Dec..1986

河西堡台64型地震仪测定P波震级起算函数的初步研究

1. 引言

在我国,对于远震的研究,多数采用基式(SK)仪的面波震级,並有一套比较 完善的震级起算函数。但是,对于64型仪器却没有相应的震级起算函数,而借用古登堡一里克特的体波震级的起算函数,因此有必要对该仪器的震级起算函数进行研究。

河西堡台采用的仪器为64型地震仪。此仪器比较稳定,以1982—1983年为例,其N—S分向相对变化率为1.0%,E—W分向相对变化率为2.2%,V—D相对变化率为1.1%。

为了制定切合实际的震级起算函数,本文采用中国地区P 波走时表及 GLC地壳模型[1]以北京台的体波震级M_b为标准,进行比较。

北京台所用仪器为中长周期基式(SK)型地震仪。在比较过程中,两者都用 垂 直分量的P波震级 $M_{\text{p.v.}}$ 。结果表明:两台的震级标准偏差为0.43;震级相关直线 斜 率为1.164,A=0.435,B=3.645。

2.河西堡台P波震级起算函数

(1)震级起算函数o(A)的理论计算

利用观测值 $\frac{\Delta}{T}$ max 和标准震级即中国均匀系统 1)的面波震级可求得 $\sigma_{(\Delta)}$ 的观 测值。为补充观测值之不足就必须计算 $\sigma_{(\Delta)}$ 的理论值。

采用Zoeppritz远震体波能量公式来计算理论振幅[2]:

$$E = 8 \pi^{3} R^{2} \rho_{0} V_{0} \frac{\sin \Delta \text{ sine}_{o}}{\cos e_{h} \left| \frac{de_{h}}{d\Delta} \right|} e^{KL} \sum_{i=1}^{n} \left(\frac{u^{2}}{T} \right)_{i}$$

$$(1)$$

式中R为地球半径, ρ_0 为地面附近介质密度, v_0 为地面附近纵波速度,K为地震波吸收系数, e_0 为地震射线在地面的出射角, e_0 为离源出射角,L为射线长度,u为地 面附 近入射波的全位移。

P波的几何扩散函数\的计算:

$$\psi = \frac{\sin \Delta \sin e_0}{\cos e_h \left| \frac{de_h}{d\Delta} \right|}$$

利用中国地区表面震源和16公里深度的P波走时表,按公式:

$$cose_{\circ} = \frac{v_{\circ}}{111.1} \cdot \frac{dT}{d\Delta}$$
 (2)

¹⁾郭殷灿、徐平,论面波均匀展级系统的建立,1984。

求得 e_0 和 $\frac{de_0}{d\Delta}$ 。

式中 $v_0 = 5.71$ 公里/秒, Δ 的单位为度,走时微商的距离 区间d $\Delta = 4.0^\circ$, $e_0 = \cos^{-1}(0.0514 \times \frac{dT}{d\Delta})$ 。由于是面源地震,射线地面出射角 e_0 就第于离源出射角 e_1 。对于有一定 深 度 的离源出射角 e_1 的求法则应根据射线方程:

$$\frac{R_h \cos e_h}{V_h} = \frac{R \cos e_0}{V_0} \tag{3}$$

求得震源处的 $cose_h$ 和 $\left| \frac{de_h}{d\Delta} \right|$ 。由(3)式 移项得 $cose_h = \frac{v_h R}{v_0 R_h} cose_0$

当深度为16公里时: $cose_k = 0.05893 \frac{d T}{d \Delta}$

式中 Δ 单位为度, e_h 的微商距离区间 $d\Delta$ 为4°, $v_h=6.53$ 公里/秒, $R_h=6355$ 公里。

关于微商距离dΔ的取用,可参照文献〔3〕。

射线长度L的取值:

在(1)式中,L是射线长度,一般用震 中 距 离 Δ 代 替,並将单位 "度" 换算成 "公里"。

入射波全位移与观测震图的($\frac{A}{T}$) \max 的关系及P 波最大振幅的平均持续时间 τ 值的计算:

在远震体波能量公式(1)中涉及到入射波的全位移u,它与地面垂直向地动位移A的比值 K_{Pz} 是 e_0 与震中距离的函数, K_{Pz} 值采用刘新平的计算结果 8)。u与A的关系为,

$$\sum_{i=1}^{n} \left(\frac{u^{2}}{T}\right)_{i} = \frac{1}{K^{2}_{pz}} \sum_{i=1}^{n} \left(\frac{A^{2}}{T}\right)_{i}$$
 (4)

