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gn=1+m3) (A+Qu,)+2u (30
It is shown from the expressions of the dis-
placement components that for the supersonic case §n
there are three plane shock waves attached to the ANER S
load and propagating with the velocities 1/,,1/2; 'i"{ DN / }
and 1/A; of the dilatational and rotational waves, 4 e
respectively, as shown in Fig. 5. 3 ennm
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Fig. 5 Supersonic sketch.
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DISPLACEMENT FIELD DUE TO MOVING SOURCE IN AN
INFINITE SATURATED POROUS ELASTIC SPACE’

Zeng Xinchuan and Gong Ping
(Institute of Seismology, SSB, Wuhan 430071)

Abstract

Based on Biot’ s basic motion equations for the fluid saturated porous elastic medium and by using the method
of complex function, the displacement field due to moving source with uniform velocity U in an infinite porous
elastic saturated space is studied in present paper. Two types of sources are considered: a. An oblicue
concentrated pulse force moving along the horizontal axis of the infinite space. b. The moving couples of forces.
There are four cases for the moving velocity of force source: a. The velocity U is less than all three types of body
wave velocities of the fluid saturated porous elastic medium, the subsonic case. b. The velocity U is less than the
first dilatational wave velocity and the rotational wave velocity of the medium, but greater than the second dilata-
tional wave velocity, the weak transonic case. c. The velocity U is less than the first dilatational wave velocity,
but greater than the velocities of the second dilatational and the rotational waves, the strong transonic case. d.
The velocity U is greater than all three types of body wave velocities, the supersonic case. The results show that
in the transonic and supersonic cases, the solutions represent the character of plane shock waves attached to the

load and associated with a jump in the displacement.
Key words; Double-couple source, Elastic medium, Seismic wave velocity, Dislocation, Displacement
field, Moving source with uniform velocity

1 Introduction

In the past years, the problem of displacement in an elastic space caused by an impulse of
pressure moving with constant velocity along a straight line has been studied by some authors.
For example, I. N. Sneddon™’and J. M. R. Radok'”used the method of complex function to
study the case that an oblique concentrated line force moves on the boundary of an elastic half
space with constant velocity. Foregoing authors only considered the case of subsonic movement
about the impulse of pressure. A. C. Eringen and E. S. Suhubi’® studied the same problem
in more detail and expanded the subsonic case into the transonic and supersonic cases about the
movement velocity of the pulse force.

The problem of force source plays an important part in seismology. In the previous papers
[4].[5], the authors studied the problem of displacement and stress fields caused by a tran-
sient point force in an infinite porous elastic saturated space. By using the Laplace and Fourier
transform methods, the solutions of the problem were analytically obtained for the &-pulse
point force and the Heaviside step function form of force. In the present paper, based on

Biot’ s basic motion equations for the fluid saturated porous elastic medium and also by means

» Being supported by the Chinese Seismological Scientific Combined Fund.
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of the method of complex function, first of all, the authors discuss the problem of a concen-

trated pulse force moving with constant velocity in a saturated infinite elastic space. Then, we
obtain the solutions for the moving double couples by differentiating the results with respect to
the spatial coordinate variables. In these two cases, we have the solutions for a pulse force
moving with subsonic, transonic and supersonic velocities.
2 Motion Equations and Boundary Conditions

For simplification and as a beginning, in the present paper we neglect the friction effect at
the contact surface between solid phase and liquid phase, namely the dispersivity of the elastic
waves is neglected. In this assumption, according to Biot’ s theory, the problem of plane
elasto-dynamics for fluid saturated porous medium is reduced to solve the following motion

equations for four potential functions ¢,¢,H,K:

PV HQV Y= 35 (pugtput) (1a)

