第	39	卷	÷	第	3	期
	20	17	匥	6	目	

欧哲,杨家富,王铁,等.基于岩体波速和 Hoek-Brown 准则的初始地应力场参数计算模型研究[J].地震工程学报,2017,39(3): 0488-0495.doi:10.3969/j.issn.1000-0844.2017.03.0488

OU Zhe, YANG Jia-fu, WANG Tie, et al. Study on Parameter Calculation Model of Initial Ground Stress Fields Based on the Wave Velocity of a Rock Mass and the Hoek-Brown Criterion[J]. China Earthquake Engineering Journal, 2017, 39(3):0488-0495.doi:10.3969/j.issn.1000-0844.2017.03.0488

基于岩体波速和 Hoek-Brown 准则的 初始地应力场参数计算模型研究。

欧 哲1,杨家富2,王 铁2,张光权1,邹 明1

(1.宏大国源(芜湖)资源环境治理有限公司,安徽 芜湖 241200; 2.宏大爆破有限公司,广东 广州 510623)

Study on Parameter Calculation Model of Initial Ground Stress Fields Based on the Wave Velocity of a Rock Mass and the Hoek-Brown Criterion

OU Zhe¹, YANG Jia-fu², WANG Tie², ZHANG Guang-quan¹, ZOU Min¹

Hongdaguoyuan(Wuhu)Resources and Environment Management Ltd., Wuhu 241200, Anhui, China;
 Hongda Blasting Ltd., Guangzhou 510623, Guangdong, China)

Abstract: The wave velocity of a rock mass and the Hoek-Brown criterion are introduced to enable the building of a calculation model of the range of values of horizontal geostresses ($\sigma_{\rm H}$) in an initial ground stress field. The rationality of this calculation model is evaluated by the measured geostress data. Based on the $\Delta\sigma_{\rm H}$ calculation model, a $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ calculation model of the values range of the ratio of the horizontal and vertical geostresses ($\sigma_{\rm H}/\sigma_{\rm V}$) is deduced; this model is then used to provide a reasonable explanation of the $\sigma_{\rm H}/\sigma_{\rm V}$ distribution of phenomenon in the surface and deep of earth's crust is given from the perspective of rock mass stability. The coefficient of horizontal pressure (λ) is calculated via the lower (($\sigma_{\rm H}/\sigma_{\rm V}$)_{min}) and upper (($\sigma_{\rm H}/\sigma_{\rm V}$)_{max}) limits of $\sigma_{\rm H}/\sigma_{\rm V}$, which is given by the $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$, and comparative analysis of the calculated and measured

① 收稿日期:2016-04-24

489

values of λ is performed. Results show that the calculated and measured λ present consistent characteristics in a shallow rock mass but significant differences in a deep rock mass. Thus, the $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ calculation model is applicable to λ calculations in shallow rock mass engineering. The calculated λ presents obvious nonlinear variation features along the depth (h) direction, and the functional relationship $\lambda = ah^b + 1$ between λ and h is given by setting up appropriate boundary conditions; this functional relationship is confirmed by curve fitting. The fitting results show a very high fitting correlation coefficient for $\lambda = ah^b + 1$, which means it can describe the functional relationship between λ and h well. This functional relationship can be used for initial geostress field evaluations and provides the necessary initial geostress field conditions for simulating deformation and failure of excavated rock masses.

Key words: rock mass wave velocity; Hoek-Brown criterion; initial ground stress field; horizontal geostress; coefficient of horizontal pressure; nonlinear function relation

0 引言

地应力是引起矿山、水利水电、土木建筑和各种 地下或露天岩土开挖工程变形和破坏的根本作用 力。构造应力场和自重应力场是现今地应力场的主 要组成部分^[1]。岩体初始地应力场则是指在没有进 行任何地面或地下工程之前,天然岩体中各个位置 及各个方向存在的应力空间分布状态,它在地质年 代上是随着时间和空间而不断变化的非稳定场,但 相对于工程建设而言,完全可以把它看成是一个相 对稳定的应力场^[2]。

在实测地应力基础上加以反演分析^[3-10] 是提供 初始地应力场最常用的方法,但由于地应力测量成 本较高,且对场地要求较严格,在工程地质条件较为 复杂的场地常遇到地应力测量数据稀少,甚至无法 测得有效数据的情况,导致难以反演分析出合理的 初始地应力场。当地应力测量遇到阻碍时,可采用 估算的方法来评估初始地应力场。地应力可分解成 垂直地应力和水平地应力,在工程岩体开挖前地形 较为平缓的情况下,垂直地应力可以通过岩体平均 重度乘以岩体深度来估算^[11],而水平地应力则很难 通过类似的方法估算出来^[12-13]。因此合理估算出水 平地应力的大小是完成初始地应力场评估的关键 所在。

