 局,灌溉前(秸秆还田后 1~54 d)土壤主要表现 为净吸收大气 CH4, 灌溉后(秸秆还田后 55~102 d) 迅速转变为净排放, 至观测期结束时(秸秆还田后 102~109 d) 再次成为吸收汇(图 2a)。土壤 CO₂ 排放通量在 45.4~623.2 mg (C)·m⁻²·h⁻¹之间波动, 从观测期开始至结束排放通量随温度降低呈指数 关系递减 (p<0.01), 期间较大的降雨事件 (日降雨 量>10 mm) 和灌溉会显著提高 CO₂ 排放通量, 如 秸秆还田后第 28、55 和 63 天等 (图 2b)。土壤--大气 N₂O 交换通量为 1.4~103.9 µg (N)·m⁻²·h⁻¹, 实 验地土壤始终为大气 N2O 排放源, 观测期内 N2O 排放通量基本上逐渐递减,期间较大的降雨事件 (日降雨量>10 mm) 和灌溉会显著促进土壤 N₂O 排放,因此,土壤 N₂O 与 CO₂ 排放通量季节变化趋 势大致相同,主要受温度、降雨和灌溉的影响(图 2c)。土壤一大气 NO 交换通量变幅为-0.5~17.4 μg (N)·m⁻²·h⁻¹, 观测期大部分时间实验地土壤表现 为净排放 NO, 仅在观测期末(秸秆还田后 104~ 109 d) 观测到弱吸收/沉降, 观测期间土壤 NO 排 放通量逐渐减小,秸秆还田后第 12、26、34~41 天出现较大的 NO 排放峰,这主要由小的降雨事件 所致(日降雨量<5 mm,图 1b 和 2d)。

图 1 观测期实验地(a)日平均空气和土壤温度(5 cm)、(b)土壤充水孔隙率(WFPS, 0~6 cm, 平均值±标准误差)和降雨量 Fig.1 (a) Daily averaged air temperature and soil temperature (5 cm) and (b) water-filled pore space (WFPS, 0-6 cm, mean ± stand error) and precipitation of the experimental field during the observation period

图 2 FS、HS和NS处理土壤一大气(a) CH₄、(b) CO₂、(c) N₂O和(d) NO 交换通量(为 3 个空间重复观测的平均值) Fig. 2 (a) CH₄, (b) CO₂, (c) N₂O, and (d) NO fluxes (arithmetic mean of the fluxes measured for three spatial replicates) at the full straw-amended (FS), half straw-amend (HS), and no straw-amended (NS) treatments

3.3 交换通量季节动态关系

不同秸秆还田量处理裸地土壤一大气 CH₄、 CO₂、N₂O 和 NO 交换通量相互间存在显著的线性 或非线性相关关系(图 3 和表 1)。其中, N₂O、NO 和 CH₄交换通量随 CO₂ 排放通量增加分别呈现线性 增加和减少的趋势(图 3a-c); NO 和 CH₄ 交换通 量随 N₂O 排放通量增加分别表现为先增加后减少 和先减少后增加的形式(图 3d 和 3e); CH₄ 与 NO

图3 FS、HS和NS处理的(a) N₂O与CO₂、(b) NO与CO₂、(c) CH₄与CO₂、(d) NO与N₂O、(e) CH₄与N₂O、(f) CH₄与NO交换通量的相关关系 Fig. 3 The correlationships of (a) N₂O and CO₂, (b) NO and CO₂, (c) CH₄ and CO₂, (d) NO and N₂O, (e) CH₄ and N₂O, and (f) CH₄ and NO fluxes at the full straw-amended (FS), half straw-amend (HS), and no straw-amended (NS) treatments