在积分地震波能量时,逐一测量一列波中每一个振动的A和T,再求和。但 在 测定震级时,只用一个 $\left(\frac{A}{T}\right)_{max}$ 。

$$\Leftrightarrow \sum_{i=1}^{n} \left(\frac{A^{2}}{T}\right)_{i} = \left(\frac{A}{T}\right)^{2} \max_{i} \tau \tag{5}$$

从地震图上测量出 $\sum_{i=1}^{n} \left(\frac{A^2}{T}\right)_{i}$ 和 $\left(\frac{A}{T}\right)_{max}$,即可求得 τ 的观测值。根据河西堡台的38个地震记录图求得的 $\overline{\tau}=3.66\pm0.87$ 秒。

 $H \cdot K \cdot 古卜塔(1970)$ 从震级 M_b 与 M_a 的关系出发讨论了震源的多重性问题,並认为,地

²⁾许忠淮, 远段体波能量的测定, 1963。

⁸⁾刘新平,中国及邻近地区中长周期P波振幅衰减的研究,1984。

震有简单地震和复杂多重性地震之分。在复杂多重性地震中有很多非标准震相出现。地震的 多重性是震源机制的复杂性的反映,对于求持续时间τ有一定的影响。由于P波的波列有限, 一般分两段,取其与正常τ值接近的值参加平均值τ的计算。

根据文献〔4〕,远震体波能量与震级的关系式是:

$$\log E = 9.5 + 1.6 M_b$$
 (6)

由于所讨论的地震震级为 6 级。通过(6)式算得的体波能量为10¹⁸·1[尔格]。一般纵波所携带的能量为体波总能量的三分之一,因此理论公式的右端要乘上 3 倍。

由于8 π^3 R² $\rho_0 u_0$ 是 个 常数C, $\left(\frac{A}{T}\right)_{max} = M - \sigma_{(\Delta)}$, 所以(1)式取常用对数得:

$$logE_6 = 1.91 = log3 + logC + log\psi + KLloge + log\frac{3.66}{K^2_{Px}} + 2 (6 - \sigma_{(\Delta)} - 4)$$

(7)

式中能量以尔格为单位,起算函数 $\sigma_{(\Delta)}$ 所对应的位移A以微米为单位,应当 引入 10^4 因子以化为厘米的单位。取 $R=6.371\times10^8$ 厘米, $\rho=2.7$ 克/厘米³, $v_0=5.71\times10^5$ 厘米/秒,K=0.00012公里 $^{-1}$,L的单位为公里。将上述值代入(7)式即得到 6 级地震的理论 起 算 函数公式。将常数项C与几何扩散合并用 ϕ 表示,即 $\phi=C\psi$,起算函数全式如下。

$$\sigma_{(\Delta)} 6 = -7.030 + \frac{1}{2} \log \phi + 0.00002606 L - \log K_{P_z}$$
 (8)

将不同 深度 的几 何扩 散函 数代 入(8)式 可 计算 出不 同深 度震 中距 上的 $\sigma_{(\Delta)}$ 的 理论值。

(2)河西堡台P波震级的起算函数σ_(Δ)的观测值 由体波震级公式可得以下公式:

$$m = \log\left(\frac{A}{T}\right)_{\max} + \sigma_{(\Delta)} \tag{9}$$

式中A的单位为微米, T的单位为秒, A的单位为度, m为统一震级。

由于采用的标准震级是均匀系统的均匀震级MB,必须换算为体波震级Mb。

$$M_s^H = 1.59 \text{m} - 3.97$$
 (10)

$$m = (M_S^A + 3.97)/1.59$$
 (11)

$$\sigma_{(\Delta)} = m - \log \left(\frac{A}{T}\right)_{\text{max}}$$
 (12)

根据(12)式,利用河西堡台的近40个地震求得相应的起算函数 $\sigma_{(\Delta)}$ 河,然后将观测值与理论值比较,拟合出河西堡台的半经验起算函数。

根据杜达和古登堡一里克特对于P波震级的传统定义以及体波震级公式

$$M_{b}(\Delta \cdot h) = \log \left[\frac{A_{z}(\Delta \cdot h)}{T} \right] + \overline{Q}(\Delta \cdot h)$$
 (13)

则有:

Q_{pz}(90°, S)=7.0。因此,对零级地震

$$\overline{Q}_{Pz}(\Delta \cdot S) = 7.0 - \log \overline{A}_{Pz}(\Delta \cdot S)$$
(14)

式中归一化振幅 A_{PZ} ($\Delta \cdot S$) = (A_{PZ} ($\Delta \cdot S$)/T)/(A_{PZ} (90° $\cdot S$)/T)。有 一定 深度也可用 A_{PZ} (90° $\cdot S$)/T进行归一化。

