澜沧-耿马地震的S波偏振及P波、 S波振幅比变化特征

杨桂芬 (云南省地震局)

摘 要

本文通过对1988年11月6日云南澜沧—耿马7.6、7.2级强震前后S 波偏振角的计算分析,得出大震前后UsH—Us·的三种变化图象,这种变化特征 具有一定的前兆意义。与此同时,对大震前后P波、S波最大振幅比值分布和S波偏振角空间分布进行研究发现,北纬22°57′可能是澜沧、耿马两地区介质差异的分界面。

关键词 澜沧—耿马强震 S波偏振角 P波、S波量大振幅比

前 言

从地震波提取某一区域内的介质性质和地壳应力状态信息,从而估计该区域近期地震危险性的研究目前还处于探索阶段。由于S波在传播过程中对射线路径上的介质 结构 非常 敏感,它所包含的关于震源和路径上的介质信息是P波的 4 倍^[1],因此研究S波应 是地震学上用于监测大震前岩石扩容过程的一种比较好的手段。作者使用1988年11月 6 日 澜沧一耿 马7.6、7.2级强震的前震和余震资料,研究了S波的偏振性质变化特征及大震前后的P波、S波最大振幅比分布特征。

一、资料与方法

使用思茅台维开克 三 分 向 地 震 仪 的 记 录 资 料 (该 台 位 于 北 纬 22°44′17″, 东 经 100°55′52″, 距澜沧7.6级主震126公里)。选取1988年 1 月 1 日—11月 6 日 大 震 前 震区附 近发生的地震及11月11日—12月10日大震后的余震。余震参数取自大震现场测定结 果,前震 参数取自昆明传输台网测定结果,震级区间是M_L2.5—3.8。

S波的偏振性质由偏振角来描述。垂直于入射面的S波只存在水平分量 U_{SH} ,它在地面上的投影与台站到震中连线垂直。在入射面内的S波存在水平和垂直两个分量 (2^{8}) ,即 U_{SH} 和 U_{SV} (图 1)。在入射角 i_0 大于临界角的条件下,地表位移 A_{SH} 和 A_{SV} 与入射位移的分量 U_{SH} 和 U_{SV} 有下述关系。

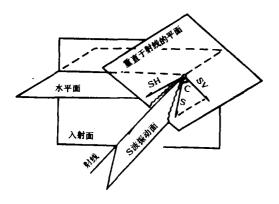


图1 S波偏振角示意图

Fig. 1 Sketch of S-wave polarization angle

$$U_{sH} = \frac{1}{2}A_{sH};$$

$$U_{sv} = \frac{1}{2 \cos i_0} (A_{sv}^2 \cos 2i_0 - A_{sv}^2 \sin 2i_0)$$

Ash、Asv和Asv分别为地面位移 Sh和 Sv在垂直方向和水平方向上的分量,它们可以从地震记录图的三个分向 S 波振幅合成分解求得。于是偏振角C便可求出。

$$C = tg^{-1} \frac{U_{SH}}{U_{SV}} \cdot$$

在计算中,震源深度取大震现场测定的182次

余震的平均震源深度,即H=15公里,所计算出的入射角全部满足大于临界角的条件。

二、大震前后的S波偏振变化

通过对思茅台S波的分析,计算得出大震前后79次 $M_L=2.5-3.8$ 级地震的偏振角。为 能 更清楚反映出S波偏振特征,根据昆明传输台网二类震中定位精度(误差在10 公里以下)挑选出位置近似的三组地震,分别求出它们的偏振角。这三组地震分别是大震前、大震后到11月30日6.7级强余震前和6.7级强余震后震区发生的地震(表 1 — 3)。

从表 1 可以看出,大震前S波偏振角变化不大,除个别地震为 0 外,主要在 50°—82°之间变化。从表 2 和表 3 可看出,大震发生后,S波偏振角出现负值,变化幅度增大。

