北京地区地壳Q值随深度的分布特征

付昌洪 朱传镇

(国家地震局地球物理研究所)

一、引 言

地震波在介质中的衰减,是介质的重要特性之一,而Q值则是衡量衰减特性的主要物理 参数,称之谓介质的品质因子。根据文献[1]提出的方法,用北京台网记到的近震直达P波 资料,测定北京地区的大量Q值表明^[2],Q值与P、S波到时差(t_s-t_p)有关;(t_s-t_p) 大,测得的Q值也大;(t_s-t_p)小,测得的Q值也小。这种现象在朱传镇^[1]、李兴才^[4] 研究海城地震时,朱传镇^[3]、张之立^[5]、林邦慧^[6]等人研究唐山地震时所得的Q值分布 中也可以清楚地看到。文献[2]指出,(t_s-t_p)小时测定的Q值反映了地壳表层的介质特 性,(t_s-t_p)大时测定的Q值反映了地壳较深处介质的特性。也就是说,这种现象实质上

不同地区不同台站测得的Q值

甹	1
AX.	

从测定地区看					从记录台站稻			
地区	测Q值个数	平均Q	平均ts-tp(s)	台	站	测Q值个数	平均Q	平均t:-tp(s)
-14				马	道峪	70	310	15.5
京				龙	泉寺	35	315	15.5
地区	181	292 15	15.3	沙	城	40	242	17.3
			-	平	谷	32	291	12.6
ıtı				介	休	23	304	14.1
西				廿	阳	11	368	15.6
地区	57	313	13.9	灵	ff	12	308	15.0
2				临	谺	. 11	285	10.5
安				加	Щ	22	237	11,3
叡	33	249	12.1	淮	北	8	244	13.0
× ×				巢	湖	8	3 51	16.1
4H		[· · · · · · · · · · · · · · · · · · ·	K	岛•	44	68	3.9
44 45				ĸ	岛**	7	62	2.2
ы #h	83	120	6.0	烟	台	15	213	11.0
70 17			烟	台**	13	238	10.8	
P			黑	Щ••	4	66	1.3	
内蒙凉城	6	278	13.5					

• 用砣矶发生的地凝 • • 用黑山发生的地震

是反映了地壳中不同深度处的介质特性。同样用文献[1]提出的方法,对其他一些地区测了 更多的Q值,所测的结果列在表1中。这些结果也清楚地表明,上述现象是普遍存在的。

文献[2]对北京地区测定的Q值给出了与P、S波到时差(ts-tp)的一般关系式为:

 $Q = 15.68 (t_s - t_p) + 51.8$ (1)

本文的目的是在文献〔2〕的基础上,进一步研究北京地区地壳中不同深度介质的Q值分 布情况。

二、分 析 方 法

假定震源位于O处,从震源发出的直达P波在台站S接收到的射线,所经过的路径为OMS,如图1所示。其路径严格说来不是一条直线,当震中距较大时,射线是一条先向下,再返回地面的曲线。根据地壳的速度模型可以近似地计算出这条路径OMS的长度 R。在计算R时,我们采用了地壳中速度分布的连续模型⁽⁶⁾,这是用北京台网记到的爆破资料,取 其可靠的 \overline{P} 初至而计算得到的。在这个模型中,把北京地区的地壳分成40层,地壳厚度取为 37.18公里。具体资料列在表 2 中。如果计算出射线在每层中所经过的长度r₁,那么总路径 的长度R= Σ r₁。

求得了震源距R,用公式R = V_o(t₁-t_p)就可算得(t₁-t_p),式中V_o为虚波速度, (t₁-t_p)为直达P波和S波的走时差。把得到的(t₁-t_p)代入(1)式中,便可算得射 线路径R所经过介质的平均Q值。地震波的衰减一般表示为 e^{-KP} ,式中K = $\frac{\omega}{OV}$, ω 为 园