岩体波速与地应力相比有着测量成本低、测量 成功率高、场地适应性强等诸多优势,本文通过对基 于岩体波速的 Hoek-Brown 准则^[15]的研究,根据该 准则给出的岩体稳定性条件建立初始地应力场中水 平地应力 σ_H 取值范围的计算模型,并通过实测的 水平地应力 σ_H 验证了计算模型的合理性。由 σ_H 的取值范围,推导出了水平地应力与垂直地应力之 比 $\sigma_{\rm H}/\sigma_{\rm V}$ 的取值范围,并据此从岩体稳定性的角度 对 $\sigma_{\rm H}/\sigma_{\rm V}$ 在地壳表面和深部的分布现象进行合理 解释。通过 $\sigma_{\rm H}/\sigma_{\rm V}$ 的取值范围计算出侧压系数 λ , 并给出其和深度 h 之间的函数关系,为初始地应力 场评估提供依据。

1 基于岩体波速的 Hoek-Brown 准则

1.1 广义 Hoek-Brown 准则

Hoek 和 Brown 于 1980 年提出了节理岩体强 度经验公式——Hoek-Brown 准则^[16],并得到了极 为广泛的应用,已形成了确定节理岩体强度参数的 一个通用方法。广义 Hoek-Brown 准则是 E. Hoek 等^[17]针对最初的强度准则在实际应用过程中出现 的问题进行的修正,具体表达式如下:

$$\sigma_1 = \sigma_3 + \sigma_c \left(m_b \frac{\sigma_3}{\sigma_c} + s \right)^a \tag{1}$$

式中: σ_1 、 σ_3 分别为岩体破坏时的最大和最小主应力; σ_c 为岩石单轴抗压强度; m_b 、s均为与岩体特性 有关的材料参数;a为表征节理岩体的常数。估算 m_b 、s和a三个参数的计算公式^[17]为:

$$m_{b} = m_{i} \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{-\frac{20}{3}}\right)$$
(2)

式中:m;为完整岩石经验常数,与岩石类型有关,主 要反映岩石的软硬程度,可通过查表取值^[18],岩石 越硬取值越大;地质强度指标 GSI 的确定主要受岩 体的岩性、结构和不连续面等条件的控制,是通过对 路堑、洞脸及钻孔岩芯等表面开挖或暴露的岩体进 行肉眼观察来描述和评价,再通过查表取值^[19];D为岩体扰动参数,它的取值范围从未扰动岩体的D=0至强扰动岩体的 $D=1^{[17]}$ 。

1.2 基于岩体波速的 Hoek-Brown 准则

在用 Hoek-Brown 准则解决相关岩体工程问题 的过程中,准确地给出待定参数 mb、s 和 a 的取值 是其中一项重要的环节。由式(2)可知,只要给出 GSI 值和 D 值,以上 3 个待定参数即可确定。夏开 宗等^[15]分析了已有的 GSI 值和 D 值量化方法的利 弊,在 Barton、E. Hoek 等研究成果的基础上,建立 了岩体波速与 GSI 值和 D 值之间的关系式:

$$GSI = 15V_{\rm ud} - 7.5 \tag{3}$$

$$D = 2 \left[1 - \frac{10^{(V_{ud} - 3.5)/3}}{10^{(V_d - 3.5)/3}} \right]$$
(4)

式中:V_{ud}、V_d分别为未扰动岩体及扰动岩体的波速,岩体波速单位均为 km/s,其中式(4) 也可写成如下形式:

$$D = 2(1 - R_s) \tag{5}$$

式中: $R_s = 10^{(V_u - V_{ud})/3}$ 表示岩体受扰动后波速的下降程度, $R_s = 1$ 对应D = 0的情形,表示岩体未受任何扰动或扰动极小;当 $R_s = 0.5$ 对应D = 1的情形,表示岩体遭受强烈扰动。

将式(3)~(5)代入式(2)即得到基于岩体波 速的 Hoek-Brown 准则:

$$m_{b} = m_{i} \exp\left(\frac{15V_{ud} - 107.5}{28R_{s}}\right)$$

$$s = \exp\left(\frac{15V_{ud} - 107.5}{3 + 6R_{s}}\right)$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{7.5 - 15V_{ud}}{15}} - e^{-\frac{20}{3}}\right)$$
(6)

2 水平地应力的取值范围研究

2.1 建立计算模型

在未受扰动之前,岩体在初始地应力场中大部分处于极限平衡状态或稳定状态。 根据 Hoek-Brown准则的破坏判据可知,岩体在天然状态若要保持稳定,其内部应力场应满足以下条件:

$$\sigma_1 \leqslant \sigma_3 + \sigma_c \left(m_b \frac{\sigma_3}{\sigma_c} + s \right)^a \tag{7}$$

式中: σ_c 可由室内单轴试验给出,同种岩性的 σ_c 差 别很小。其他待定参数 m_b ,s和a均可由式(6)计算 给出,其中 V_{ud} 在未扰动岩体中的变化率通常低于 $10\%^{[14]}$,按测量次数求取平均值即可;由 R_s 的物理 含义和计算公式可知,在未扰动岩体中 R_s =1;通过 查阅相关文献[20-23]中未扰动岩体的声波测量数 据可以发现, V_{ud} 一般为 4~5 km/s,代入 a 的计算 公式可得其取值为 0.505~0.502,此时可按照狭义 Hoek-Brown 准则取 a = 0.5。将 $R_s = 1$ 和 a = 0.5代 入式(6)和(7)可得:

$$m_{b} = m_{i} \exp\left(\frac{15V_{ud} - 107.5}{28}\right)$$

$$s = \exp\left(\frac{15V_{ud} - 107.5}{9}\right)$$

$$a = \frac{1}{2}$$
(8)

$$\sigma_1 \leqslant \sigma_3 + \sqrt{m_b \sigma_c \sigma_3 + s \sigma_c^2} \tag{9}$$