对于上述三组地震,分别以它们的水平分量入射位移 U_{sH} 为横座标,垂直分量入射位移 U_{sV} 为纵座标,作 U_{sH} 一 U_{sV} 的关系图。从图 2 a 中看出,大震前小地震的偏振角 是 比 较一致的,计算得出二者的线性关系为。

$$U_{sv} = -0.03 + 0.64 U_{sh}, r = 0.86$$

图 2 b显示出, 大震发生后资料点明显散开, 即偏振角零乱。但分布仍然比 较集中, 二者的线性关系为:

$$U_{sv} = 0.33 + 0.29U_{sh}$$
, $r = 0.53$

其总体分布方向与大震前一致。

由图 2 c明显看出,强余震发生后小震的偏振角完全是混乱的。

以上三个时间段的 U_{sH} — U_{sv} 关系的特征,显示了澜沧—耿马大震前后的S波偏 振性 质的变化。

三、P波、S波最大振幅比与S波偏振角空间分布的一致性

在分析思茅台地震资料时发现,主震前和主震后的一些地震出现P波振幅大于S 波 振 幅 的现象。量取垂直向P波最大振幅和S波最大振幅,求出二者的比值 y_p/y_a 。分析 该 比 值 的分布发现,22°57′N以北61%的地震的 $y_p/y_a>0.9$,在22°57′N以南,出现 $y_p/y_a < 0.9$ 的

表 1

大震前的S波偏振角

时 餌	震中位置		\ \v				
	фи	λE	ML	An(pm)	AE(pm)	Az (pm)	T
1988年 2 月15日	22*31′	99°47′	2.7	0.65	0.26	0.09	0
8月4日	22°26′	99°51′	3.0	1.52	0.78	0.46	53.7
8月11日	22°25′	99°48′	3.2	1.3	1.17	0.46	60,8
4月11日	22*37′	99°51′	3.3	2.46	0.91	0.91	36.3
5月27日	22°44′	100*10′	3.2	0.73	0.71	0.35	61.7
6 月19日	22°55′	100°06′	2.5	0.62	0.33	0.16	47.6
8月17日	22°49′	99°50′	3.8	7,25	4.06	1.11	58.7
8月17日	22°45′	99°46′	2.9	1.67	0.88	0.3	71.1
8月20日	22°46′	99°44′	2.9	1.16	0.23	0.08	82.3
8 月26日	22°49′	99°43′	2.7	0.83	0.55	0.17	63.1
9月10日	22°47′	99*48′	3.4	3.41	1.62	0.62	68.1

表 2

6.7级强余震后的S波偏振角

时 间	爬中位置						C •
	фи	λ _E	ML	A _N (μ=)	Ar(pm)	Az(#m)	C.
1988年12月1日	22°37′	100°00′	3.1	5.07	3.15	0.74	- 58.9
12月2日	22°43′	99°57′	3.6	7.79	9.03	2.24	- 65.8
12月2日	22°43′	99°51′	3.9	8.26	12.7	4.7	44.5
12月8日	22°44′	99°54′	3.0	5.15	3.7	0.81	- 68.9
12月8日	22°40′	99°58′	3.3	7.68	5,39	1.96	87.1
12月4日	22°37′	T00°03'	3,2	4.09	2.73	0.6	- 35.0
12月5日	22°37′	100°00′	3.3	5.79	4.87	0.75	- 45.0
12月6日	22°41′	100°03′	3.7	7.9	9.42	3.57	81.6
12月6日	22°40′	99°59′	3.1	5,62	5.0	1.57	-78.4
12月8日	22°48′	99°51′	3.0	5.51	5.58	1.61	76.5
12月8日	22°42′	99°46′	3.0	3.17	1.88	0.75	60
12月8日	22°40′	99°52′	3.3	5.44	3,25	1.26	72.8
12月9日	22°41′	99°51′	3.1	1.99	1.6	0.4	60.1
11月10日	22°40′	99°57′	3.0	5.89	4.06	1.41	85.5

