Vol.21 No.3 Sept. 1999

# 天桥沟一黄羊川活动断裂带的几何学 和运动学特征\*

戴华光、陈永明、苏向洲、刘洪春

(中国地震局兰州地震研究所,甘肃 兰州 730000)

摘要:依据1:50 000 地质填图资料,对天桥沟—黄羊川活动断裂带晚更新世以来 的几何学和运动学特征进行了详细的论述,认为该断裂带可分为逆走滑(左旋)的天 桥沟断裂段和正走滑(左旋)的黄羊川断裂段,其主要活动时期是晚更新世,滑动速率 为4~5 mm/a,全新世早期,该断裂带活动强度逐渐减弱、其最后一次活动的时间为 距今0.759×10<sup>4</sup>~1.02×10<sup>4</sup>年、

主题词: 甘肃; 活动断裂带; 走滑断层; 夭桥沟一黄羊川活动断裂带; 断裂分段; 滑动速率 中图分类号:P542\*.3 文献标识码:A 文童编号:1000-0844(1999)03-0259-09

引言 0

天桥沟一黄羊川断裂带是北祁连山东段活动断裂带的组成部分,具有明显的左旋走滑特 征、由于该断裂带位于1927年古浪8级大震极震区的南侧,因而它与古浪大震的关系自然也 成了很多学者关注的问题[1~3].①、为了进一步查明 1927 年古浪大震的发震断裂, 1992~1995 年,笔者对天桥沟一黄羊川断裂带和皇城一双塔断裂带进行了1:50 000 地质填图<sup>20</sup>.本文主要 依据填图资料,对天桥沟一黄羊川断裂带中的红腰岘一夹皮沟段晚更新世以来的几何学和运 动学特征进行较详细的阐述.

天桥沟一黄羊川断裂带红腰岘一夹皮沟段的几何学特征 1

天桥沟一黄羊川活动断裂带西起冷龙岭北缘天桥沟源头的红腰岘以西,向东经关家台,止 于大靖南侧花庄以东,全长约 150 km. 该断裂带的红腰岘一夹皮沟段长 86 km,断面较平直, 仅在关家台东侧的南泥沟处有一个小阶区、因此,以南泥沟为界,可把它分为东西2段,西段为 天桥沟断裂段,东段为黄羊川断裂段、其西段走向 NWW,东段走向 NEE,总体呈略向南凸出 的弧形(图1)。

1.1 天桥沟断裂段

该断裂段发育在中高山区(海拔3000~4000m),西起红腰岘,向东经火烧台、天桥沟、哈

作者简介:戴华光(1945~),男,副研究员,主要从事地震地质研究工作,第二作者陈永明现在中国科技大学地球和空间 科学系攻读硕士学位. ① 刘百篪, 周俊喜, 1927 年古浪7.9 级地震的地表破裂带研究, 1987、

③ 戴华光,贾云鸿,陈永明,等,古浪活动断裂带1:50 000 地质图说明书 1995

收稿日期:1999-03-23

<sup>·</sup> 国家地震局"八五"重点资助项目.项目编号、85020134、参加野外考察的还有贾云鸿、刘百篪;中国地震局兰州地震 研究所论著编号:LC1999038

第21卷

溪河,止于关家台东侧的南泥沟,长约42 km.自西向东其走向由 N80°W 逐渐转为 EW 向、断面倾向 SW,倾角64°~68°.在天桥沟以西,断裂断错横梁山向斜南翼地层,使晚古生代地层垂直错距达1000 m 以上.断面北盘主要为中奥陶统火山岩、上石炭统砂页岩、灰岩和下二迭统砂岩;断面南盘主要为上三迭统砂页岩.挤压破碎带宽20~50 m.



图1 天桥沟-黄羊川断裂带平面展布及主要地貌单元

1 断块高山区; 2 断块中山区; 3 中低山黄土丘陵区; 4 山间盆地区; 5 山前平原区;

6 活动断裂;7 隐伏断裂;8 推测断裂;9 探槽位置及编号

该断裂段在晚第四纪, 尤其是晚更新世时期活动十分强烈. 沿断裂南高北低的断坎、断塞 塘、断层泉、串珠状沼泽地等连成一线, 山脊和水系发生明显的左旋位移等现象到处可见, 在航 卫片上十分醒目. 笔者对这些断错现象进行了较系统的测量. 在火烧台河流 II 级阶地(图2)的 垂直位错量为 4.4 m, 左旋水平位错量为 18.7 m, 二者比值为 1:4.25, 表明该断裂以左旋走滑 运动为主.

