澜沧-耿马地震的S波偏振及P波、 S波振幅比变化特征

杨桂芬

(云南省地震局)

摘 要

本文通过对1988年11月6日云南澜沧--耿马7.6、7.2级强震前后S 波偏振 角的计算分析,得出大震前后UsH---Us,的三种变化图象,这种变化特征具有 一定的前兆意义。与此同时,对大震前后P波、S波最大振幅比值分布和S波偏 振角空间分布进行研究发现,北纬22°57′可能是澜沧、耿马两地区介质差异的 分界面。

关键词 澜沧——耿马强震 S波偏振角 P波、S波量大振幅比

前 言

从地震波提取某一区域内的介质性质和地壳应力状态信息,从而估计该区域近期地震危 险性的研究目前还处于探索阶段。由于S波在传播过程中对射线路径上的介质 结 构 非 常 敏 感,它所包含的关于震源和路径上的介质信息是P波的 4 倍⁽¹⁾,因此研究S波应 是地震学上 用于监测大震前岩石扩容过程的一种比较好的手段。作者使用1988年11月 6 日 澜 沧一耿 马 7.6、7.2级强震的前震和余震资料,研究了S波的偏振性质变化特征及大震前后的P波、S波 最大振幅比分布特征。

7

一、资料与方法

使用思茅台维开克 三 分 向 地 震 仪 的 记 录 资 料(该 台 位 于 北 纬 22°44′17″,东 经 100°55′52″,距澜沧7.6级主震126公里)。选取1988年1月1日—11月6日 大 震 前 震区附 近发生的地震及11月11日—12月10日大震后的余震。余震参数取自大震现场测定结 果,前震 参数取自昆明传输台网测定结果,震级区间是M_L2.5—3.8。

S波的偏振性质由偏振角来描述。垂直于入射面的S波只存在水平分量Ush, 它在地面上的投影与台站到震中连线垂直。在入射面内的S波存在水平和垂直两个分量^[2、8],即 Ush和Usv(图1)。在入射角i。大于临界角的条件下,地表位移Ash和Asv与入射位移的 分量Ush和Usv有下述关系;

$$U_{sH} = \frac{1}{2} A_{sH} ;$$

$$U_{sV} = \frac{1}{2 \cos i_0} (A_{sV}^2 \cos 2i_0 - A_{sV}^2 \sin 2i_0) .$$

A_{5H}、A³₅v和A³₅v分别为地面位移 S_H和 Sv在垂直方向和水平方向上 的分 量, 它们 可以从地震记录图的三个分向 S 波振幅合成 分解求得。于是偏振角C便可求出;

$$C = tg^{-1} \frac{U_{SH}}{U_{SV}}$$

图1 S波偏振角示意图

Fig. 1 Sketch of S-wave polarization angle 在计算中,震源深度取大震现场测定的182次 余震的平均震源深度,即 \overline{H} =15公里,所计算出的入射角全部满足大于临界角的条件。

二、大震前后的S波偏振变化

通过对思茅台S波的分析,计算得出大震前后79次M_L=2.5-3.8级地震的偏振角。为 能 更清楚反映出S波偏振特征,根据昆明传输台网二类震中定位精度(误差在10公里以下)挑 选出位置近似的三组地震,分别求出它们的偏振角。这三组地震分别是大震前、大震后到11 月30日6.7级强余震前和6.7级强余震后震区发生的地震(表1-3)。

从表1可以看出,大震前S波偏振角变化不大,除个别地震为0外,主要在50°-82°之间变化。从表2和表3可看出,大震发生后,S波偏振角出现负值,变化幅度增大。

对于上述三组地震,分别以它们的水平分量入射位移Ush为横座标,垂直分量入射位移 Usv为纵座标,作Ush-Usv的关系图。从图 2 a中看出,大震前小地震的偏振角 是 比 较一 致的,计算得出二者的线性关系为:

 $U_{sv} = -0.03 + 0.64 U_{sH}$, r = 0.86.

图 2 b显示出, 大震发生后资料点明显散开, 即偏振角零乱。但分布仍然比 较 集中, 二 者的线性关系为:

 $U_{sv} = 0.33 + 0.29U_{sH}$, r = 0.53 .

其总体分布方向与大震前一致。

由图2 c明显看出,强余震发生后小震的偏振角完全是混乱的。

以上三个时间段的Usn-Usv关系的特征,显示了澜沧一耿马大震前后的S波偏振性质的变化。

三、P波、S波最大振幅比与S波偏振角空间分布的一致性

在分析思茅台地震资料时发现,主震前和主震后的一些地震出现P波振幅大于S波振幅 的现象。量取垂直向P波最大振幅和S波最大振幅,求出二者的比值y,/y.。分析该比值的 分布发现,22°57′N以北61%的地震的y,/y.>0.9;在22°57′N以南,出现y,/y.≪0.9的

ŧ

.