					•••
层序号	深度z(公里)	V(公里/秒)	层序号	深度z(公里)	Ⅴ(公里/秒)
1	0.18	4.98	21	14.36	6,04
2	0.46	5.03	22	15.39	6.10
8	0.82	5.08	23	16.43	6.15
4	1.24	5.13	24	17.50	6.21
5	1.72	5,19	25	18.59	6.27
8	2.25	5.24	26	19.70	6.32
7	2.82	5.29	27	20.83	6.38
8	3.44	5.34	28	21.98	6.44
9	4.09	5.39	29	23.15	6.50
10	4.79	5.45	30	24.34	6.55
11	5.51	5.50	31	25.54	6.61
12	6.21	5.55	32	26.77	6.67
13	7.06	5.61	33	28.01	6.73
14	7.88	5.66	34	29.27	6.79
15	8.73	5.71	35	30.55	6.85
16	9.60	5.77	36	31.84	6.91
17	10.50	5.82	37	33.15	6.97
18	11.43	5,88	38	34.48	7.02
19	12.39	5.93	39	35.82	7.08
20	13.39	5,99	40	37.18	7.15
	1				

地壳中的速度分布

- 我 2

频率,Q为介质品质因子,V为波的传播速度,R是波传播的路径。如果射线是从K+N层和K+N+1层界面返回地面的,而且K+N-1层以上各层的Q₁、V₁均知道,並知道K+N层的V_{K+N},那么很容易求得K+N层的Q值。由于

$$e^{-KR} = e^{-\frac{\omega}{QV}R}$$

$$= e^{-\frac{\omega}{QV}(r_{1}+r_{2}+\dots+r_{K}+2r_{K}+1+\dots+2r_{K}+N-1+2r_{K}+N)}$$

$$= e^{-\frac{\omega}{QV}(r_{1}+r_{2}+\dots+r_{K})} + \frac{2\omega}{Q_{K+1}V_{K+1}}r_{K+1}+\dots+\frac{2\omega r_{K}+N-1}{Q_{K+N}-1} + \frac{2\omega r_{K}+N}{Q_{K+N}V_{K+N}}]$$

$$\iint \bigcup \frac{\omega}{QV}R = \frac{\omega}{\overline{QV}}(r_{1}+r_{2}\dots+r_{K}) + \frac{2\omega r_{K+1}}{Q_{K+1}V_{K+1}} + \dots + \frac{2\omega r_{K}+N-1}{Q_{K+N-1}V_{K+N-1}} + \frac{2\omega r_{K}+N}{Q_{K+N}V_{K+N}}]$$

稍加整理得到求Q_{K+N}的公式为:

$$Q_{K+N} = 2 r_{K+N} / V_{K+N} / \left[\frac{1}{QV} R - \frac{1}{\overline{QV}} (r_1 + r_2 + \dots + r_K) - \frac{2 r_{K+1}}{Q_{K+1} V_{K+1}} - \dots - \frac{2 r_{K+N-1}}{Q_{K+N-1} V_{K+N-1}} \right]$$
(2)

求得K + N层介质的Q值后,就可以求得K + N + 1层的Q值,以此类推,震源所处层(K层) 以下各层介质的Q值都可以求得。

现在的问题是如何求得射线在各层的路径r;以及射线的总路径R。众所周知,入射波、 反射波和折射波在介质分界面遵从斯涅尔定律:

$$\frac{\sin i_1}{V_1} = \frac{\sin i_2}{V_2}$$

式中 i_1 、 i_2 分别为入射射线及反射射线与界面法线间的夹角, V_1 、 V_2 分别是入射射线及折射反射射线所在介质的波传播速度。假如震源位于K层与K + 1 层的界面 O 处(图 1),由 震源O发出的射线传至K + N层和K + N + 1 层界面后返回地面观测站S,那么射线 OMS 即 为震源距R,它可以这样来计算:

$$\texttt{th} \mathcal{F} \qquad \frac{\sin i_1}{V_1} = \frac{\sin i_2}{V_2} = \dots = \frac{\sin i_{K+N}}{V_{K+N}} = \frac{1}{V_{K+N+1}}$$