在地壳岩体中,除在大断层附近外,一般情况下 垂直地应力 $\sigma_{\rm V}$ 与水平地应力 $\sigma_{\rm H}$ 都是主应力^[11]。在 此考虑两种不同的情况: $\sigma_{\rm H} < \sigma_{\rm V}$ 和 $\sigma_{\rm H} > \sigma_{\rm V}$ 。

(1) 当 $\sigma_{\rm H} < \sigma_{\rm V}$ 时,水平地应力为最小主应力, 即 $\sigma_{\rm H} = \sigma_3$,而 $\sigma_{\rm V} = \sigma_1$,由式(9)可以得到此时未扰动 岩体的稳定条件为:

求解关于 он 的不等式(10) 可得

$$\left(\sigma_{\mathrm{V}} + \frac{1}{2} m_{b} \sigma_{c} \right) - \sqrt{m_{b} \sigma_{c} \sigma_{\mathrm{V}}} + \frac{1}{4} m_{b}^{2} \sigma_{c}^{2} + s \sigma_{c}^{2} \leqslant$$

$$\sigma_{\mathrm{H}} \leqslant \left(\sigma_{\mathrm{V}} + \frac{1}{2} m_{b} \sigma_{c} \right) +$$

$$\sqrt{m_{b} \sigma_{c} \sigma_{\mathrm{V}}} + \frac{1}{4} m_{b}^{2} \sigma_{c}^{2} + s \sigma_{c}^{2}$$

$$(11)$$

(2) 当 $\sigma_{\rm H} > \sigma_{\rm V}$ 时,水平地应力为最大主应力, 即 $\sigma_{\rm H} = \sigma_1$,而 $\sigma_{\rm V} = \sigma_3$,由式(9)可以得到此时未扰动 岩体的稳定条件为:

$$\sigma_{\rm H} \leqslant \sigma_{\rm V} + \sqrt{m_b \sigma_c \sigma_{\rm V} + s \sigma_c^{\ 2}} \tag{12}$$

若未扰动岩体在上述两种情况下均保持稳定状态,则σ_H需同时满足式(11)和(12),即落在式(11)和(12)的交集之内,通过分析比较式(11)和(12)不等 号左右两侧的大小关系可知,两者的交集应为:

$$\left(\sigma_{\mathrm{V}} + \frac{1}{2} m_{b} \sigma_{c} \right) - \sqrt{m_{b} \sigma_{c} \sigma_{\mathrm{V}} + \frac{1}{4} m_{b}^{2} \sigma_{c}^{2} + s \sigma_{c}^{2}} \leqslant \sigma_{\mathrm{H}} \leqslant \sigma_{\mathrm{V}} + \sqrt{m_{b} \sigma_{c} \sigma_{\mathrm{V}} + s \sigma_{c}^{2}}$$
(13)

式(13)给出的即是岩体初始地应力场中水平地应力 取值范围的计算模型。其中垂直地应力 σ_v 通过上部 覆盖岩体的平均重度乘以其深度来计算,可表示为:

$$\sigma_{\rm V} = \gamma h \tag{14}$$

式中:γ为覆盖岩体的平均重度;h 为深度。将式 (14)代入式(13)可得:

2.2 计算模型的验证

式(15)不等号左右两侧分别为水平地应力的 取值下限和上限,可分别记为 σ_{Hmin} 和 σ_{Hmax} ,即:

$$\sigma_{\rm Hmin} \leqslant \sigma_{\rm H} \leqslant \sigma_{\rm Hmax} \tag{16}$$

式(16)不等号左右两侧相减可得:

$$\Delta \sigma_{\rm H} = \sqrt{m_b \sigma_c \gamma h + s \sigma_c^2} + \sqrt{m_b \sigma_c \gamma h + \frac{1}{4} m_b^2 \sigma_c^2 + s \sigma_c^2} - \frac{1}{2} m_b \sigma_c \geqslant \sqrt{m_b \sigma_c \gamma h + s \sigma_c^2}$$
(17)

式(17) 中 $\Delta\sigma_{\rm H}$ 即为水平地应力取值范围的大小,其 与 m_b, σ_c, s, γ 和h之间均成单调递增的函数关系。 由式(8) 可知 m_b, s 和 $V_{\rm ud}, m_i$ 之间亦成单调递增的 函数关系,因此 $\Delta\sigma_{\rm H}$ 是关于 $m_i, V_{\rm ud}, \sigma_c, \gamma$ 和h的单 调递增函数。