交换通量则为线性负相关关系(图 3f)。

3.4 累积交换量及其还田秸秆碳、氮排放系数

FS、HS和NS处理的土壤累积CH4吸收量以灌溉 事件为分界点呈现先增加后减少的趋势,灌溉后FS 和HS累积CH4吸收量的递减速率明显高于NS(见图 4)。整个观察期内,FS、HS和NS处理的CH4累积吸 收量分别为-0.07±0.13、-0.08±0.02、-0.20±0.11 kg (C)·ha⁻¹,秸秆还田处理累积吸收量较无秸秆还 田处理低59%~66%,但差异不显著(表2)。FS、HS 和NS处理的土壤累积CO₂排放量均呈现逐步增 加趋势,观测期累积排放量分别为7244.1±505.3、5727.7±179.5、5092.5±425.6 kg (C)·ha⁻¹,FS和NS 累积排放量差异性显著,HS与NS以及HS与FS累积 排放量的差异未达到统计显著性(表2)。FS、HS 和NS土壤累积N₂O排放量在灌溉后迅速增加,最终 累积排放量分别为0.54±0.11、0.42±0.02、0.39±0.06 kg (N)·ha⁻¹,秸秆还田促进了土壤N₂O排放,但这种 促进效应未达到统计显著性差异(表2)。FS、HS 和 NS 处理的土壤累积 NO 排放量同样呈现逐 步增加趋势,观测期累积排放量分别为0.11±0.01、

0.09±0.01、0.08±0.01 kg (C)·ha⁻¹,还田秸秆促进了 土壤NO排放,但差异未达到统计显著性(表2)。

		01	0		
分图	处理	拟合方程		相关系 数平方 r ²	假设机 率 <i>p</i> 值
а	FS	y = 0.54 + 0.08 x		0.32	< 0.01
	HS	y = 6.52 + 0.05 x		0.11	< 0.05
	NS	y = 2.13 + 0.07 x		0.25	< 0.01
b	FS	y = -0.04 + 0.01 x		0.45	< 0.01
	HS	y = -0.67 + 0.02 x		0.50	< 0.01
	NS	y = 0.46 + 0.01 x		0.22	< 0.01
c	FS	y = 20.57 - 0.08 x		0.48	< 0.01
	HS	y = 15.86 - 0.08 x		0.37	< 0.01
	NS	y = 4.65 - 0.06 x		0.19	< 0.01
d	FS	$y = \exp\left(-0.22 + 0.13 x - 0.002 x^2\right)$	²)	0.47	< 0.01
	HS	$y = \exp\left(-0.51 + 0.17 x - 0.003 x^2\right)$	2)	0.40	< 0.01
	NS	$y = \exp(0.09 + 0.11 x - 0.002 x^2)$		0.18	< 0.01
e	FS	$y = 15.88 - 1.40 x + 0.01 x^2$		0.30	< 0.01
	HS	$y = 15.41 - 1.65 \text{ x} + 0.02 x^2$		0.29	< 0.01
	NS	$y = 0.51 - 0.83 \text{ x} + 0.01 x^2$		0.08	< 0.05
f	FS	y = 11.75 - 3.29 x		0.36	< 0.01
	HS	y = 7.03 - 2.57 x		0.25	< 0.01
	NS	y = -0.87 - 1.89 x		0.13	< 0.05

表1 图3的拟合方程 Table 1 Fitting equations for Fig.3

FS和NS处理还田秸秆碳、氮含量分别为6419.2、 3209.6 kg (C)·ha⁻¹以及42.0、21.0 kg (N)·ha⁻¹。用秸秆 还田处理 (FS和HS)累积排放量减去无秸秆还田处 理 (NS)累积排放量,再除以还田秸秆含碳、氮量 可计算得到还田秸秆导致各种气体的排放系数。FS 和NS处理还田秸秆CO₂、N₂O和NO排放系数分别为 73.4%±1.6%和43.3%±1.0%(CO₂)、0.37%±0.01% 和 0.17%±0.00%(N₂O)、以及 0.06%±0.00% 和 0.05%±0.00%(NO)(表2)。

4 讨论

4.1 秸秆还田对 CH₄、CO₂、N₂O 和 NO 交换通量 的影响

土壤一大气间 CH₄、CO₂、N₂O 和 NO 交换是 土壤气体产生、消耗和传输 3 个过程的综合结果。 秸秆还田能够增加土壤结构稳定性和田间持水能 力,因此将影响土壤气体传输过程 (Jacinthe and Lal, 2003)。但更重要的是,秸秆施入土壤后,腐烂分解, 改变土壤碳、氮库,特别是无机氮和有机碳的含量 进而影响土壤气体的产生和消耗过程 (Jacinthe et al., 2002; Jacinthe and Lal, 2003; Hadas et al., 2004; Malhi et al., 2006; 董海波等, 2009; Liu et al., 2011)。还田秸秆因含氮量和碳氮比 (C/N) 的不同