QVp+ RV =2 (pugrt put) (15
where,P=X+2p,) and p are, respectively, the Lame’ constants of the solid phase materials,
Q is of the nature of a coupling between the volume change of the solid phase and that of the
fluid phase, and it is of the dimention of stress, the coefficient R is a measure of the pressure
required on the fluid to force a certain volume of the fluid into the pore while the total volume
remains constant. p, and py, are respectively the total effective mass of the solid and that of the
fluid in the relative motion between the solid and the fluid, p,, represents a mass coupling pa-
rameter between solid and fluid, it is of the dimention of mass and shows that when the solid is
accelerated a force must be exerted on the fluid to prevent an average displacement of the lat-
ter. The preceding parameters must be satisfied with the following inequalities

on1>0, 0,0, £1,<0 Q2a)
PP —0,>0, PR—Q>0 (28

By means of the preceding four potential functions, the displacements u, U for the solid
and the fluid, the stress components g; acting on the solid, and the porous fluid pressure o can

be represented as:

- ;’Z—%I U,=%—% (3a)
uy= 3;”+ax , g‘;’+ax (3)
0= PV gt QU2 2L +5a;> (4a)
dyyZPVZWszgb“Z#(gzg—% (45)
—p(2 28 TH TH, (40)

drdy  axt  3y?
0=QV *¢+RV Y (4d)

If we introduce the complex variable z and its conjugate z :
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z=zx+iy, ;=x~iy

and notice the relations

a a a a d a
2= —i, 2——==—+i—
Jdz dr lr')y 2z dr ’ay
the displacements and the stresses can be rewritten in the complex form as following:
D:u,—'—iuy:Zi_(tp-{—iH) (5a)
dz
O—o0ta,=8A+m-22 130 T4 (55)
dzd z 923 z
P=0,.,—0,,+2i5.,—=4p a—? (50)
Jdz
o=1Q 28 +4r TL (5d)
dzd z dzd z
Let
—ate. y=pmatump, K=Y H (6
and substituting them into equations (1), one has
) P
(vh_AiZatz)ﬂJ:O (7a)
vi—2Zym=0o 75)
Sar?
where
. b\ b—dac ,, C
A"Z_WZa , A,—#pzz (8a)
an_Qplz“aAf 2 P1a
= 2y = (88
Hro QPZZ_—RpIZ ' Oz
a=PR—Q", b=Rp,,+Pp,;—2Qp\;» c=01L0— P, (8¢)

Now, assuming the disturbed source moves with the constant velocity U along the axis x

in an infinite fluid porous elastic space, and let

E=x—Ut, 1=y
the equation (7) becomes
g2 PR PR oo FH | FH
a-M:)p P + pec =0, (1—M}) P + pes =0 (9

Above, M,=U};,j=1,2,3 are the Mach numbers of the moving source relative to the dilata-
tional and rotational waves, respectively. If M;<(1, the corresponding equation is elliptic, and
it is of the solution of form w;(z;) +w;(z), in which z; is a complex variable. If M;>1, the
equation is hyperbolic, and has the solution of form " (§+mm) +w (§—m;n). As figure 1

shows, the boundary conditions are

uf (§,0)=u; (£,0), U (§,00=U;(£,0) (108)
o} (£,0)+0;,(£,0)=— Psina 3(§) (10¢)

o} (€,0)+07,(£,0)= — Pcosa 8(€) (102>
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in which uf (&, 0), u” (& 0), et al.

represent the value of the functions u; (£,

1), uf (§,7) et al. on the real axis as ap-

proached from the positive and negative
half-space, respectively. In the following
sections, we shall solve the problem under

the boundary conditions (10) for various

values of velocity U.

3 Subsonic Case f U, a/
What is called as the subsonic case is p

that the velocity of the moving force source Fig.1 Moving force and coordinate systems.
is less than all three kinds of body wave
velocities of the fluid saturated porous elastic medium, namely, M; <1, M, <<1,M;<1. In
this case, all three equations of (9) are elliptic, and thier solutions can be written as

alz) = (z)+0,(2), @) =w(z)+w(z), H=ile)(z)—w(z)) 1D
where

=&+ifm, Bi=01— Mz)2 » 7=1,2,3 (12)

Substituting them into equations (3), (4) and the boundary conditions (10), one has w;, j=
1,2,3. Finally, we obtain the displacement and stress fields in infinite fluid saturated porous
elastic space for the subsonic case. For instance, in the positive half-space, one has the dis-

placement field as following:

:=£E(71 2)(,Bglog:‘;cosar ﬂzﬁlszna)_{_(#l_y )(,Bglo/g‘;icosa_i_ ﬂlﬁgina)_
—By (e — yz)(l°g’3“’“’+ﬂ ‘Bzg’“”“n (132)
= __f_’[ﬁl(yl_ )(,Bsﬂljlosa ,[?zlogrlszruz)_'_ﬁz(‘u1 70 (,33 2cosaz ,Blloggzsina) .
— 2)(6360511’ ﬂlﬁzlogmsma)] (135
where
A= — ) A+F—=288)+ (i, —7 D A+ 35—28,8) (14a)
B=3,("— ) (f1+ 28183 + B (s — Y1) (f2+ 28,8342 (148
[i=A—=8(A4Qu) —2F% (14¢)
== QA+Qu)—28u (14d)

By differentiating the preceding results with respect to the spatial variables, one has the
solutions for the moving double couples, as shown in Figure 2.

+:M_o (7~ ) ﬂ3($+ﬂ%7)505“ ,31,32(5—77)51'71& (e, —71) ﬁ3(6+ﬂ27)5050

e .‘Z7rE i ( KA + a g rA *
+,81,87($[;7])sma) By — ,uz)((5+ﬁ377)cosa+,31132.33(5—7])52710)] (152)
r3 #A B
u+:__y£[:81(71—'#2)(/31,33(5—7)5050_ﬂ2(5+,8§77)5ina B (e — 7) .82.83(5 77)5050

2r r HA B >+ r3 HA
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_‘31 ($+g§7)s’}w) . (/11:2‘#2) (.Bs(E;Z)Cosa_ﬁlﬂz (Egﬁ?ﬂ)sina)] (155)
3
Above, M, is the moment of the couple at the couple source, and
7‘1:(62_{",3?7]2)%9 0j=ta71_1 ‘B_é-”v ]=19213 (16)

4 Weak Transonic Case
In the fluid saturated porous elastic space, there are three elastic body waves: two dilata-
tional waves, one rotational wave. Among these waves, the velocity of the first dilatational
wave is fastest and the velocity of the second
y n dilatational wave is slowest, but the damping corre-
sponding to the second dilatational wave is greatest.
The transonic case indicates that the moving velocity

of the disturbed source in the elastic space is greater

¢ than one or two among the three elastic wave veloci-

U x ties. If the moving velocity of the disturbed source is
Fig. 2 Moving double couples. only greater than the velocity of the second dilata-
tional wave, the effect on the disturbed field is not
great, it is called as “weak transonic case”. In this case, M;<<1,M,>1,M;<(1, and the equa-
tions associated with M, ,M; are elliptic, the rest is hyperbolic, Let the solutions of these three
equations are: in the positive half-space
& (@) =of (@) +of @), @ E+m =20f E+mm),
H* (z)=ilwf (z3) —awf (23) ] an
my= (M3—1)7>0
in the negative half-space
@ ()=wr (2) 4o 20, G E—mm =20, —m,7) .
H™ () =ilwi (z)—w; (z) ] (18)
By means of the equations (3) , (4) and the boundary conditions (10), one has all these
potential functions ¢;f ,¢; ,¢7 ,¢; ,H*,H™, and then we obtain the displacement field (in the
positive half-space) as following:
= 25;{ i) [,33 (Gzi?(gcr%iggl)cosa_ (Rllog;}:_iz;l)smaj_‘83(#1_#2) .
(Glogr;+G,0;)cosa B, (Rylogrs —Rzﬁs)sina] i (=7 )P
#(Gi+GH RZ+R: 2
- CClog (Etman) — Gy H (et mad )+ i

—R H(E+mm 3} (19a)
e T )
2 1
.E(Gzﬁs—Gllogq)cosa_,Bl (R103+R210gr3)sina]}+mz(,u1—71)P{ Bscosa
©(Gi+G) R:+-R: 2 p(GEH-GD
B, sina