岩石按坚硬程度可分为硬质岩和软质岩两个大 类。查阅《工程地质手册(第四版)》^[24]可知,随着岩 石坚硬程度的增大, m_i 、 V_{ud} 、 σ_c 和γ的数值均有随之 增大的趋势,由式(17)可知,此时 $\Delta \sigma_H$ 也会随之而 增大。在未扰动岩体中, m_i 的取值约为5~15, V_{ud} 为4~5 km/s, σ_c 为20~100 MPa, γ为0.02~ 0.03 mN/m³。将 m_i 、 V_{ud} 、 σ_c 和γ的取值区间同步等 分成5段,即得到 m_i 、 V_{ud} 、 σ_c 和γ的6组数据 (表1)。给定深度h,将每组数据代入到式(15)和 (17)中可得出6组 σ_{Hmin} 、 σ_{Hmax} 和 $\Delta \sigma_H$ 。根据单调函 数的连续性可知,6组 σ_{Hmin} 、 σ_{Hmax} 和 $\Delta \sigma_H$ 之间包含了 在未扰动岩体中以硬质岩为主、以软质岩为主和两 者均衡这3种情况下,深度为h时水平地应力的取 值范围。

表1 计算模型参数分组取值

Table 1 Grouping values of calculation model parameters

组数	$V_{ m ud}/(m km \cdot m s^{-1})$	m_i	σ_c/MPa	$\gamma/(MN \cdot m^{-3})$
1	5.0	15	100	0.030
2	4.8	13	84	0.028
3	4.6	11	68	0.026
4	4.4	9	52	0.024
5	4.2	7	36	0.022
6	4.0	5	20	0.020

深度 h 的计算范围取 0~3 000 m,每隔 200 m 按照表 1 给出的 6 组参数计算出每组对应的 σ_{Hmin} 和 σ_{Hmax}, 计算结果如图 1 所示。分析计算结果可 知,地表附近的水平地应力较小,取值范围在 0~ 20 MPa间,随着深度的增加,水平地应力的取值范 围 Δσ_H 不断扩大,岩体坚硬程度越大,Δσ_H 扩大的速 度越快,这说明在同一深度条件下,硬质岩内的水平 地应力大小较软质岩内更复杂,随机性更强。G. Ranalli 等^[25]综合了前人的资料,将 150 多个岩石地 应力测量数据按地质构造环境划分成3类:地盾区、 褶皱带和沉积层,研究了水平地应力随深度的分布 特点「图 2(a)]。为了方便比较,将图 1 中水平地应 力为 0~100 MPa 的部分截出 [图 2(b)]。在图 2 (a)中找出两个水平地应力最小值,将二者相连确定 一条直线,将其作为水平地应力的下限边界;再找出 两个水平地应力最大值,同样连成一条直线作为水 平地应力的上限边界。在图 2(b)中将位于两侧的 第6组数据点 σ_{Hmin} 和 σ_{Hmax} 分别相连,所得的两条 曲线即为水平地应力的下限边界和上限边界。当埋 深为500 m时,图2(a)和(b)中水平地应力的上限

3 侧压系数沿深度的分布特征研究

平地应力取值范围计算模型是合理的。

3.1 $\sigma_{\rm H}/\sigma_{\rm V}$ 的取值范围研究

E.Hoek 和 E.T.Brown^[26]通过对世界各地的地应力现场测量结果进行统计分析,发现在地壳浅部区域内 $\sigma_{\rm H}/\sigma_{\rm V}$ (水平地应力/垂直地应力)的值分布在一个很广的范围内,但在深部区域内,该却分布在直线 $\sigma_{\rm H}/\sigma_{\rm V} = 1$ 周围一个狭小的范围内。关于 $\sigma_{\rm H}/\sigma_{\rm V}$ 随深度变化这一现象已有许多学者进行了探讨^[27-34],建立了多个模型,并利用这些模型分析、讨论了该现象,但对此现象给出合理解释的却很少。

将式(13)中所有量同时除以σν可得:

$$\left(1 + \frac{m_b \sigma_c}{2\sigma_{\rm V}}\right) - \sqrt{\frac{m_b \sigma_c}{\sigma_{\rm V}} + \frac{m_b^2 \sigma_c^2}{4\sigma_{\rm V}^2} + \frac{s\sigma_c^2}{\sigma_{\rm V}^2}} \leqslant \frac{\sigma_{\rm H}}{\sigma_{\rm V}} \leqslant 1 + \sqrt{\frac{m_b \sigma_c}{\sigma_{\rm V}} + \frac{s\sigma_c^2}{\sigma_{\rm V}^2}}$$
(18)

式(18)即为 $\sigma_{\rm H}/\sigma_{\rm V}$ 的取值范围计算模型。将表1中的6组数据代入式(18),令 $\sigma_{\rm V}=\gamma h$,即可算出在不同 深度所对应的 $\sigma_{\rm H}/\sigma_{\rm V}$ 的取值下限($\sigma_{\rm H}/\sigma_{\rm V}$)_{min}和取值 上限($\sigma_{\rm H}/\sigma_{\rm V}$)_{max},计算结果如图 3 所示。