表2 不同小麦秸秆还田量裸地土壤一大气间CH₄、CO₂、N₂O和NO平均交换通量,累积排放/吸收量和秸秆碳或氮的排 放系数

Table 2 The mean fluxes, cumulative emissions/uptakes,	and emission factors of	$f CH_4, CO_2, N_2O,$	and NO at the bare soils
applied with the different amounts of wheat straw			

气体	处理	交换通量(±标准误差)	累积交换量(±标准误差)	排放系数(±标准误差)
CH_4	FS	$-0.8\pm2.7\mu g(C)\cdot m^{-2}\cdot h^{-1}$	-0.07±0.13 kg (C) • ha ⁻¹	_
	HS	$-1.4\pm2.3 \ \mu g (C) \cdot m^{-2} \cdot h^{-1}$	-0.08 ± 0.02 kg (C) · ha ⁻¹	_
	NS	$-6.5\pm1.8 \ \mu g (C) \cdot m^{-2} \cdot h^{-1}$	−0.20±0.11 kg (C) • ha ⁻¹	_
$\rm CO_2$	FS	267.1±23.1 mg (C) \cdot m ⁻² \cdot h ^{-1*}	7244.1±505.3 kg (C) • ha ^{-1*}	73.4%±1.6%
	HS	212.0±17.8 mg (C) \cdot m ⁻² \cdot h ⁻¹	5727.7±179.5 kg (C) • ha ⁻¹	43.3%±1.0%
	NS	$188.5 \pm 13.6 \text{ mg (C)} \cdot \text{m}^{-2} \cdot \text{h}^{-1*}$	5092.5±425.6 kg (C) • ha ^{-1*}	_
N_2O	FS	$20.7 \pm 3.0 \ \mu g \ (N) \cdot m^{-2} \cdot h^{-1}$	$0.54\pm0.11 \text{ kg}(\text{N}) \cdot \text{ha}^{-1}$	0.37%±0.01%
	HS	$16.3\pm2.3 \ \mu g (N) \cdot m^{-2} \cdot h^{-1}$	$0.42\pm0.02 \text{ kg}(\text{N}) \cdot \text{ha}^{-1}$	0.17%±0.00%
	NS	$14.7 \pm 1.7 \ \mu g \ (N) \cdot m^{-2} \cdot h^{-1}$	$0.39\pm0.06 \text{ kg}(\text{N}) \cdot \text{ha}^{-1}$	_
NO	FS	$3.9\pm0.5 \ \mu g \ (N) \cdot m^{-2} \cdot h^{-1}$	$0.11\pm0.01 \text{ kg}(\text{N}) \cdot \text{ha}^{-1}$	0.06%±0.00%
	HS	$3.4\pm0.5 \ \mu g \ (N) \cdot m^{-2} \cdot h^{-1}$	$0.09\pm0.01 \text{ kg}(\text{N}) \cdot \text{ha}^{-1}$	0.05%±0.00%
	NS	$3.0\pm0.4 \ \mu g \ (N) \cdot m^{-2} \cdot h^{-1}$	$0.08\pm0.01 \text{ kg}(\text{N}) \cdot \text{ha}^{-1}$	_

注:*表示处理间差异显著 (p < 0.05)。

Fig.4 Soil cumulative (a) CH₄, (b) CO₂, (c) N₂O, and (d) NO exchanges at FS, HS, and NS treatments

对土壤氮矿化和无机氮含量的影响有所差异,对于 含氮量较高、C/N 较小(<30)的秸秆,施入土壤 后能够迅速腐烂分解,促进土壤氮素矿化,显著增 加土壤无机氮含量;而对于含氮量较低、C/N 较大 (>30)的秸秆,如本研究使用的小麦秸秆(C/N = 70),在不施氮肥的情况下,还田后对土壤氮矿化 速率无显著影响。然而秸秆高含碳量能够提供丰富 的可溶性有机碳(dissolved organic carbon, DOC), 刺激土壤微生物生长和氮素固定,进而短时期内