所以
$$\sin i_1 = \frac{V_1}{V_{K+N+1}}$$
, $\sin i_2 = \frac{V_2}{V_{K+N+1}}$

这样任一层j中的射线线段r;可表示为:

$$r_{j} = H_{j} / \sqrt{1 - (V_{j} / V_{K+N+1})^{2}}$$
 (3)

式中 H_i 为i层的介质厚度, V_i 为i层的波传播速度。因此R可以表示为:

$$R = 2 \sum_{j=1}^{K+N} (H_j / \sqrt{1 - (V_j / V_{K+N+1})^2}) - \sum_{j=1}^{K} (H_j / \sqrt{1 - (V_j / V_{K+N+1})^2}) \quad (4)$$

即

$$R = \sum_{j=1}^{K} (H_j / \sqrt{1 - (V_j / V_{K+N+1})^2}) + 2 \sum_{j=K+1}^{K+N} (H_j / \sqrt{1 - (V_j / V_{K+N+1})^2})$$
(5)

到此,用公式(3)和(5)可以求得r;和R。需要补充一点的是,在求震源以下各层的Q 值时,对震源以上的介质Q值,用公式(1)给出一个平均的Q以及相应的平均速度V,V 是根据表2提供的速度值取算术平均。

三、结果和讨论

用上面介绍的方法编制计算程序计算各层的Q值时,还需确定震源的深度。然而,我们 在采用直达P波计算Q值时所用的地震,它们的震源深度,深浅是不一致的,公式(1)仅 仅是一个统计的结果。因此,必需给出一个平均的深度。考虑到许多被采用的地震,其深度 数据误差较大,难以直接应用,本文根据下列一些事实,假设几个比较合理的可能震源深度 数据来进行计算。首先,从北京电信传输地震台网给出的地震速报目录来看,北京地区凡能 测出的震源深度大部分在10到20公里的范围内,多数地震的深度在15公里左右。其次,对唐 山余震震源深度分布的研究表明:共有8832个地震测定了震源深度,其中深度小于20公里的 地震占总数的91.7%。地震数随深度的分布接近于泊松分布,优势深度为11.4公里。考虑到 地壳中速度分布的连续模型中的分层情况,以及为了计算方便,这里我们假定震源处于11.4 公里、13.4公里和15.4公里等三个不同深度情况下,计算了各层介质的Q值。在计算中,北 京地区的虚波速度取8.15公里/秒。计算得到各层Q值的结果列在表3中。

从计算结果着来,震源所在层介质的Q值大约是300到400,M面附近地壳介质的Q值大约为1000左右。从表3中还可以清楚地看到,不管平均的震源位于什么深度(11.4公里,13.4公里和15.4公里三种),所算得的Q值都随深度的增加而单向地增加,越向下,Q值越大。用最小二乘法来拟合这种变化关系,得到下面的关系式:

Q(z)=26.27z-14.4 (震源位于11.4公里处) (6a)

Q(z)=27.59z-39.4 (震源位于13.4公里处) (6b)

Q(z)=29.14z-72.1。(震源位于15.4公里处) (6c)