笔者在该断裂段上挖掘了3个地质探槽(图1).这3个地质探槽都清楚地揭示了断面的存在<sup>[4]</sup>.如在天桥沟I号探槽的西壁,可清楚地见到断裂断错日级阶地及其以前的冲洪积砾石层(图3),断面走向为 N70°W,倾向 SW,倾角 64°.在断面南侧见厚 1~2 m 的黑色断层泥.断面上的斜擦痕向 SW 侧伏,侧伏角为 20°~23°.断面二侧断层泥上部的冲洪积砾石层垂直错距为 7.9 m.依据公式  $BC = \frac{AE}{\sin \alpha \cdot \mathrm{tg}\beta}(BC:水平位错量;AE:垂直位错量;\alpha:断面倾角;\beta:擦痕角)$ 可计算出其水平位错量为 22.13 m.

该断裂通过哈徯河Ⅱ级阶地处,形成了3m高的呈南高北低的断坎.通过探槽揭露,见Ⅱ级阶地砾石层被断错,并使砾石层发生牵引褶曲.断面走向 N85°W,倾向 SW,倾角 41°.根据对断层上覆盖层中的 TL 样品测试,其形成年代为距今(1.02±0.08) / 10<sup>4</sup> 年,表明该断裂最新一次活动的时代应在全新世早期.

在火烧台、天桥沟、黄草沟和哈溪河等地,在断裂通过处河流1级阶地和高河漫滩都没有 错动的迹象,说明该断裂段在全新世中晚期以来没有活动。

1.2 南泥沟阶区

天桥沟断裂段与黄羊川断裂段在关家台和南泥沟之间不连续,二者呈左旋左阶排列,中间

Fig. 1 The plane distribution of Tianipaogou - Huangyangchuan fault and neighbouring geomorphological units.

形成一小型拉分盆地(图 1). 盆地北侧为下志留统灰绿色浅变质中基性火山岩, 南侧为上石炭 统砂页岩和中奥陶统灰岩, 中间为一近 EW 走向的狭窄的盆地, 盆地与南北二侧山体的高差 在 100 m 以上. 该盆地阶距为 250~500 m, 阶区长 2.5 km, 阶区内沉积了中上更新统黄土和 冲洪积砂砾层, 表明该阶区的形成时代应为早更新世末或中更新世初.



图 2 火烧台断错地貌实测平面图 Fig 2 Duplacement of geologic units at Huoshaotat. 1 断层; 2 断层陡软; 3 断层沟槽; 4 古流水线; 5 現今流水线; 6 I 级阶地前缘; 7 II 级阶地前缘



图 3 天桥沟 1 号探槽西壁剖面素描图

Fig. 3 Sketch of west wall of No.1 prospecting trench at Tranqiaogou.
① 灰绿色挤压破碎带; ② 桔黄色砾石层,含巨砾; ③ 桔黄色砂砾层,较①层松散;
4-1 灰黑色粗粒砾石层; 4-2 中粒浅灰黑色砂砾层; 4-3 灰黑色细粒砂砾层;
4-4 灰黑色砾石层,无层理; ⑤ 灰色粗砾砂砾层; ⑥ 灰色中粒砂砾层;
⑦ 桔红色含砂砾强烈挤压带; ⑧ 灰黑色断层沉; ⑨ 人工堆积砂砾; F<sub>1</sub>; 断面及编号

第21卷

262

### 1.3 黄羊川断裂段

该断裂段发育在中低黄土丘陵区,西起关家台的东侧,向东经南泥沟、小石头沟、唐家岭、 古浪河、黄羊川北侧、香水泉,止于秦家大山西侧的夹皮沟,长45 km,总体走向 N80°E,倾向 NW,倾角65°~85°(图1).

该断裂段在古浪河(十八里铺)以西,主要发育在早古生代地层与白垩纪地层之间和下白 垩统与上更新统黄土、砂砾层之间.沿断裂走向,断层沟槽、平台、断坎和山脊走向左旋位错等 微地貌现象十分普遍.断层沟槽和平台多发生在山腰上,宽10~30 m,长数百米.山脊和水系 的左旋位错量多为40~150 m,最大为460 m,位于断裂东段的干沟处.在小石头沟处,Ⅰ~Ⅲ 级洪积扇发生明显的左旋位错,总位错量为46 m(图4).在古浪河东侧的栒子沟处,山脊和冲 沟的左旋位移量达 74 m(图 5).



±断层线;2断层陡坎;3洪积扇;4流水线;

5 洪积扇中线; 6 探槽位置





在古浪河的东西两岸,可清楚地见到下白垩统紫红色砂岩中的挤压破碎带,宽度大于 30 m. 靠近断面处可见到 1~2 m 宽的紫红色断层泥. 断面较平直,走向 N70°E,上部倾向 SE,下 部倾向 NW,倾角 65°~82°,总体显示正断层特征(图 6). 断面南侧下白垩统砂砾岩近于直立,挤压破碎强烈. 断面北侧为古浪河阶地砾石层,厚度大于 20 m,靠近断面处有明显的牵引现象,并有紫红色断层泥嵌入其间. 在断面上部可见到斜擦痕,向 SE 侧伏,侧伏角为 19°~20°,表明该断裂以水平运动为主. 阶地砾石层的上部为一层厚 1~2 m 的黄土层,在其底部采得的 TL 样品年代为距今(1.05±0.08)×10<sup>4</sup> 年,表明该断裂最后一次的活动时代为全新世早期.