F

J

表1

大驚前的S波倫振角

时间	震中位量						
	ф <u>и</u>	λε	IVI L	AN(µm)	AE(pm)	AZ(#=)	C
1988年2月15日	22*31'	99°47′	2.7	0.65	0.26	0.09	0
8月4日	22°26′	99°51′	3.0	1.52	0.78	0.46	53.7
8月11日	22°25′	99° 4 8′	3.2	1.3	1.17	0.46	60,8
4月11日	22*37′	99°51′	3.3	2.46	0.91	0.91	36.3
5月27日	22°44′	100*10'	3.2	0.73	0.71	0.35	61.7
6月19日	22°55′	100°06′	2.5	0.62	0.33	0.16	47.6
8月17日	22°49′	99°50′	3.8	7.25	4.06	1.11	58.7
8月17日	22°45′	99°46′	2.9	1.67	0.88	0.3	71.1
8月20日	22°46′	99°44′	2.9	1.16	0.23	0.08	82.3
8月26日	22°49′	99° 4 3′	2.7	0.83	0.55	0.17	63.1
9月10日	22°47′	99°48′	3.4	3.41	1.62	0.62	68.1

表 2

6.7级强余黄后的S波偏振角

时间	震中位量						
	φn	λε	ML	AN(p=)	AE(p=)	AZ(#m)	<u> </u>
1988年12月1日	22*37'	100°00'	3.1	5.07	3.15	0.74	- 58.9
12月2日	22°43′	99°57′	3.6	7.79	9.03	2.24	- 65.8
12月2日	22°43′	99°51′	3.9	8,26	12.7	4.7	44.5
12月8日	22°44′	99°54′	3.0	5.15	3.7	0.81	- 68.9
12月8日	22°40′	99°58′	3.3	7.68	5,39	1.96	87.1
12月4日	22°37′	T00°03'	3.2	4.09	2.73	0.6	- 35.0
12月5日	22°37′	100°00'	3.3	5.79	4.87	0.75	- 45.0
12月6日	22°41′	100°03′	3.7	7.9	9.42	3.57	81.6
12月6日	22°40′	99°59′	3.1	5.62	5.0	1.57	- 78.4
12月8日	22°48′	99°51′	3.0	5.51	5.58	1.61	76.5
12月8日	22°42′	99°46′	3.0	3.17	1.88	0.75	60
12月8日	22°40′	99°52′	3.3	5.44	3,25	1.26	72.8
12月9日	22°41′	99°51′	3.1	1.99	1.6	0.4	60.1
11月10日	22°40′	99°57′	3.0	5.89	4.06	1.41	85.5

F

	•
-	- 14
-	•

8

• :

大震后到6。7级强余震前的S波偏振角

时间	震中位置						C
	φn	λε	- ML	AN(µm)	Α Ε(μ m.)	AZ(µm)	
1988年11月11日	22*37′	99°57′	3.1	3.19	3,57	1.21	82.4
11月11日	22°43′	99°58′	3,5	7,43	4.87	1.88	77.1
11月12日	22 °38′	99°56′	2.5	1,38	1.04	0.43	69.3
11月12日	22°40′	99°46′	3,1	43.0	18.0	15.0	71.4
11月13日	22°47′	99°41′	3.0	13.5	5.4	1.5	- 54.7
11月16日	22°47′	99°46′	3.1	2.45	1.62	0.38	- 85
11月16日	22°42′	99°49′	3.2	7.0	3.0	2.2	36.5
11月20日	22°40′	99°48′	3.0	4.4	1.4	0.8	0
11月22日	22*51′	99°43′	3.2	0.18	0.32	0.05	- 45
11月23日	22°44′	99°50′	3.4	4.67	4.74	1.83	49.8
11月25日	22°47′	99°48′	3.1	1.88	2.18	0.51	- 76.5
11月27日	22°45.	99°47′	3.5	4.8	3.12	1,32	49.7
11月27日	22°43′	99°48′	3.5	17.6	4.7	2.7	- 80
11月27日	22*43'	99°49′	3.8	6.05	5,52	1.77	71.2
11月27日	22°45′	99°48′	3.6	5,69	6.95	1,61	- 73.2
11月27日	22°42′	99°5C′	3.4	1.81	1.30	0.51	62.5
11月27日	22°43′	99°49′	3.5	2.54	1.23	0.75	37.9
11月27日	22°43′	99°50′	3.1	1.38	0.78	0,28	72.1

图 2 U_{SH}→U_{SV}关系变化图 a.大震前 b.大震后到6.7级强余震前 c.6.7级强余震后 Fig. 2 The variation of USH-USV relation