大震后到6.	7级课金	*********	の油油塩品
人舞后到0.	/ SR 79 76		3 波 福 波 用

时 闻	震中位置						C•
	фи	λg	ML	An(µm)	ΑΕ(μm)	Az(µm)	
1988年11月11日	22°37′	99°57′	3.1	3.19	3.57	1.21	82.4
11月11日	22°43′	99°58′	3.5	7.43	4.87	1.88	77.1
11月12日	22°38′	99°56′	2.5	1.38	1.04	0.43	69.3
11月12日	22°40′	99°46′	3.1	43.0	18.0	15.0	71.4
11月13日	22°47′	99*41′	3.0	13.5	5.4	1.5	-54.7
11月16日	22°47′	99°46′	3.1	2,45	1.62	0.38	- 85
11月16日	22°42′	99°49′	3.2	7.0	3.0	2.2	36.5
11月20日	22°40′	99°48′	3.0	4.4	1.4	0.8	0
11月22日	22°51′	99°43′	3.2	0.18	0.32	0.05	- 45
11月23日	22°44′	99°50′	3.4	4.67	4.74	1.83	49.8
11月25日	22°47′	99°48′	3.1	1,88	2.18	0.51	- 76.5
11月27日	22°45.	99°47′	3.5	4.8	3.12	1.32	49.7
11月27日	22°43′	99°48′	3.5	17.6	4.7	2.7	-80
11月27日	22°43′	99*49′	3.8	6.05	5.52	1.77	71.2
11月27日	22°45′	99°48′	3.6	5,69	6.95	1,61	-73.2
11月27日	22°42′	99°5C′	3.4	1.81	1.30	0.51	62.5
11月27日	22°43′	99°49′	3.5	2.54	1.23	0.75	37.9
11月27日	22°43′	99°50′	3.1	1.38	0.78	0.28	72.1

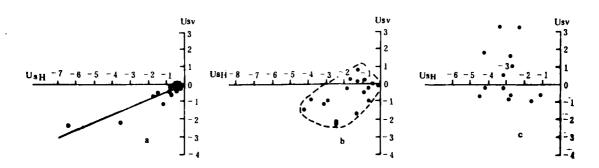


图 2 U_{SH}—U_{SV}关系变化图 a.大震前 b.大震后到6.7级强余震前 c.6.7级强余震后 Fig. 2 The variation of U_{SH}-U_{SV} relation

地震占总数的83%(图 3 a)。从图 3 b看出,澜沧、耿马地区的地质构造在北纬 22°57′附近是多条断裂交汇区,与P、S波振幅比空间分布特征相吻合。

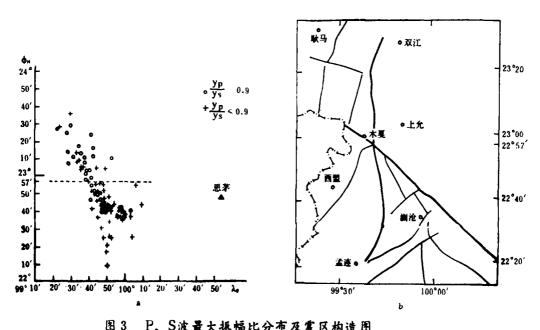
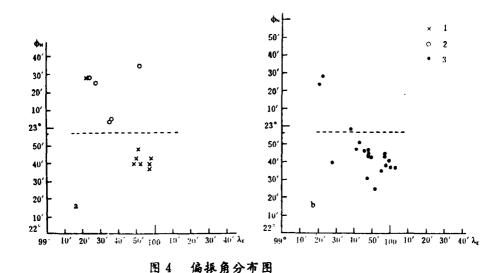
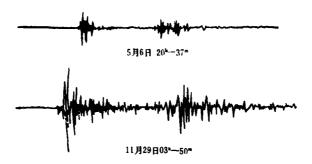



图 3 P、S波最大振幅比分布及震区构造图
Fig. 8 Distribution of the maximum P and S wave amplitude ratio and geological structure of seismic area

同时由我们所计算出的79次地震的S波偏振角分布也可以看出,偏振角 $C \ge 70^\circ$ 的地震全部分布在 $22^\circ 57'$ N以南地区,而偏振角 $C \le 30^\circ$ (包括 $C \le 0^\circ$)的地震则分布在 $22^\circ 57'$ N以北地区,仅有3个地震例外(图4)。