拟合出的这些关系式,相关系数都在0.999以上。式中z为深度,Q(z)是深度为z处介质的

Q值。

W.H.Bakun 等人[8]在研究中加里福尼亚沿圣安德列斯断层带的剪切波衰减时,为

不同深度层中介质的Q值 表 8

	the second se				
目母	深度区间(公里)	震源深度			
μŻ		11.4公里	13.4公里	15.4公里	
18		125.2*			
19	11.43-12.36	306.7	134.8*		
20	12.36-13.36	338.4		144.7*	
21	13.36-14.36	368.1	352.6		
22	14.36-15.39	397.8	389.1		
23	15.39-16.43	424.9.	420.7	403.5	
24	16.43-17.50	450.6	449.6	441.2	
25	17.50-18.59	474.6	476.3	473.1	
26	18.59-19.70	498.4	502.2	502.5	
27	19.70-20.83	528.1	533.1	535.2	
28	20.83-21.98	558.5	564.7	568.5	
29	21.98-23.15	589.7	597.1	602.6	
30	23.15-24.34	622.0	630.6	637.5	
31	24.34-25.54	652.4	662.4	671.0	
32	25.54-26.77	689.6	700.5	710.3	
33	26.77-28.01	712.5	725.2	737.0	
34	28.01-29.27	749.1	762.9	776.1	
35	29.27-30.55	786.6	801.7	816.2	
36	30.55-31.84	821.8	838.3	854.4	
37	31.84-33.15	861.8	879.6	897.1	
38	33.15-34.48	890.4	909.8	929.2	
39	34.48-35.48	929.5	950.3	971.3	
40	35.82-37.18	973.5	995.8	1018.4	

注 数据后标 * 号的为震源以上介质的平均Q值

了找出衰减随深度的变化,特世算出了不同 震源深度(较深的和较浅的) 地 震 波 的 衰 减,由于资料不足,未能定量地估计出衰减 随深度的变化关系,他们肯定了衰减随深度 是有变化的。我们的工作虽然给出了衰减随 深度的变化关系式(公式 6 a、 6 b和 6 c), 但工作还是比较粗糙、并且是在一定的假设 条件下计算得到的,基本上是一种统计平均 的结果。尽管如此,上面的结果还是有意义 的,弄清了介质衰减随深度变化的大致轮 廓。这为研究北京地区地震发生的介质状况 及震源环境提供了一种 背景 资料。另一方 面, 也为研究地壳内不同深度上, 特别是在 孕震深度(10到20公里)范围内〇值随时间 的变化,从而在一定程度上为监视有关地区 未来潜在的地震危险性,提供某种依据。

本文所用资料仅限于天然地震的记录, 因此对震源以上(11公里)介质的Q值未能 给出随深度的变化,只给出了Q的平均值。 要是再用一些地面爆破的记录资料,对震源 以上介质Q值的细构也是可以得到的,那 样,地壳中介质Q值随深度的分布就比较完 整了。这方面的工作有待于进一步去收集有 关资料,加以研究,以得到更理想的结果。

参考文献

- 〔1〕朱传镇等,海城地震前后微震震源参数与介质品质因子,地球物理学报,20,3,pp 222-231,1977年.
- 〔2〕付昌洪等,北京及其邻区Q值分布特征的研究,西北地震学报,2,3,pp11-22, 1980年.
- 〔3〕朱传镇等,唐山7.8级地震前后微震震源参数,地球物理学报,20,4,pp 264—269, 1977年.
- 〔4〕李兴才等,海城地区地震波的衰减特性,地震学报,2,4,pp368-377,1980年.
- 〔5〕张之立等,唐山地震的破裂过程及其力学分析,地震学报,2,2.pp111—129 1980 年.
- [6]林邦慧等,1977年5月12日宁河地震烈度明显偏低的探讨,地球物理学报 22,1.pp 14-24 1979年.

〔7〕张嘉延,唐山余震前震源深度的变化,地震,5,pp1-2,1981年.

[8]W.H.Bakun and C.G.Bufe, Shear-Wave Attenuation Along the San Andreas Fault Zone In Central California, B.S.S.A, 65, 2,pp439—459, 1975年.

THE DISTRIBUTION CHARACTERISTICS OF Q VALUE WITH DEPTH IN THE CRUST IN BEIJING AREA

Fu Changhong Zhu Chuanzhen (Institute of Geophysics, SSB)

Abstract

In this paper, the method of calculating Q value with depth in the crust by means of data of near earthquakes is described.

It is found that the relationship Q(z) = 26.27z - 14.4(z > 11 Km) may be adopted in Beijing and its adjacent region. The results obtained also show that Q value is 300-400 in the depth from 11-15Km which is the average focal depth in Beijing area, and Q-1000 approaching to the bottom of the crust.