(几周)降低土壤无机氮含量,但长期的结果,秸 秆氮最终会逐步矿化分解,增加土壤无机氮含量 (Hadas et al., 2004)。还田秸秆无论含碳量高低和

C/N 大小,都将增加易分解有机碳的量,并促进微 生物活性,进而增加土壤 CO₂ 排放、氧气(O₂)消 耗以及厌氧微域环境(Malhi et al., 2006)。

对于土壤—大气 CH4 交换通量而言,灌溉前秸 秆还田处理的无机氮含量,特别是铵盐(NH4⁺)含 量将呈现先减少后增加的趋势(Hadas et al., 2004)。 在旱地土壤中,氨氧化菌可以在氨—单氧酶作用下 利用 CH4 和 NH4⁺作为底物氧化 CH4。另外,高亲 和性食甲烷细菌通常也可以氧化 NH4⁺,因为 NH4⁺ 能够与甲烷氧化酶的活性位点结合(Schimel, 2000)。因此,秸秆还田处理土壤 NH4⁺含量先减少 后增加将可能对大气 CH4吸收产生先促进后抑制的 效应,然而在不施肥的情况下,小麦秸秆还田对土 壤无机氦含量影响的幅度非常小,因此对 CH4吸收 通量的影响也不显著。在灌溉后,秸秆还田处理土 壤易分解有机碳含量会迅速增加,进而为土壤 CH4 生产提供速效底物,加之秸秆还田处理土壤 O₂ 消 耗大导致厌氧微域增加,因此,秸秆还田处理 CH4 排放通量高于秸秆不还田处理。

对于土壤一大气 N₂O 和 NO 交换通量而言, 还田秸秆通过以下几方面机制影响土壤 N₂O 和 NO 产生过程。首先,从长周期来看,秸秆还田增加土 壤无机氮含量,无机氮是微生物硝化和反硝化过程 的底物,无机氮含量的高低通常被认为是硝化和反 硝化速率快慢的重要指标 (Beauchamp et al., 1989), 秸秆还田处理无机氮含量将高于秸秆不还田处理 (Liu et al., 2011),这意味着秸秆还田处理的硝化

和反硝化速率也将高于秸秆不还田处理,进而导致 秸秆还田处理表现出较高的累积排放量。从短周期 来看,小麦秸秆还田会降低土壤无机氮含量,抑制 微生物硝化和反硝化过程以及 N₂O 和 NO 的生产, 但其持续时间一般不会超过几周时间 (Hadas et al., 2004)。其次,秸秆还田会增加土壤 DOC 含量 (Malhi et al., 2006),而 DOC 含量的增加会显著 促进土壤反硝化细菌的活性(Beauchamp et al., 1989),进而增加反硝化过程 N₂O 和 NO 的生产。 再次,还田秸秆提供了易分解有机碳,促进土壤呼 吸和 O₂ 消耗,增加土壤中的厌氧环境,进一步促 进土壤反硝化 N2O 和 NO 产生过程 (Miller et al., 2008)。最后,还田秸秆能够起到保温作用,加之 秸秆腐烂分解会释放热量,增加土壤温度进而激 发微生物活性 (Liu et al., 2011); 然而,本研究 FS、 HS 和 NS 处理观测期平均土壤温度分别为 22.5±0.6、22.7±0.6、22.9±0.6℃,未观测到秸秆还 田对土壤温度升高效应。

4.2 还田秸秆 CO2、N2O 和 NO 排放系数

本研究 FS 和 NS 处理还田秸秆为 6419.2、 3209.6 kg (C)·ha⁻¹, 还田秸秆的 CO₂、N₂O 和 NO 排放系数分别为 73.3%和 43.3% (CO₂)、0.37%和 0.17% (N₂O)、0.06%和 0.05% (NO),可以看出相 同的秸秆,因还田量不同,排放系数有所差异,通 常秸秆全部还田的排放系数高于秸秆一半还田。 Jacinthe et al. (2002) 观测了美国俄亥俄州不同秸 秆还田量[0、3520、7040 kg (C)·ha⁻¹]时的淋溶性土 壤 CO₂ 排放,该研究计算得到小麦秸秆年 CO₂ 排放 系数为 47.7%和 60.8%, 略低于本研究小麦秸秆夏 季 CO₂排放系数。该研究小麦秸秆还田方式为表层 覆盖,秸秆与土壤未能充分混合,进而降低了秸秆 矿化和土壤 CO₂ 排放速率 (Potthoff et al., 2005; Curtin et al., 2008), 这可能是导致相对低的 CO₂排 放系数的原因之一。此外,秸秆化学成分、秸秆 C/N、 降雨量、温度和土壤性质的差异都可能导致排放系 数的显著差异。