为了较准确地确定该断裂最新一次活动的时间,笔者在小石头沟口东侧挖掘了一个地质探槽.探槽剖面清楚地揭示了断面走向为 N85°E,倾向 NW,倾角 51°.沿断面砾石呈定向排列,断面北侧的砾石层有明显的牵引现象(图7).断面上部被碎石崩积楔和砂土覆盖,通过对崩积楔中<sup>14</sup>C 样品的测试,其形成年代为距今(0.759±0.01) > 10<sup>4</sup>年表明该断裂最晚一次活动的时间应在距今 0.759 > 10<sup>4</sup>年以前.即全新世早期.



① 灰色砂砾层;
 ② 灰色中细粒砂砾层;
 ③ 含巨砾砾石层夹土层;
 ④ 残坡积碎石层;
 ⑤ 灰黑色砂土层;
 ⑥ 冲洪积砾石层;

2 晚更新世以来天桥沟一黄羊川断裂的运动学特征

### 2.1 断错微地貌证据

笔者对 86 km 长的断裂带进行了系统地测量,共获得 80 组水平位错数据和 17 组垂直位 错数据(表1、表2).由表1 和表2 中可以看出:① 断裂位错的标志主要是晚更新世以来的新 地层的断错,其中大量的是冲沟、河流的左旋位错.位错分布比较均匀.垂直位错量主要集中在 天桥沟断裂段上,表现为Ⅱ、Ⅲ级阶地的垂直位错.由于黄羊川断裂段位于人口稠密的黄土丘 陵区,由于人为因素,其垂直位移量不易辨认,因此,这方面的数据没有列入表中;② 无论是水 平位错量,还是垂直位错量,其量值的大小与断错地层的形成年代成正比关系,即地层形成的 年代愈老,其断错量愈大.如最新地层 Q<sup>1</sup>4 的位错量为 10~50 m, 而较老地层 Q<sup>1</sup>3 的位错量为 420~460 m.

## 2.2 断裂活动年代的确定

笔者在5个地质探槽的剖面和多条河流阶地上采集了18个TL样品和5个<sup>14</sup>C样品,并进行了测试<sup>4</sup>.参照该断裂带北侧黄羊河(哈溪河下游)、杂木河(天桥沟下游)和直沟河 I~ W 级阶地上14个TL样品的测试结果<sup>\*</sup>,共获得37个有关天桥沟一黄羊川断裂带活动年代的数据(表3、表4).依据这些测试数据,可以确定该断裂带晚更新世以来不同级别位错量(表1、表2)发生的时间,同时可以确定其最后一次活动的时间在距今0.759×10<sup>4</sup>~1.02×10<sup>4</sup>年,即全新世早期.

## 2.3 晚更新世以来的滑动速率

2.3.1 计算方法

笔者采用了闻学泽提出的断层滑动速率均值及其误差的计算方法<sup>[5]</sup>,其要点如下: 断层的平均滑动速率;

$$v = \frac{\overline{U}}{\overline{t}} \tag{1}$$

式中:  $\overline{U}$  为地质地貌单元平均累积位移量, t 为起始位移至今的平均绝对时间. 即

$$\overline{U} = \frac{1}{n} \sum_{i=1}^{n} U_i; \quad t = \frac{1}{n} \sum_{i=1}^{n} t_i$$