图 3 $(\sigma_H/\sigma_V)_{min} \ \pi (\sigma_H/\sigma_V)_{max}$ 随深度的变化 Fig.3 The change of $(\sigma_H/\sigma_V)_{min}$ and $(\sigma_H/\sigma_V)_{max}$ with depth

由图 3 可知,靠近地表区域的 $\sigma_{\rm H}/\sigma_{\rm V}$ 分布在较 大的取值范围内,随着深度 h 的增加, $\sigma_{\rm H}/\sigma_{\rm V}$ 及其取 值范围均不断减小。由式(18)可知,当深度 h → ∞ 时, $\sigma_{\rm H}/\sigma_{\rm V}=1$, $\Delta(\sigma_{\rm H}/\sigma_{\rm V})=0$,即 $\sigma_{\rm H}$ 和 $\sigma_{\rm V}$ 趋于相等, 且岩石越软,趋于相等的速度越快。由此可见,图 3 中显示的 $\sigma_{\rm H}/\sigma_{\rm V}$ 随深度的变化与 E. Hoek 和 E.T.Brown所观察到的现象是一致的。 式(18)是从式(13)推导出来的,当 $\sigma_{\rm H}$ 满足式 (13)时岩体方能处于稳定状态,同理可知,岩体若要 保持稳定状态,则 $\sigma_{\rm H}/\sigma_{\rm V}$ 应满足式(18),而地壳中 的岩体在未受强烈扰动时,大部分应处于稳定或极 限平衡状态。由此可见,式(18)从岩体稳定性的角 度解释了 $\sigma_{\rm H}/\sigma_{\rm V}$ 在地壳浅部区域内分布在一个较 广的范围内,但在深部区域内, $\sigma_{\rm H}/\sigma_{\rm V}$ 则分布在 $\sigma_{\rm H}/\sigma_{\rm V}=1$ 周围的一个狭小范围内这一现象。

3.2 侧压系数沿深度的分布特征研究

侧压系数 λ 是平均水平地应力与垂直地应力的 比值,其中平均水平地应力为最大水平地应力与最 小水平地应力的算术平均值,由此可得:

$$\lambda = \frac{\sigma_{\text{Hmean}}}{\sigma_{\text{V}}} = \frac{\sigma_{\text{Hmin}} + \sigma_{\text{Hmax}}}{2\sigma_{\text{V}}} = \frac{1}{2} \left[\left(\frac{\sigma_{\text{H}}}{\sigma_{\text{V}}} \right)_{\text{min}} + \left(\frac{\sigma_{\text{H}}}{\sigma_{\text{V}}} \right)_{\text{max}} \right]$$
(19)

对于不同地区、不同深度,岩体内的侧压系数 λ 各有差异^[26]。试验结果表明^[35],侧压系数 λ 除影响 岩石的变形和强度特性外,也对岩石的破坏机制产 生重要影响。因此侧压系数 λ 不仅是评估初始地应 力场的重要参数,也是岩石力学特性研究中必须考 虑的重要因素。

Hoek 和 Brown^[26]研究了世界各地 120 个现场 应力测量的数据,根据数据所在地区分类编制了侧 压系数λ随深度 h 的变化图[图 4(a)]。根据之前 已计算出的 6 组 ($\sigma_{\rm H}/\sigma_{\rm V}$)_{min} 和($\sigma_{\rm H}/\sigma_{\rm V}$)_{max} 按式(20) 算出 6 组侧压系数λ,每组λ用样条曲线连接[图 4 (b)]。类似于图 2(a),在图 4(a)中用曲线勾勒出侧 压系数λ沿深度的大致分布范围,左侧曲线为λ 的 下限边界,右侧曲线为λ的上限边界。对应到图 4 (b)中,λ的下限边界和上限边界则分别为第 6 组曲 线和第 1 组曲线。在图 4(a)和 4(b)中,λ 在地壳浅 部区域分布范围较广,随着深度 h 的增加,图 4(a) 中的λ值逐渐在直线λ=1 附近的区域内振动,而图 4(b)中的λ值则逐渐趋近于 1。

当深度 h 等于 500、1 000 和 3 000 m 时,图 4 (a)中侧压系数 λ 所对应的上限取值分别为3.50、 2.50和 1.50,图 4(b)中侧压系数 λ 所对应的上限取 值分别为 3.35、2.50 和 1.65。在同深度条件下, λ 相 差小于 10%,且两图中上限边界曲线的线型很相 似。由此可见,通过式(18)、(19)给出的 λ 上限边界 与现场测量数据反映出的 λ 上限边界较为一致。

但对于下限边界,图 4(a)和(b)却有所偏差。 主要原因是当深度 h 超过 1 000 m 后,图 4(a)中出 现多个测点λ小于1的情况,即垂直地应力超过了 水平地应力。而图 4(b)中随着深度的增加,λ 会逐 渐趋近于1,却未出现小于1的情况。由此可见,式 (18)适用于地表岩体侧压系数λ的计算,而对于深 部岩体,其计算结果可能会产生较大的误差。