政府间气候变化专门委员会(IPCC)推荐 1.0% 统一作为化肥氮、生物固氮和作物残茬的 N₂O 排放 因子/系数(IPCC, 2006)。Novoa and Tejeda(2006) 专门评估了近 10 年发表的关于作物残茬 N₂O 排放 的相关数据,研究结果显示残茬 N₂O 排放主要受作 物类型、残茬生物化学成分、农业管理措施、气候、 土壤性质和土壤湿度等因素的影响,报道的农作物 残茬 N₂O 排放因子为 0.17%~14.6%, 而其中的 60% 集中在 1.055%左右。本研究计算得到的小麦秸秆 N₂O 排放因子低于全球平均值(1.0%, IPCC, 2006 和 1.055%, Novoa and Tejeda, 2006), 同时也显著低 于同一研究样地,施肥玉麦轮作农田小麦秸秆的 N₂O 排放因子(2.32%, Liu et al., 2011)。施肥能够 降低施入小麦秸秆土壤的 C/N,进而促进秸秆矿化; 并且秸秆还田有利于农作物的生长,进而为微生物 活动提供良好的温、湿度条件和反应底物。所以, 相对于不施肥裸地,有作物生长的施肥农田,还田 秸秆 N₂O 排放因子显著增大。Velthof et al. (2002) 推荐按农作物残茬种类,将残茬 N₂O 排放因子区分 为<0.5%、0.5%~1.5%和>1.5%3个区间。然而本 研究结果表明,施肥和作物生长状况对残茬 N₂O 排 放的影响远高于残茬种类,因此,当采用排放因子 估算农作物残茬 N₂O 排放时,应综合考虑施肥状 况、残茬种类、残茬生物化学成分、作物类型、作 物生长状况、农业管理措施、气候和土壤性质等的 影响。对于还田秸秆 NO 的排放系数鲜见报道,仅 Liu et al. (2010) 报道了同一试验地种植玉米、施肥 农田的小麦秸秆 NO 排放系数为 0.42%, 同样由于 施肥和种植农作物的影响,其 NO 排放系数显著高 于本研究不施肥裸地小麦秸秆的排放系数。

综上研究结果,现行农业管理措施的发展,如施 肥、灌溉和秸秆还田量(禁止焚烧措施,施肥、灌溉 和轮作制度增加生物量等因素)的增加,将促进旱 地土壤 CO₂、N₂O 和 NO 排放,同时减少对大气 CH₄吸收,因此将促进农田总的温室气体排放。为 保证我国粮食安全,同时减少粮食生产导致的环境 负效应,应采用优化的灌溉、施肥和秸秆处理方式 (Liu et al., 2011)。相对于传统的秸秆焚烧、大水漫 灌、高施肥量等,推荐采用最佳施肥量并根据农 作物生长状况分施化肥、节水灌溉和秸秆翻耕还 田。以上管理措施既能提高粮食产量,增加肥料利 用率和土壤肥力,又能够减少温室气体排放、土壤 酸化、水体和大气污染等环境负效应 (Ju et al., 2009; Liu et al., 2011)。