<sup>\*</sup> TL 样品由中国地震局地质研究所 TL 实验室鉴定;14C 样品由兰州大学14C 实验室鉴定。

| 244 | 2.4 | 46 |
|-----|-----|----|
| я÷  | 21  | 不  |

|    |               |       | 位移       | <u>∰</u> /m | 断错地                           | inte con |    | (A THE ILL IN |       | 位移   | <b>₫</b> /m | 断错地                                    | 11 at 1 |
|----|---------------|-------|----------|-------------|-------------------------------|----------|----|---------------|-------|------|-------------|----------------------------------------|---------|
| 猫兮 | 位移地点          | 做销断怀志 | 水平       | 垂直          | 层年代                           | 稍度       | 骗亏 | 证移地点          | 数钼矿协运 | 水平   | 垂直          | 层年代                                    | 悄哎      |
|    | 红腰岘西          | 冲沟    | 59       |             | $Q_3^1$                       | в        | 28 | 直沟西           | 冲沟    | 130  |             |                                        | В       |
| 2  | 红腰岘东          | 中沟    | 33       | _           | $\mathbf{Q}_{4}^{1}$          | в        | 29 | 直沟西           | 冲沟    | 40   | -           | $Q_3^3$                                | А       |
| 3  | 红腰岘东          | 冲沟    | 20       |             | $\mathbf{Q}_{4}^{1}$          | А        | 30 | 直沟西           | 冲沟    | 35   |             | $\mathbf{Q}_4^1$                       | В       |
| 4  | 红腰岘东          | 山脊    | 24       | _           | $\mathbf{Q}_3^1$              | В        | 31 | 直沟西           | 冲沟    | 140  | —           | $Q_3^3$                                | в       |
| 5  | 豺狼沟西          | 冲沟    | 70       | _           | _                             | в        | 32 | 直沟            | 冲沟    | 46.3 | —           | $\mathbf{Q}_{4}^{1}$                   | A       |
| 6  | 豺狼沟           | 冲沟    | 38       | _           | $\mathbf{Q}_{\mathbf{I}}^{1}$ | Б        | 33 | 直沟东           | 冲沟    | 7.5  |             | $\mathbf{Q}_{4}^{1}$                   | А       |
| 7  | 豺狼沟东          | 冲沟    | 150      |             | $\mathbf{Q}_3^1$              | в        | 34 | 直沟东           | 冲沟    | 70   |             | $Q_3^1$                                | в       |
| 8  | 杨家湾           | 冲沟    | 25       | 7.2         | <u> </u>                      | А        | 35 | 直沟东           | 冲沟    | 103  | —           |                                        | в       |
| 9  | 杨家湾东          | 台地    | <u> </u> | 9           | $\mathbf{Q}_3^1$              | в        | 36 | 直沟东           | 冲沟    | 110  | _           |                                        | в       |
| 10 | 双龙改珠东         | 山脊    |          | 13          | $Q_3^3$                       | в        | 37 | 直沟东           | 冲沟    | 23 9 | _           | $\mathbf{Q}_{4}^{1}$                   | A       |
| 11 | 双龙戏珠东         | 台地    |          | 20          | Qi                            | в        | 38 | 六道石河西         | 冲沟    | 140  | —           |                                        | в       |
| 12 | 双龙戏珠东         | 冲沟    | 128      | _           | $Q_3^3$                       | в        | 39 | 六道石河西         | 冲沟    | 271  | —           | _                                      | в       |
| 13 | 火烧台西          | 冲沟、台地 | 130      | 13          | $\mathbf{Q}_3^3$              | в        | 40 | 六道石河西         | 冲沟    | 46.3 |             | $\mathbf{Q}_{4}^{1}$                   | A       |
| 14 | 火烧台西          | 冲沟    | 22       |             | $\mathbf{Q}_{4}^{l}$          | A        | 41 | 石灰沟           | 冲沟    | 15   |             | $Q_4^1$                                | А       |
| 15 | 火烧台西          | 冲沟    | 20       | —           | $\mathbf{Q}_{4}^{1}$          | А        | 42 | 磨台子           | Ⅱ级阶地  | 20   | 3.5         | $\mathbf{Q}_{4}^{1}$                   | A       |
| 16 | 火烧台           | Ⅱ级阶地  | 18.7     | 4.4         | $\mathbf{Q}_{4}^{1}$          | А        | 43 | 前进村           | 阶地    | 18 2 | _           | $\mathbf{Q}_{4}^{!}$                   | A       |
| 17 | 火烧台东          | Ⅱ级阶地  |          | 2.1         | $\mathbf{Q}_4^1$              | А        | 44 | 黑沟            | Ⅱ级阶地  | 41   | 2.7         | $\mathbf{Q}_{4}^{1}$                   | A       |
| 18 | 火 <b>烧</b> 台东 | 冲沟    | 20       | _           | $\mathbf{Q}_4^1$              | А        | 45 | 黑沟东           | 冲沟    | 27   | _           | $Q_4^1$                                | A       |
| 19 | 火烧台东          | Ⅱ级阶地  | _        | 2.6         | $\mathbf{Q}_{4}^{1}$          | А        | 46 | 长岭沟           | 冲沟    | 109  |             | Q                                      | A       |
| 20 | 火 <b>烧</b> 台东 | Ⅱ级阶地  | _        | 3.4         | $Q_4^1$                       | А        | 47 | 长岭沟东          | 冲沟    | 32   |             | $\mathbf{Q}_{\mathbf{I}}^{\mathbf{I}}$ | А       |
| 21 | 天桥沟           | Ⅱ级阶地  | _        | 2.1         | $Q_4^1$                       | А        | 48 | 大石沟西          | 冲沟    | 20   | _           | $\mathbf{Q}^{1}$                       | A       |
| 22 | 天桥沟           | Ⅲ级阶地  |          | 7.9         | Q                             | А        | 49 | 大石沟           | 山脊    | 33.4 | —           | Q                                      | A       |
| 23 | 黄草沟           | Ⅱ级阶地  |          | 1.8         | $\mathbf{Q}_{4}^{1}$          | A        | 50 | 大石沟东          | 山脊    | 40.9 | _           | Q                                      | А       |
| 24 | 黄草沟东          | 山脊    | 13       |             |                               | в        | 51 | 大石沟东          | 冲沟    | 31   | _           | Q                                      | А       |
| 25 | 黄草沟东          | 冲沟    | 70       |             | $Q_3^3$                       | в        | 52 | 大石沟东          | 冲沟    | 33   |             | Q                                      | А       |
| 26 | 黄草沟东          | 中沟    | 85 6     |             | Q                             | в        | 53 | 关家台南          | 冲沟、台地 | 22.5 | 37          | $\mathbf{Q}_{i}^{i}$                   | А       |
| 27 | 黄草沟东          | 冲沟    | 83.8     |             | $Q_3^1$                       | в        | 54 | 关家台南          | 台地    | _    | 3.9         | $\mathbf{Q}_{\mathbf{I}}^{1}$          | A       |