3.3 侧压系数与深度之间的函数关系研究

侧压系数 λ 与深度h 之间的函数关系在初始地 应力场的评估中起着重要的作用,为应力历史分析、 应力区划分和应力场计算等工作提供了依据。例如 通过数值分析软件计算岩体的初始地应力场时,通 常需要输入侧压系数 λ 与深度h 之间的函数关系作 为计算条件。

在对侧压系数 λ 沿深度 h 的分布特征研究中发 现,由式(19)计算出的 λ 并非通常所认为的沿深度 呈线性分布,而是呈非线性分布,如图 4(b)中的 6 条曲线所示。因此设定 λ 与 h 之间的函数关系是非 线性的,且需满足边界条件:(1) 当 h → ∞时,地应力 场为静水压力场,即 $\lambda = 1$;(2) 当 h → 0 时,即地表 附近,此时 $\sigma_{\rm V} \rightarrow 0$,即 $\lambda \rightarrow \infty$ 。在工程应用中,通常 将 λ 用 h 的函数表示,以 h 为横坐标, λ 为纵坐标, 给 出 λ 和 h 之间的函数关系式为:

 $\lambda = ah^{b} + 1$ (a > 0,b < 0) (20) 式中:a 和b 均为待定常数。当h→∞时, $\lambda = 1$, 满足 边界条件(1),当 $h \rightarrow 0$ 时, $\lambda \rightarrow \infty$,满足边界条件 (2),因此式(20)可作为 λ 和h的关系函数。在图 4 (b)中选取第4组曲线的数据作为拟合对象,拟合结 果如图 5所示。从拟合结果可以看出,式(20)的拟 合相关系数很高,能准确地反映 λ 和h之间的函数 关系。

4 结 论

(1) 岩体波速与地应力相比有着测量成本低、测量成功率高、场地适应性强等诸多优势,通过基于 岩体波速的 Hoek-Brown 准则推导出水平地应力 σ_H 的取值范围 Δσ_H 计算模型,将其与实测地应力结 果进行对比分析。结果表明,由 Δσ_H 计算模型给出 的 σ_H 在地壳中分布的上限和下限边界,与大量现场 地应力测量数据所反映出的 σ_H 的上限和下限边界 均具有较好的一致性,说明该计算模型是合理的。

(2) 在 $\Delta \sigma_{\rm H}$ 计算模型的基础上,给出 $\sigma_{\rm H}/\sigma_{\rm V}$ (水 平地应力/垂直地应力)的取值范围 $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ 计算 模型。由 $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ 计算模型所反映出的 $\sigma_{\rm H}/\sigma_{\rm V}$ 在 地壳中的分布情况与实测的 $\sigma_{\rm H}/\sigma_{\rm V}$ 在地壳中的分布 情况非常相似。 $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ 计算模型从岩体稳定性 的角度解释了 $\sigma_{\rm H}/\sigma_{\rm V}$ 在地壳浅部区域分布在一个较 广的范围内,但在深部区域则分布在 $\sigma_{\rm H}/\sigma_{\rm V}=1$ 周围 的一个狭小范围内这一现象。

(3) 通过 $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ 计算模型给出的 $\sigma_{\rm H}/\sigma_{\rm V}$ 的 取值下限($\sigma_{\rm H}/\sigma_{\rm V}$)_{min} 和取值上限($\sigma_{\rm H}/\sigma_{\rm V}$)_{max} 算出了 侧压系数 λ ,并将侧压系数 λ 的计算值与实测值进行 对比分析,结果表明:在浅部岩体中,侧压系数 λ 的 计算值与实测值在分布特征上较为一致,而在深部 岩体中,两者则可能出现较大差异。因此, $\Delta(\sigma_{\rm H}/\sigma_{\rm V})$ 计算模型更适用于计算浅部岩体工程中的侧压系 数λ。

(4) 侧压系数 λ 的计算值沿深度 h 呈现出明显 的非线性变化特征,在设定适当边界条件的基础上, 给出了侧压系数 λ 和深度 h 之间的函数关系 $\lambda = ah^b + 1$,并通过曲线拟合进行了验证。拟合结果表 明, $\lambda = ah^b + 1$ 的拟合相关系数很高,能较准确地反 映侧压系数 λ 和深度 h 之间的函数关系。此函数关 系式可用于初始地应力场评估,为模拟岩体的开挖 变形破坏提供必要的初始地应力场条件。

参考文献(References)

- [1] 付成华,汪卫明,陈胜宏.溪洛渡水电站坝区初始地应力场反演 分析研究[J].岩石力学与工程学报,2006,25(11);2305-2312. FU Cheng-hua, WANG Wei-ming, CHEN Sheng-hong. Back Analysis Study on Initial geostress Field of Dam Site for Xiluodu Hydropower Project[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(11);2305-2312.(in Chinese)
- [2] 沈明荣.岩体力学[M].上海:同济大学出版社,1999.
 SHEN Ming-rong.Rock Mass Mechanics[M].Shanghai:Tongji
 University Press,1999.(in Chinese)
- [3] 郭明伟,李春光,王水林,等.优化位移边界反演三维初始地应 力场研究[J].岩土力学,2008,29(5):1269-1274.
 GUO Ming-wei,LI Chun-guang,WANG Shui-lin, et al. Study on Inverse Analysis of 3-D Initial Geostress Field with Optimized Displacement Boundaries[J].Rock and Soil Mechanics,
- [4] 贾善坡,陈卫忠,谭贤君,等.大岗山水电站地下厂房区初始地 应力场 Nelder-Mead 优化反演研究[J].岩土力学,2008,29 (9):2341-2349.