5 结论

本研究在野外原位观测了晋南地区不同小麦 秸秆还田量裸地土壤一大气间 CH₄、CO₂、N₂O 和 NO 净交换通量。农田土壤一大气间的 CH₄、CO₂、 N₂O 和 NO 交换通量表现出明显的季节变化特征, 并主要受灌溉、降雨和温度变化的影响,灌溉将 农田土壤由大气 CH4 吸收汇转变为排放源,灌溉 和较大的降雨事件(日降雨量>10 mm)显著促进 土壤 N₂O 排放,小的降雨事件(日降雨量<5 mm) 能够明显提升土壤 NO 排放。土壤累积 CO₂、N₂O 和 NO 排放量随秸秆还田量增加而增加,土壤 累积 CH4 吸收量随秸秆还田量增加而减少,因此, 秸秆还田增加了该农田土壤总的温室气体排放。然 而,由于空间变异性原因,仅秸秆全还田和不还田 处理 CO₂ 排放通量的差异达到统计显著性。还田秸 秆 CO₂、N₂O 和 NO 排放系数随秸秆还田量增加 而增加,翻耕秸秆、施肥和种植农作物能够促进 还田秸秆 CO2、N2O 和 NO 排放,因此,除气候、 土壤性质、秸秆种类、秸秆生物化学成分外,秸 秆还田量、秸秆还田方式、施肥和作物生长状况 等也是影响还田秸秆 CO2、N2O 和 NO 排放的重 要因素。

致谢 中国科学院大气物理研究所刘广仁、王迎红、韩圣慧、 李明、童华君、闫广轩等为观测工作开展提供了技术支持和 帮助,谨此致谢!

参考文献(References)

- Al-Kaisi M M, Yin X H. 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations [J]. Journal of Environmental Quality, 34: 437–445.
- Beauchamp E G, Trevors J T, Paul J W. 1989. Carbon source for bacteria denitrification [J]. Advanced Soil Science, 10: 113–142.
- Bouwman A F, Boumans L J M, Batjes N H. 2002. Modeling global annual N₂O and NO emissions from fertilized fields [J]. Global Biogeochemical Cycles, 16 (4): 1080, doi: 10.1029/2001GB001812.
- Cao G L, Zhang X Y, Wang Y Q, et al. 2008. Estimation of emissions from field burning of crop straw in China [J]. Chinese Science Bulletin, 53 (5): 784–790.
- Curtin D, Francis G S, McCallum F M. 2008. Decomposition rate of cereal straw as affected by soil placement [J]. Australian Journal of Soil Research, 46: 152–160.
- Denman K L, Brasseur G, Chidthaisong A, et al. 2007. Couplings between changes in the climate system and biogeochemistry [M]// Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 539–546.

董海波,郑循华,黄耀,等.2009. 大气 CO2浓度升高和秸秆还田对稻麦

轮作农田 N₂O 排放的影响[J]. 气候与环境研究, 14 (1): 1-8. Dong Haibo, Zheng Xunhua, Huang Yao, et al. 2009. Effects of elevated atmospheric CO₂ on N₂O emission from rice-wheat rotation fields with different wheat straw incorporation rates [J]. Climate and Environment Research, 14 (1): 1-8.

- 龚子同,张甘霖,陈志诚,等. 2007. 土壤发生与系统分类[M]. 北京: 科学出版社, 481. Gong Zitong, Zhang Ganlin, Chen Zicheng, et al. 2007. Pedogenesis and Soil Taxonomy [M] (in Chinese). Beijing: Science Press, 481.
- Hadas A, Kautsky L, Goek M, et al. 2004. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover [J]. Soil Biology and Biochemistry, 36: 255–266.
- Huang Y, Zou J W, Zheng X H, et al. 2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios [J]. Soil Biology and Biochemistry, 36: 973–981.
- Hutchinson G L, Mosier A R. 1981. Improved soil cover method for field measurement of nitrous oxide fluxes [J]. Soil Science Society of America Journal, 45: 311–316.
- Intergovernmental Panel on Climate Change (IPCC). 2006. Guidelines for national greenhouse gas inventories: Agriculture, forestry and other land use. Chapter 11: N₂O emissions from managed soils, and CO₂ emissions from lime and urea application [R]. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan, 11pp.
- Jacinthe P A, Lal R. 2003. Nitrogen fertilization of wheat residue affecting nitrous oxide and methane emission from a central Ohio Luvisol [J]. Biology and Fertility of Soils, 37: 338–347.
- Jacinthe P A, Lal R, Kimble J M. 2002. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment [J]. Soil and Tillage Research, 67: 147–157.
- Ju X T, Xing G X, Chen X P, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems [J]. Proceedings of the National Academy of Sciences of the United States of America, 106 (9): 3041–3046.
- Kim S, Dale B E. 2004. Global potential bioethanol production from wasted crops and crop residues [J]. Biomass and Bioenergy, 26: 361–375.
- Li H, Qiu J J, Wang L G, et al. 2010. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China [J]. Agriculture, Ecosystems and Environment, 135: 24–33.
- Liu C Y, Holst J, Yao Z S, et al. 2009. Sheepfolds as "hotspots" of nitric oxide (NO) emission in an Inner Mongolian steppe [J]. Agriculture, Ecosystems and Environment, 134: 136–142.
- Liu C Y, Zheng X H, Zhou Z X, et al. 2010. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China [J]. Plant and Soil, 332: 123–134.
- Liu C Y, Wang K, Meng S X, et al. 2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China [J]. Agriculture, Ecosystems and Environment, 140: 226–233.
- Malhi S S, Lemkeb R. 2007. Tillage, crop residue and N fertilizer effects on

crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle [J]. Soil and Tillage Research, 96: 269–283.

- Malhi S S, Lemke R, Wang Z H, et al. 2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions [J]. Soil and Tillage Research, 90: 171–183.
- Miller M N, Zebarth B J, Dandie C E, et al. 2008. Crop residue influence on denitrification, N₂O emissions and denitrifier community abundance in soil [J]. Soil Biology and Biochemistry, 40: 2553–2562.
- Novoa R S A, Tejeda H R. 2006. Evaluation of the N₂O emissions from N in plant residues as affected by environmental and management factors [J]. Nutrient Cycling in Agroecosystems, 75: 29–46.
- Potthoff M, Dyckmans J, Flessa H, et al. 2005. Dynamics of maize (*Zea mays* L.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen [J]. Soil Biology and Biochemistry, 37: 1259–1266.
- Schimel J. 2000. Global change: Rice, microbes and methane [J]. Nature, 403: 375–377.
- Smith P, Martino D, Cai Z, et al. 2007. Agriculture [M]// Metz B, Davidson O R, Bosch P R, et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 499pp.
- Snyder C S, Bruulsema T W, Jensen T L, et al. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects [J]. Agriculture, Ecosystems and Environment, 133: 247–266.
- Valente R J, Thornton F C, Williams E J. 1995. Field comparison of static and flow-through chamber techniques for measurement of soil NO

emission [J]. J. Geophys. Res., 100 (D10): 21147-21152.

- Velthof G L, Kuikman P J, Oenema O. 2002. Nitrous oxide emission from soils amended with crop residues [J]. Nutrient Cycling in Agroecosystems, 62: 249–261.
- Wang Y H, Wang Y S, Ling H. 2010. A new carrier gas type for accurate measurement of N₂O by GC-ECD [J]. Advances in Atmospheric Sciences, 27 (6): 1322–1330.
- Wang Y S, Wang Y H. 2003. Quick measurement of CH₄, CO₂ and N₂O emissions from a short-plant ecosystem [J]. Advances in Atmospheric Sciences, 20 (5): 842–844.
- Yao Z S, Zheng X H, Xie B H, et al. 2009. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation [J]. Soil Biology and Biochemistry, 41: 2131–2140.
- 赵鹏, 陈阜. 2009. 秸秆还田配施氯肥对夏玉米氮利用及土壤硝态氮的 影响[J]. 河南农业大学学报, 43 (1): 1-5. Zhao Peng, Chen Fu. 2009. Effects of straw mulching and nitrogen fertilizer application on nitrogen use in summer maize and soil nitrate content [J]. Journal of Henan Agricultural University (in Chinese), 43 (1): 1-5.
- 赵鹏, 陈阜, 马新明, 等. 2010. 麦玉两熟秸秆还田对作物产量和农田氮 素平衡的影响 [J]. 干旱地区农业研究, 28 (2): 1-5. Zhao Peng, Chen Fu, Ma Xinming, et al. 2010. Effects of integrated straw on crop yield and nitrogen balance in winter wheat and summer maize [J]. Agricultural Research in the Arid Areas (in Chinese), 28 (2): 1-5.
- 中华人民共和国统计局. 2009. 中国统计年鉴. 第 12 章: 农业[M]. 北京: 中国统计出版社, 13, 15. National Bureau of Statistics of China. 2009. China Statistical Yearbook. Chapter 12: Agriculture [M] (in Chinese). Beijing: China Statistics Press, 13, 15.