表 1 天桥沟一黄羊川断裂带天桥沟段水平、垂直位错统计表

表 2 天桥沟一黄羊川断裂黄羊川段水平、垂直位错统计表

| 化皂 的数曲占    |       | 苯磺酸钙苯 | 2. 教业上 本供收结本 | 位移       | <u></u> ∰/m                   | 断错地          | क्रेडी होट | 论县         | 估税业业  | · · · · · · · · · · · · · · · · · · · | 位移 | <b>∄</b> /m          | 断错地 | ide die |
|------------|-------|-------|--------------|----------|-------------------------------|--------------|------------|------------|-------|---------------------------------------|----|----------------------|-----|---------|
| 调写         | 世移地息  | 数相断协志 | 水平           | 垂直       | 层年代                           | 悄皮           | 细丁         | 亨 证移地尽     | 做莆町你志 | 水平                                    | 垂直 | 层年代                  | 们使  |         |
| 55         | 南泥沟   | 冲沟    | 350          | _        | Q                             | В            | 73         | 王家河东       | 冲沟    | 73                                    |    | Q3                   | В   |         |
| 56         | 小石沟   | 冲沟    | 46           | 1.85     | $\mathbf{Q}_{4}^{1}$          | А            | 74         | 王家河东       | 冲沟    | <b>8</b> 6,6                          |    | Q                    | A   |         |
| 57         | 白塔村   | 冲沟    | 102          | <u> </u> | $Q_3^2$                       | В            | 75         | 东山沟        | 冲沟    | 97                                    |    | $Q_3^3$              | в   |         |
| 58         | 白塔村北  | 中沟    | 84           |          | $Q_3^2$                       | В            | 76         | 东山沟东       | 冲沟    | 52.5                                  | _  | $Q_3^3$              | Α   |         |
| 59         | 白塔村北  | 冲沟    | 84           | _        | $Q_3^3$                       | В            | 77         | 栒子沟        | 冲沟    | 74                                    |    | $Q_3^3$              | А   |         |
| 60         | 白塔村南  | 冲沟    | 68           |          | $Q_3^3$                       | в            | 78         | 东山沟        | 冲沟    | 258                                   |    | $Q_3^2$              | в   |         |
| 61         | 白塔村南  | 冲沟    | 23           |          | $\mathbf{Q}_{4}^{1}$          | А            | 79         | 魏家沟        | 冲沟    | 135                                   | _  | $Q_3^3$              | Α   |         |
| 62         | 白塔村南  | 冲沟    | 18.2         | —        | $\mathbf{Q}_{\mathbf{I}}^{1}$ | А            | 80         | 芦家湾北       | 冲沟    | 70.4                                  | —  | Q}                   | В   |         |
| 63         | 白塔村东  | 冲沟    | 64           | —        | $Q_3^3$                       | в            | 81         | 芦家湾东       | 冲沟    | 105.5                                 |    | $\mathbf{Q}_{3}^{3}$ | В   |         |
| 64         | 刘家地沟  | 冲沟    | 112          | —        | $Q_3^3$                       | в            | 82         | 桦儿岭沟西      | 冲沟    | 107                                   |    | $Q_{3}^{3}$          | В   |         |
| 65         | 刘家地沟东 | 冲沟    | 121          |          | $Q_3^3$                       | $\mathbf{B}$ | 83         | 桦儿岭沟东      | 冲沟    | 56.7                                  | —  | $\mathbf{Q}_{3}^{3}$ | Α   |         |
| 66         | 刘家地沟东 | 中沟    | 46           | _        | $\mathbf{Q}^1_{6}$            | A            | 84         | 桦儿崎沟东      | 冲沟    | 110                                   | —  | $Q_3^3$              | В   |         |
| 67         | 刘家地沟南 | 冲沟    | 55.8         |          | $Q_3^3$                       | А            | 85         | 北湾东        | 冲沟    | 98.3                                  | —  | $Q_{j}^{3}$          | в   |         |
| 6 <b>8</b> | 刘家地沟南 | 冲沟    | 102.8        | _        | $Q_3^3$                       | Α            | <b>8</b> 6 | 旬子沟        | 冲沟    | 91                                    |    | $Q_3^3$              | в   |         |
| 69         | 刘家地沟南 | 冲沟    | 84           | <u> </u> | $Q_3^3$                       | в            | 87         | 大庄子北       | 冲沟    | 44                                    | _  | $\mathbf{Q}_{1}^{i}$ | В   |         |
| 70         | 唐家岭东  | 山脊    | 147.7        | _        | $Q_3^3$                       | в            | 88         | 干沟         | 冲沟    | 460                                   | —  | $Q_3^1$              | В   |         |
| 71         | 唐家岭东  | 山脊    | 126.1        | —        | $Q_3^3$                       | в            | 89         | 冰草沟        | 冲沟    | 426                                   | —  | $Q_3^1$              | в   |         |
| 72         | 韩家山东  | 冲沟    | 106          |          | $Q_3^3$                       | В            | 90         | <u>王家沟</u> | 冲沟    | 427                                   |    | $\mathbf{Q}_3^1$     | В   |         |