達震占总数的83%(图3a)。从图3b看出,澜沧、耿马地区的地质构造在北纬22°57/附 近是多条断裂交汇区,与P、S波振幅比空间分布特征相吻合。

ratio and geological structure of seismic area

同时由我们所计算出的79次地震的S波偏振角分布也可以看出,偏振角C≥70°的地震全部分布在22°57′N以南地区,而偏振角C≤30°(包括C<0°)的地震则分布在22°57′N以 北地区,仅有3个地震例外(图4)。

Fig. 4 Distribution of polarization angles

由此看来,22°57′N既是多条断裂交汇点,又是P波、S波最大振幅比空间分布的分界 线,也是变化幅度较大的偏振角C的分界线。三者分布的一致性可能反应了以22°57′N为 界,澜沧---耿马一带南北两区介质存在明显差异。

四、讨论与结论

由上述S波偏振角性质变化及P波、S波振幅比变化,可以看出:

1.澜沧一耿马大地震前后的S波偏振性质具有不同的特征:大震前,偏振角变 化不大, 小地震的U_{sh}—U_{sv}具有线性关系,震后偏振角变化较大,U_{sh}—U_{sv}关系线性 消失,但其 分布仍较集中,其线性方向与震前一致。在11月30日6.7级强余震发生 后U_{sh}—U_{sv}则 出 现 **弥散分**布。澜沧—耿马地震与海城地震前后S波的偏振角随时间变化规 律^[2]是一致的。

2.S波偏振角和P波、S波最大振幅比在北纬22°57′南北两侧发生明显变化的事实,反映 了该区介质的非均匀性。

对于球对称介质,S波偏振在沿射线路径上是不发生变化的,即使对一般的较为平缓变 化的介质,S波的偏振沿射线路径仍然不发生变化。这意味着无论是S_H波还是S_v波在这种介 质中传播都不发生明显的振幅起伏变化。但对于明显的受扰介质,其内地震波由均匀介质里 的原生波和扰动引起的散射波两部分组成,散射P波一般是沿入射方向增强,而散射S波明 显地沿垂直于入射方向增强,所以在某些区域出现P波振幅增大现象。当非均匀体的尺度足 够大时,P、S_v和S_H波的振幅出现起伏变化,不但出现P波与S波的最大振幅比发生变化,並 且引起S_H与S_v的振幅比发生变化,即S波的偏振发生变化^[4-7]。这就反映在同一个地震台 的记录上出现P波振幅大于S波振幅,即如前所述的y_v/y₁>0.9的情况。图 5 所示的思茅 台 记录正是显示了这种特征。

Fig. 5 Amplitude characteristics of P and S waves at Simao station, Yunnan Province

前述所表现出的P波与S波最大振幅比异常空间分布及S波偏振角异常空间分布的一致性 证明了,北纬22°57′是澜沧、耿马两地区介质差异的分界面。

3.S波偏振角性质在大震前后的变化特征说明,从S波里可以提取更多的前兆信息,並 **且观测S波偏振**角的变化是一种在当前台网观测条件下较为可行的方法。

(本文1990年12月11日收到)

参考文献

〔1〕彭成斌、陈顺,S波极化研究的评述,中国地震,Vol.8,1987. 〔2〕顺浩鼎、曹天青,前兆震群和S波偏振,地震学报,Vol.2,No.4,1986.

¥

(8) 附近忠等, 地震預报的地震学方法, 地震出版社, 1985.
(4) 郭增建、桒保燕, 震颤物理, 地震出版社, 1979.
(5) K. Aki, Quantitative Seismology Theory and Method, W.H. Freeman and Company, San Francisco, pp99-105, 728-751, 1980.
(6) 曾融生, 固体地球物理学导论, 科学出版社, 1984.

〔7〕傅淑芳、刘宝诚、李文艺,地震学教程,地震出版社,1980.

S-WAVE POLARIZATION AND VARIATION CHARACTERISTICS OF AMPLITUDE RATIO OF P-AND S-WAVES FOR THE LANCANG-GENGMA EARTHQUAKE

Yang Guifen

(Seismological Bureau of Yunnan Province, Kunming, China)

Abstract

Three variation patterns of U_{SH} — U_{SV} of the Nov. 6,1988,Lancang-Gengma earthquakes (M=7.6, 7.2) have been obtained through calculating and analysing the S-wave polarization angles before and after the earthquakes. The variation characteristics possess precursory meaning. Study on the distribution of maximum amplitude ratio of P-and Swaves and spatial distribution of S-wave polarization angles before and after the earthquakes shows the line of 22°57' north latitude may be the medium boundary between Lancang and Gengma areas.