鉴于以上的情况,对于河西堡台的起算函数也进行了归一,将16公里深度的 $\sigma_{(\Delta)}$ 理论值曲线沿着纵座标轴向上移动,使其90°震中距上的 $\sigma_{(\Delta)}$ 值达到7.0,並视观测值的符合情况,最后确定为河西堡台的起算函数 $\sigma_{(\Delta)}$ 河(见表1、图1)。

在拟合起算函数时要考虑吸收系数(K),将不同K值的起算函数与实际观测值进行比较,结果表明,当K=0.00012时,其均方偏差最小(0.299)。从而确定河西堡台的起 算函数 K值为0.00012。

河西	保台	起	節孫	缈	(σ,)
7-3 5-3	5 6 D	æ	- Tile (42)	36.6	`	\mathbf{v}_{Λ}	,

表 1

∆0	σΔ	∆0	σΔ	Δ0	αΔ	Δ0	σΔ	Δ0	σΔ
10	6.26	28	6.40	46	6.66	64	6.80	82	6.91
11	6.23	29	6.44	47	6,66	65	6.70	83	6.93
12	6.17	30	6.46	48	6.66	66	6.81	84	6.94
13	6.10	31	6.48	49	6.66	67	6.82	85	6.95
14	6.02	32	6.51	50	6.66	68	6.86	86	6.96
15	5.96	33	6.53	51	6.66	69	6.82	78	6.97
16	5.92	34	6.55	52	6.66	70	6.83	88	6.97
17	5.89	35	6.58	53	6.67	71	6.81	89	6.98
18	5.88	36	6.60	54	6.68	72	6.77	90	7.00
19	5.88	37	6.62	55	6.69	73	6.83	91	7.02
20	5.90	38	6.65	56	6.70	74	6.83	92	7.06
21	5.94	39	6.66	57	6.72	75	6.84	93	7.11
22	5.99	40	6.67	58	6.73	76	6.87	94	7.18
23	6.06	41	6.70	59	6.74	77	6.85	95	7.26
24	6.13	42	6.67	60	6.75	78	6.85	96	7.33
25	6.21	43	6.67	61	6.76	79	6,86	97	7.37
26	6.29	44	6.66	62	6.77	80	6,88	98	7.39
27	6.35	45	6.65	63	6.79	81	6.89	99	7.42

利用新的起算函数计算的21个地震的震级与北京台比较结果是:标准偏差为0.38(图2),相关直线斜率为1.10(图3),系数A=0.644,B=2.277。由此可见,新的起算函数对河西堡台的震级测定是有一定意义的。

3. 结语

以上介绍的方法单台就可以使用,但是其结果需要验证,並要不断地丰富该台的σ(Δ)的

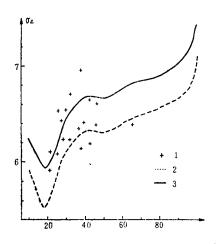


图 1 河西堡台起算函数曲线 1.观测值 2.理论值 3.实用值

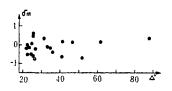


图 2 震级偏差σ...随震中距离的分布

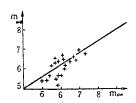


图 3 mpk与mhxB震级相关图

观测值。我们将用河西堡台的起算函数测定的70个地震的体波震级与全国地震报告给出的体 波震级进行比较,结果还是比较好的,其表达式如下:

$$M_b = \log\left(\frac{A}{T}\right)_{\text{max}} + \sigma_{(\triangle)} = \pm 0.38$$
 (15)

本项工作得到赵卫明、刘启宗、刘新平、陈秀兰等同志的热情邦助和支持,在此表示感谢。

(国家地震局兰州地震研究所 **孟繁琦** 国家地震局地球物理研究所 **郭履灿**) (本文1984年12月3日收到)

参考文献

- (1)郭履灿等,中国地区P波和S波走时表,地震学报, Vol. 8, No. 2, 1981.
- [2]郭履灿等,论用PKP波测定极远震的震级,地球物理学报,Vol.14,No.3,1956.
- [8] 左兆荣、郭履灿、许忠淮,地震波的几何扩散效应,地震地磁观测与研究,1983。
- [4]中国科学院地球物理研究所、北京大学地球物理系,地震能量和凝级关系的初步研究,科学记录,Vol.3,No.6 1959。

PRELIMINARY STUDY ON THE INITIAL FUNCTION OF P WAVE MEASURED BY MODEL 64 SEISMOMETER IN HEXIBAO STATION

Meng Fanqi

(Seismological Institute of Lanzhou, State Seismological Bureau)

Guo Lucan

(Institute of Geophysics, State Seismological Bureau)