- - - -

ı

.

.

## 表 3 天桥沟-黄羊川断裂带热释光年龄测试数据

| 野外编号        | 室内编号           |                     | 样品名称 | 距今年龄/ka             |
|-------------|----------------|---------------------|------|---------------------|
| 93TL1       | TR509          | 天桥沟 [ 号探槽第3 层底部     | 砂土   | 22.7±1 8            |
| 93TL2       | TR510          | 天桥沟Ⅰ号探槽第 4-1 层底部    | 砂土   | $16.8\pm1$ 4        |
| 93T1.3      | TR511          | 天桥沟Ⅰ号探槽第 4-3 层底部    | 砂土   | 17.77±1.2           |
| 93TL4       | TR512          | 天桥沟⊥号探槽第6层顶部        | 砂土   | 10.4±1.2            |
| 93TL5       | TR513          | 天桥内Ⅱ号探槽第5层底部        | 砂土   | 27.7±2 2            |
| 93TL6       | TR514          | 天桥沟Ⅱ号探槽第 10 层底部     | 砂土   | 20.9±1 7            |
| 93TL7       | TR515          | 天桥沟Ⅱ号探槽第 11 层底部     | 崩积层  | $10 \ 07 \pm 0 \ 8$ |
| 93TL8       | TR516          | 磨台子↓级阶地上部           | 砂土   | $10.05 \pm 0.8$     |
| 93TL9       | TR517          | 磨台子 [[级阶地顶部         | 砂土   | $10.02 \pm 0.8$     |
| 93TL10      | TR518          | 古浪河Ⅳ级阶地上部           | 砂土   | $22.3 \pm 1.8$      |
| 93 TL11     | TR519          | 古浪河區级阶地上部           | 砂土   | $21.7 \pm 1.7$      |
| 93TL12      | TR520          | 古浪河Ⅱ级阶地顶部           | 黄土   | 10.5±08             |
| 93TL13      | TR521          | 火烧台1级阶地上部           | 砂土   | 7.8±06              |
| 93TL14      | TR522          | 火烧台Ⅱ级阶地上部           | 砂土   | 14 0±1 1            |
| 93TL15      | TR523          | <b>黄草沟Ⅰ</b> 级阶地上部   | 砂土   | $5.8 \pm 0.4$       |
| 94TL1       | TR1070         | 东山沟汇级阶地砾石层顶部        | 砂土   | $25.3 \pm 2.0$      |
| 94T1.2      | TR1071         | 魏家河Ⅳ级阶地砾石层顶部        | 砂土   | 59.2±4.7            |
| 94TL3       | TR1072         | 东山沟[级阶地砾石层顶部        | 砂土   | 18.9±1.5            |
| R01         | TR73           | 黄羊河Ⅳ级阶地砾石层顶部        | 含砾砂土 | $39.2 \pm 3.1$      |
| R03         | T <b>R7</b> 4  | 黄羊河Ⅰ级阶地砾石层顶部        | 砂土   | 13.1±1.0            |
| <b>R</b> 04 | TR75           | 黄羊河Ⅱ级阶地砾石层顶部        | 砂土   | 19.8±1.5            |
| R05         | TR76           | <b>黃羊河Ⅲ级阶地砾石层顶部</b> | 含砾砂土 | 30.6±2 4            |
| R06         | <b>TR77</b>    | 黄羊河 🗸 级阶地砾石层顶部      | 含砾砂土 | $58.9 \pm 4.6$      |
| R07         | T <b>R76</b>   | 黄羊河虹级阶地砾石层顶部        | 含砾砂土 | 85.3±6.7            |
| R08         | T <b>R79</b>   | 黄羊河¶级阶地砾石层顶部        | 含砾砂土 | $111.3 \pm 8.7$     |
| TLD1        | T <b>R94</b> 0 | 杂木河Ⅰ级阶地砾石层顶部        | 砂土   | 4.33±0 36           |
| T1.D2       | TR941          | 杂木河Ⅳ级阶地砾石层顶部        | 砂土   | 14.89±1.18          |
| TLD3        | TR942          | 杂木河Ⅳ级阶地砾石层顶部        | 砂土   | 36.7±2.97           |
| TLD5        | TR944          | 直河Ⅲ级阶地砾石层顶部         | 砂土   | 17.54±1.42          |
| TL.D6       | TR945          | 直河1级阶地碎石层頂部         | 砂上   | 5.15±0 42           |
| TLD7        | T <b>R</b> 946 | 直河 [] 级阶地砾石层顶部      | 砂土   | 4.43±0.36           |
| TLD8        | TR947          | 皇城盆地Ⅴ级阶地砾石层顶部       | 砂土   | 56 35±4 4           |