G R
. [?zlog(f-f-mﬂ]) —G H(E+m,m)] +772(—Rf TR [?Zlog (E+myn) —

{ Bscosa .
#(G1 4G5

-C

u
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—R H(E+m,m)]} (19%)
where, H(t) is the Heaviside step function, and
Gy =2m,3; (e, —71) (20a)
Go= Q48D (y — 1) — 2B B (V1 — ) (206)
Ry=guP (=7, /m, (200)
Ry=f1(V,— )+ 28 Bty — p22) (20d)
g22= (1+m3) (A+Qu,) + 2 ums (20e)

For the moving double couples we obtain (in the positive half-space):

oMo i) B (G EHBI +G B (€ cose  (Ry(E+ ) —R,B, (6—1))sina
== 2x\ 2 2(GEH-G2 RI+R:
_ﬂa(ﬂl—#z)[(Gz($+ﬂ§77)+G1ﬁ3($_77)C050’_,31 (R1(E+ﬁ§7])—Rzﬂ3($—77)Sindj}+
% p(GEH-G RI+R;
(=) A +m))M, Bscosa & . B, sina .
+ ? LT Ty GO T DI+
R
‘Em—Rlﬁ(f-i-mﬂ)]} (21a)
u+=_%{ﬂ1(7l_#z)[ﬂa(Gz.Bl(f—’])—Gl(E—%—ﬂfﬂ))cosa_
’ 2r r #(Gi+G3)
_(Rlﬁl(6_7)+R2($+m77))sina_(;zl—/lz)'
R:+-R: 3
(Gzﬁa(E—"?)—G1($+[3§7]))COSG ﬂl(R1B3($_7])+R2(E+ﬂ§77))51n0
't #GT+GD - RTE: o+
m,(—7)A+m)OIM, . Bicosa G, . Bisina )
+ 7 (G 5D @ myp GO mDIY e Ry
-EF%—R@(HM)J} (215

where, 8(t) is the Dirac pulse function.
It is shown from the preceding results that the parts in the displacements caused by the
function w, are the functions of argument §+m,n=

x+m,y—Ut, and are with the plane wave charac-

n ter. Furthermore, the expressions such as § (x+
n m,y — Ut) and H(x+m,y —Ut) appear in the dis-
A .
Shock Wave % placement components, which represent a plane
§,=tan"'m;

shock wave x+ m,y —Ut=0 attached to the load

—% ! and associated with an impulse and a jump in the
GX v displacement components (Fig. 3). In the actual
Fig. 3 Wesk transonic sketch. situation, the plane shock wave due to the velocity
of the second dilatational wave being less than the
moving velocity of the disturbed source will be dispered rapidly.
5 Strong Transonic Case
In this case, there are M, <<1,M,>1,M;>1, and the equation associated with M, is

elliptic, the rests are hyperbolic. Let the solutions of these equations (7) are : in the positive
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half-space

A (z)=wf (2) 4o (2), @ E+mm) =207 E+mp),
H* (§+myp) =203 (§+m,7) (22)
my=(Mi—1)% ymy= (M3—1)?
in the negative half-space
@ ()=o)t (), @ E—m =2w; E—m,
H™ (§—msn) =2w; (£—ms7) (23)
For the displacement field in the positive half-space, one has:

P _(2B\logr,+6,Gy)cosa (R;logrl—+—¢9lfl)sirwzj _(u—=T)P,

+

“ T T u(Giap) FI+R 20— )
cosa 2B log(§+m,7) __ Pisina filog (6+m,m)
PICERT S R CHEE DI G«

. (ey— gD P cosa 2P log (Et-myy)