2008,29(5):1269-1274.(in Chinese)

JIA Shan-po, CHEN Wei-zhong, TAN Xian-jun, et al. Nelder-Mead Algorithm for Inversion Analysis of In-situstress Field of Underground Powerhouse Area of Dagangshan Hydropower Station[J].Rock and Soil Mechanics, 2008, 29(9):2341-2349. (in Chinese)

[5] 袁风波,刘建,李蒲健,等.拉西瓦工程河谷区高地应力场反演 与形成机制[J].岩土力学,2007,28(4):836-842.

YUAN Feng-bo, LIU Jian, LI Pu-jian, et al. Back Analysisand Multiple-factor Influencing Mechanism of High Geostress Field for River Valley Region of Laxiwa Hydropower Engineering[J].Rock and Soil Mechanics, 2007, 28(4):836-842.(in Chinese)

[6] 胡斌,冯夏庭,黄小华,等.龙滩水电站左岸高边坡区初始地应 力场反演回归分析[J].岩石力学与工程学报,2005,22(11): 4055-4064.

HU Bin, FENG Xia-ting, HUANG Xiao-hua, et al. Regression Analysis of Initial Geostress Field for Left Bankhigh Slope Region at Longtan Hydropower Station [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 22(11): 4055-4064. (in Chinese) [7] 梅松华,盛谦,冯夏庭.龙滩水电站左岸地下厂房区三维地应力 场反演分析[J].岩石力学与工程学报,2004,23(23):4006-4011.

MEI Song-hua, SHENG Qian, FENG Xia-ting, et al. Back Analysis of 3D In-situ Stress Field of Underground Powerhouse Area of Longtan Hydropower Station[J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(23), 4006-4011. (in Chinese)

- [8] 金长宇,马震岳,张运良.神经网络在岩体力学参数和地应力场 反演中的应用[J].岩土力学,2006,27(8):1263-1266. JIN Chang-yu,MA Zhen-yue,ZHANG Yun-liang, et al. Application of Neural Network to Back Analysis of Mechanical Parameters and Initial Stress Field of Rockmasses[J].Rock and Soil Mechanics,2006,27(8):1263-1266.(in Chinese)
- [9] 易达,陈胜宏,葛修润.岩体初始应力场的遗传算法与有限元联 合反演法[J].岩土力学,2004,25(7):1077-1080. YI Da,CHEN Sheng-hong,GE Xiu-run.Method of Backanalysis Combining Genetic Algorithm with Finite Elementmethod to Initial Stress Field of Rock Mass[J].Rock and Soil Mechanics, 2004,25(7):1077-1080.(in Chinese)
- [10] 董志高,吴继敏,施志群,等.某水电站地下厂房区初始地应力 场回归分析[J].河海大学学报:自然科学版,2003,31(5): 543-546.

DONG Zhi-gao, WU Ji-min, SHI Zhi-qun. et al. Regression Analysis Ofinitial Geostress for an Underground Power Plant Region[J]. Journal of Hohai University: Natural Sciences, 2003,31(5):543-546.(in Chinese)

- [11] Hoek E, Brown E T. Underground Excavations in Rock[M]. London, UK: The Institution of Mining and Metallurgy, 1980:93-101.
- [12] Roman D C, Moran S C, Power J A, et al. Temporal and Spatial Variation of Local Stress Fields Before and After the 1992
 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska
 [J].Bulletin of the Seismological Society of American, 2004, 94:2366-2379.
- [13] Bohnhoff M, Grosser H. Dresen G. Strain Partitioning and Stress Rotation at the North Anatolian Fault Zone from Aftershock Focal Mechanisms of the 1999 Izmit $M_W = 7.4$ Earthquake[J]. Geophysical Journal International, 2006, 166 (1):373-385.
- [14] 马莎,崔江利,陈尚星,等.RQD和 vP 合理取值分析与计算
 [J].华北水利水电学院学报,2003,24(3):46-49.
 MA Sha, CUI Jiang-li, CHENG Shang-xing, et al. Analysis and Calculation of Reasonable Selection of RQD and vP[J].
 Journal of North China Institute of Water Conservancy and Hydroelectric Power,2003,24(3):46-49.(in Chinese)
- [15] 夏开宗,陈从新,刘秀敏,等.基于岩体波速的 Hoek-Brown 准则预测岩体力学参数的方法及工程应用[J].岩石力学与工程 学报,2013,23(7):1458-1466.