## 表4 天桥沟-黄羊川断裂带<sup>14</sup>C年龄测试数据

| 野外编号 |        | 采样地点           | 样品名称 | 距今年齡/a        |
|------|--------|----------------|------|---------------|
| 93-1 | 93-53B |                | 淤泥   | 7 980 ± 130   |
| 93-2 | 93-54B | 火烧台1级阶地顶部      | 黑色淤泥 | $3050 \pm 70$ |
| 1    | 93-50B | 小石头沟口探槽第 5 层上部 | 黑色土壤 | $1\ 070\pm40$ |
| 11   | 93-51B | 小石头沟口探槽第4层上部   | 土壤   | 7 590 ± 100   |
| Ш    | 93-52B | 小石头钩口探槽第6 层下部  | 土壤   | $850 \pm 57$  |

在野外观测与测量过程中 $\overline{U}$ 和t均含有误差,致使v也会携带误差,所以需要计算 $\overline{U}$ 、t和v的标准差 $S_{\overline{U}}$ 、 $S_t$ 和 $S_v$ :

$$S_{\bar{U}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (U_i - \bar{U})^2}$$
(2)

$$S_{I} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} S_{i}^{2}}$$
(3)

$$S_v = v \sqrt{\delta_U^2 + \delta_I^2} \tag{4}$$

式中:δ<sub>77</sub>和δ,为变异系数,

$$\delta_{\overline{U}} = \frac{S_{\overline{U}}}{U} \tag{5}$$

$$\delta_{I} = \frac{S_{I}}{I} \tag{6}$$

2.3.2 计算结果

依据天桥沟一黄羊川断裂上的水平和垂直位错量(表1、表2)、断代样品测试结果(表3、 表4)和上述6个公式,便可计算出该断裂带晚更新世以来的滑动速率,如表5所示。

| 表 5 | 天桥沟ー | <b>蚩羊川断裂带睁更新世以来滑动</b> 烫  | 氢蜜统计表 |
|-----|------|--------------------------|-------|
|     |      | マーナー ゆうぶ いんしょう にいく 小田 うえ |       |

| n# 6=1                         | 黄羊川断裂段滑起       | ]].<br>边速率/[mm•a <sup>−1</sup> ] |                |                |  |  |
|--------------------------------|----------------|----------------------------------|----------------|----------------|--|--|
| 0.1 (P)                        | 水平             |                                  | 水平             | 垂直             |  |  |
| 晚更新世早期                         | 4.6±0.2        |                                  |                |                |  |  |
| 晚更新世中期                         |                |                                  |                |                |  |  |
| 晚更新世晚期                         | $4.5 \pm 0.2$  |                                  | $4.9 \pm 0.2$  | $0.4 \pm 0.06$ |  |  |
| 晚更新世末期                         | -              |                                  | 4.3±0.15       | —              |  |  |
| $(1.68 \times 10^4 \text{ a})$ |                |                                  |                |                |  |  |
| 全新世早期                          | $4.1 \pm 0.15$ | $0.2 \pm 0$ 02                   | $2.9 \pm 0.07$ | $0.3 \pm 0.01$ |  |  |
| 全新世晚期                          |                |                                  |                | -              |  |  |

从表 5 中可以看出,该断裂带晚更新世以来以水平走滑运动为主,倾滑分量较小.断裂活动在时间和空间上都存在着明显的不均匀性.在空间上,天桥沟断裂段晚更新世以来的水平和 垂直滑动速率较大,分别为(4.9±0.2) mm/a 和(0.4±0.06) mm/a;在时间上,从晚更新世早 期至全新世早期,其水平和垂直滑动速率都有由大变小的趋势.如从晚更新世晚期至全新世早 期天桥沟断裂段的水平滑动速率从 4.9 mm/a 逐渐减少到 2.9 mm/a,说明该断裂带的活动强 度有逐渐减弱之势.