m,B.sina 1 log (§-+m,m)
+_ P _(Glogr,—26,B)cosa (f\logri—6,R)sina_ (;11—71)P.
“T T u(GH 4D F+R 7T 20—
. macosa 2P log(§+m,7) _ Psina _filog(§+m, )
_(pp—p)P cosa 2B log (§+m,7) _ .
+R.H(E+m,p ]} 20— ) {#ma(G§+4ﬂf)[ - G.-HEFmam >+
Bisina _filog (E+m,7n)
For the displacement field due to the moving double couples, one has (in the positive half-
space) ;
u+:_ﬂ BiEFBIM+G(E—)cosa (flﬂl(5—?)+R3(E+,3f7]))sinaj_
= 2nri u(GE+485 fi+R;
_ (e, —7) d+mOM, cosa 28, A _ B, sina .
20— (G aBD Sy SO e
. f1 (/11—/12)(1+m3)M0 cosa 2,31 .
G TROCGHTmDN "Gy G 4D S
. m, B, sina fi -
G0 E+mam I+ PR Eﬂ(5+m377)+1€3r3‘(5+m37])]} (25a)
u+:_& (Zﬁf(E—T])—G3($—+—ﬂf77))cosa+(f1(5+ﬂf77)—R3ﬂ1(5—7}))51'710]_
Y 2nr? w(GE+488) [i+RE
(=YD A+mM, m,cosa 28 . _ Bisina .
2h—rm (Gt 4D FEpmp ORI~ 2o
. f1 - (#1_/12)(1+m3)Mo cosa 2,31 .
G RO S o (G 4P w )
_ .Blsina fl

It is shown from the expressions for the displacement components that in the strong

transonic case there are two shock waves x+m,y —Ut=0 and x+m;y—Ut=0 (as shown in
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Figure 4).
6 Supersonic Case f
In this case the moving velocity U of the dis- q

turbed source exceeds all three velocites of the body ﬁ » h 8:=tan"m,
waves, namely, one has M;>1,M,;>1,M;>1, and /; 8 =1an"'m,
all three equations associated with them are 4 ¢
hyperbolic. Let the solutions of these equations are: a U x
in the positive half-space P

¢1+ (E-{—mﬂ]) - 2“’1 ($+m17]) ’ Fig. 4 Strong transonic sketch.

@ (E+m) =2wi (§+mu7),

HYE+map = 2wF (E+my)) (26)

= (M= 1% = (M~ 17 ymy= (M3 —1)?
in the negative half-space
@ E—mP=20] E—m ). @ (E—m)) = 2w, (E—m,7),
H™ (£—myn) =2w; (§—m;7) Q@7
The displacement field generated by the preceding potential functions is (in the positive half-

space) :

wt == 20—

mzszna m;cosa

+
#G

mlszna mycosa

4
uG,
mlmzszna cosa

+#——)H($+m377)] (28a)

)H($+m177)+ (1 —71( ).

cH (E+m,m) —my (g — 1) (

mzszna macosa mlszna mscosa

1G,
m, masma cosa

+#—)H($+m37])] (285

)o

)H($+m17})+(/11 7(

+

uf == 2 Om )

'H($+m27])+(/.£1 ,ll'z)(
For the displacement field caused by the moving double couples, one obtains

)5($+m17])+ (Q4my) (g —

+ M m,sina  m,cosa

u,=-—"£[(1+m1)(71 ) ( + e

msine  mscosa mlmzsma cosa

( R + e )6(5+m»7])—m3(1+m3)(#1 77914 +“—)6($+
+m;7)] (29a)

mzsma mscosa

M
uj:__ocml(l_‘_?ﬂq)(yl ﬂz)( +77)3($+m17})+m2(1+m2)(/t1 )

msin@ | mscosa mymysine | cosa

“( R + e )8($+mz77)+(1+m3)(#1 #z)(—R +—)8($+m37})] (295

4 4

AAbOVC’

— 2__ — -

GJ:(#I ) (mi—1) —2m,m, (1, —7,) (302)
my (Y — )
R3:27"3/‘.31(/‘1~/‘z)'—gzzﬂ1(/11_71) (300)
my (Y — 1)

Gi= (1 — ) Coyms—mi+ 1)+ (i — 7)) Cmgm; —mi+1) (30¢)
R4=mz(71—#2)(g11—2#m1m3)+m1(#1—71)(gz1—2#mzm3) (30d)

gu=Q+pQ)(1+m?)+ 24 (30e)
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gn=1+m3) (A+Qu,)+2u (30
It is shown from the expressions of the dis-
placement components that for the supersonic case §n
there are three plane shock waves attached to the ANER S
load and propagating with the velocities 1/,,1/2; 'i"{ DN / }
and 1/A; of the dilatational and rotational waves, 4 e
respectively, as shown in Fig. 5. 3 ennm
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