XIA Kai-zong, CHEN Cong-xin, LIU Xiu-min, et al. Estimation of Rock Mass Mechanical Parameters Based on Ultrasonic Velocity of Rock Mass and Hoek-Brown Criterion and Its Application to Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 23(7): 1458-1466. (in Chinese)

- [16] 宋建波,张倬元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
 SONG Jian-bo,ZHANG Zuo-yuan,YU Yuan-zhong, et al.Experience of Rock Mass Strength Criterion and Its Application in Geological Engineering[M]. Beijing: Geology Press, 2002. (in Chinese)
- [17] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown Failure Criterion[C]// Proceedings of NARMS-TAC Conference. Toronto:[s.n.].2002:267-273.
- [18] Marinos P. Hoek E. GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation [C]// Proceedings of the 2000 International Conference on Geotechnical and Geological Engineering.Melbourne, Australian: [s.n.], 2000:1422-1442.
- [19] Hoek E, Marinos P, Benissi M. Applicability of the Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses[J].Bulletin of Engineering Geology and the Environment, 1998, 57(2):151-160.
- [20] 韩爱果.坝基岩体质量量化分级及图形展示[D].成都:成都 理工大学,2002.
 HAN Ai-guo.Quantized Quality Classification of Dam Foundation Rock Mass and Its Diagrammatic Representation[D].
 Chengdu:Chengdu University of Technology, 2002.(in Chinese)
- [21] 巨广宏.高拱坝建基岩体开挖松弛工程地质特性研究[D].成 都:成都理工大学,2011.

JU Guang-hong. Study on Engineering Geological Properties of Excavating Unloading Relaxation Rock Mass in High Arch Dam Foundation[D]. Chengdu: Chengdu University of Technology, 2011. (in Chinese)

[22] 朱继良.大型岩石高边坡开挖的地质-力学响应及其评价预测 [D].成都:成都理工大学,2006.

> ZHU Ji-liang. Geology-Mechanics Responses and Evaluation of Large-Scale High Rock Slope Excavation [D]. Chengdu: Chengdu University of Technology,2006.(in Chinese)

- [23] 朱泽奇.坚硬裂隙岩体开挖扰动区形成机理研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
 ZHU Ze-qi. Study on Formation Mechanism of Excavation Disturbed Zone of Hard Fractured Rockmass[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics The Chinese Academy of Sciencse, P.R. China, 2008. (in Chinese)
- [24] 常士骠,张苏民,等.工程地质手册[M].第四版.北京:中国建 筑工业出版社,2007.
 CHANG Shi-biao,ZHANG Su-ming, et al. Engineering Geolo-

gy Manual[M].Fourth Edition.Beijing.China Building Indus-

try Press,2007.(in Chinese)

- [25] Ranall G. Geotectonic Relevance of Rock-stress Determinations[J].Tectonophysics,1975,29(1~4):1-4.
- [26] Hoek E, Brown E T. Trends in Relationships between Measured In-Situ Stresses and Depth[J].Int J Rock Mech Min Sci & Geomech Abstr, 1978, 15:93-101.
- [27] Flesh L M, Holt W E, Haines A J, et al. Dynamics of the Pacific-North American Plate Boundary in the Western United States[J].Science,2000,287:834-836.
- [28] Townend J. Zoback M D. Regional Tectonic Stress Near the San Andreas Fault in Central and Southern California[J].Geophysical Research Letters, 2004, 31; L15 S11.doi: 10.1029/ 2003 GL018918.
- [29] Becker T W, Hardebeck J L, Anderson G. Constraints on Fault Slip Rates of the Southern California Plate Boundary from GPS Velocity and Stress Inversions [J]. Geophysical Journal International 2005,160(2):634-650.
- [30] Balfour N J, Savage M K, Townend J.Stress and Crustal Anisotropy in Marborough, New Zealand: Evidence for Low Fault Strength and Structure-controlled Anisotropy[J].Geophysical Journal International, 2005, 163(3):1073-1086.
- [31] Boness N L, Zoback M D. Mapping Stress and Structurally Controlled Crustal Shear Velocity Anisotropy in California [J].Geology,2006,34(10):825-828.
- [32] Boness N L, Zoback M D.A Multiscale Study of the Mechanisms Controlling Shear Velocity Anisotropy in the San Andreas Fault Observatory at Depth[J]. Geophysics, 2006, 71 (5):F131-F146.
- [33] Lund B. Townend J. Calculating Horizontal Stress Orientations with Full or Partial Knowledge of the Tectonics Stress Tensor[J].Geophysical Journal International, 2007, 170(3): 1328-1335.
- [34] 朱哲明,胡 荣,李业学.利用岩石断裂强度来估算地下岩体水 平应力的范围[J].岩石力学与工程学报,2012,31(8):1721-1728.

ZHU Zhe-ming, HU Rong, LI Ye-xue. Evaluation of Range of Horizontal Streeees of Underground Rock Mass by Using Rock Fracture Strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1721-1728. (in Chinese)

[35] 张哲,唐春安,于庆磊,等.侧压系数对圆孔周边松动区破坏模 式影响的数值试验研究[J].岩土力学,2009,30(2):413-418. ZHANG Zhe, TANG Chun-an, YU Qing-lei, et al. Numerical Simulation on Influence Coefficient of Lateral Pressure on Broken Zone of Circular Aperture[J].Rock and Soil Mechanics,2009,30(2):413-418.(in Chinese)