#### 2.4 断裂带的活动性质

从天桥沟一黄羊川断裂切割的最老地层是中奥陶统和加里东中期花岗闪长岩(783)及花 岗岩(73)的分布受该断裂控制等现象分析,该断裂的形成时代应不晚于奥陶纪初.自古生代早 期以来,该断裂的活动和演化过程与祁连山一河西走廊地区的构造演化过程是一致的<sup>[3]</sup>.在 中更新世(Q<sub>2</sub>)末和晚更新世(Q<sub>3</sub>)初,该断裂的活动性质由原来的以压性为主转变为以左旋走 滑为主.如在天桥沟断裂段的火烧台处,断裂断错河流 II 级阶地,左旋走滑位移量与垂直位移 量之比为 4.25:1;又如在天桥沟和古浪河处,在断面上均可见到斜擦痕,其侧伏角为 19°~ 23°,亦说明断裂的活动以水平运动为主.

天桥沟一黄羊川断裂带在中更新世末和晚更新世初其活动性质转变为以左旋走滑为主, 说明这一时期祁连山和青藏高原东北部地区的区域构造应力场发生了重大的改变.这一变化 的主要标志是,区域构造主压应力方向转变为 NE-SW 或 NEE-SWW 向.在这一主压应力的作 用下、祁连山和青藏高原东北部地区的 NWW 走向的活动断裂带大都显示出左旋走滑兼压性 特征,如海原断裂带、昌马断裂带和库玛断裂带等;而 NEE 走向的断裂带则显示出张性兼左旋 走滑性质<sup>[6]</sup>.由于天桥沟一黄羊川断裂带的天桥沟段走向 NWW,因此显示了左旋走滑兼压性 特征,而黄羊川段因其走向为 NEE 则显示正断层兼左旋走滑性质.

## 3 结语

综上所述, 天桥沟一黄羊川断裂带是北祁连山东段全新世中晚期以来相对不活动的一条 断裂带. 在野外调查中未发现 1927 年古浪 8 级地震时该断裂活动的地质证据. 沿该断裂零星 分布的地震滑坡, 尤其是分布在其东段的黄土滑坡应属于古浪大震高烈度区( \\"~\\"区)内 由于地面震动引起的非构造滑坡.

## [参考文献]

- [1] 万夫领. 古浪黄羊川斯裂晚更新世以来活动性初步研究[J]. 西北地震学报, 1987, 9(2):97~100
- [2] 陈志泰,活动断裂带的地质地貌证据及其时空演化[A].见;祁连山一河西走廊地区活动断裂系,北京:地震出版社, 1993.74~119.
- [3] Gaudemer Y, Tapponner P, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan and evidence for a major seismic gap, the 'Tianzhugap' on the western Haiyuan fault, Gansu (China)[J]. Geophys J Int, 1995, 120: 599-645.
- [4] 载华光,陈永明,苏向洲、等,天桥沟一黄羊川活动断裂的古地震研究[A]见:活动断裂研究(4).北京:地震出版社, 1995.92~98.
- [5] 闻学泽,活动断裂地震潜势的定量评估[M],北京:地震出版社,1995.
- [6] 戴华光,贾云鸿,苏向洲,等.青藏高原东北缘最新构造变形的初步研究[J].地质力学学报,1996,2(4):15~20.

## GEOMETRY AND KINEMATICS CHARACTERISTICS OF TIANQIAOGOU-HUANGYANGCHUAN ACTIVE FAULT ZONE

DAI Hua-guang, CHEN Yong-ming, SU Xiang-zhou, LIU Hong-chun (Lanzhou Institute for Seismology, CSB, Lanzhou 730000, China)

#### Abstract

According to data of field geological investigation, geometry and kinematics characteristics of Tianqiaogou – Huangyangchuan active fault zone since later Pleistocene are described in detail. The fault zone may be divided into Tianqiaogou segment showing inverse left-lateral strike-slip nature and Huangyangchuan segment showing normal left-lateral strike-slip nature. Main active period of the fault zone is Pleistocene and its slip rate is  $4 \sim 5$  mm/a. In early Holocene, its active strength gradually became low, and the latest palaeoearthquake on the fault occurred  $0.759 \times 10^4 \sim 1.02 \times 10^4$  years ago.

Key words: Gansu; Active fault zone; Strike slip fault; Tianqiaogou – Huangyangchuan active fault zone; Fault segmentation; Slip rate