1.C≥70° 2.C≤30° 3.C≤0° Fig. 4 Distribution of polarization angles


由此看来,22°57′N既是多条断裂交汇点,又是P波、S波最大振幅比空间分布的分界线,也是变化幅度较大的偏振角C的分界线。三者分布的一致性可能反应了以22°57′N为界,漏沧一耿马一带南北两区介质存在明显差异。

四、讨论与结论

由上述S波偏振角性质变化及P波、S波振幅比变化,可以看出:

- 1. 澜沧一耿马大地震前后的S波偏振性质具有不同的特征。大震前,偏振角变 化不大, 小地震的UsH-Usv具有线性关系,震后偏振角变化较大。UsH-Usv关系线 性 消失,但其 分布仍较集中,其线性方向与震前一致。在11月30日6.7级强余震发生后UsH-Usv则 出 现 弥散分布。澜沧—耿马地震与海城地震前后S波的偏振角随时间变化规 律〔2〕是一致的。
- 2.S波偏振角和P波、S波最大振幅比在北纬22°57′南北两侧发生明显变化的事实,反映 了该区介质的非均匀性。

对于球对称介质, S波偏振在沿射线路径上是不发生变化的, 即使对一般的较为 平缓 变 化的介质,S波的偏振沿射线路径仍然不发生变化。这意味着无论是Sx波还是Sv波在这种介 质中传播都不发生明显的振幅起伏变化。但对于明显的受扰介质,其内地震波由均匀介质里 的原生波和扰动引起的散射波两部分组成,散射P波一般是沿入射方向增强,而散 射 S 波明 显地沿垂直于入射方向增强,所以在某些区域出现P波振幅增大现象。当非均匀体的 尺度足 够大时,P、Sv和Sn波的振幅出现起伏变化,不但出现P波与S波的最大振幅比发生变化,並 且引起S_R与S_V的振幅比发生变化,即S波的偏振发生变化[4-7]。这就反映在同一个地震台 的记录上出现P波振幅大于S波振幅,即如前所述的y。/y。>0.9的情况。图 5 所示的思茅 台 记录正是显示了这种特征。

思茅台P、S波振幅特征

Fig. 5 Amplitude characteristics of P and S waves at Simao station, Yunnan Province

前述所表现出的P波与S波最大振幅比异常空间分布及S波偏振角异常空间分布的一致性 证明了, 北纬22°57′是澜沧、耿马两地区介质差异的分界面。

3.S波偏振角性质在大震前后的变化特征说明,从S波里可以提取更多的前 兆 信 息,並 且观测S波偏振角的变化是一种在当前台网观测条件下较为可行的方法。

(本文1990年12月11日收到)

- [1]彭成斌、陈颢, S波极化研究的评述,中国地震, Vol. 8, 1987.
- (2) 順浩鼎、曹天青,前兆震群和S波偏振,地震学报, Vol. 2, No. 4, 1980,

- 〔8〕陆远忠等,地震预报的地震学方法,地震出版社,1985.
- [4]郭增莲、秦保燕,震源物理,地震出版社,1979。
- (5)K.Aki, Quantitative Seismology Theory and Method, W.H. Freeman and Company, San Francisco, pp99-105, 728-751, 1980.
- [6]曾融生,固体地球物理学导论,科学出版社,1984.
- [7]傅淑芳、刘宝诚、李文艺,地震学教程,地震出版社,1980.

S-WAVE POLARIZATION AND VARIATION CHARACTERISTICS OF AMPLITUDE RATIO OF P-AND S-WAVES FOR THE LANCANG-GENGMA EARTHQUAKE

Yang Guifen
(Seismological Bureau of Yunnan Province, Kunming, China)

Abstract

Three variation patterns of U_{SH} — U_{SV} of the Nov. 6,1988, Lancang-Gengma earthquakes (M=7.6, 7.2) have been obtained through calculating and analysing the S-wave polarization angles before and after the earthquakes. The variation characteristics possess precursory meaning. Study on the distribution of maximum amplitude ratio of P-and S-waves and spatial distribution of S-wave polarization angles before and after the earthquakes shows the line of 22°57′ north latitude may be the medium boundary between Lancang and Gengma areas.