赵利伟,孙玉稳,张健南,等.一次基于飞机探测的降雪云系微物理特征研究[J].沙漠与绿洲气象,2023,17(3):66-70. doi:10.12057/j.issn.1002-0799.2023.03.009

开放科学(资源服务)标识码(OSID):

·次基于飞机探测的降雪云系微物理特征研究

赵利伟,孙玉稳*,张健南,孙啸申,舒志远,李政昊 (河北省人工影响天气中心,河北省 石家庄 050000)

摘 要:利用一架搭载云和降水粒子探头的国王 350 飞机对 2020 年 1 月 5 日邢台皇寺上空 降雪云系的微物理特征进行探测和分析。结果表明:飞机探测时段处于系统发展初期阶段,同一 位置垂直上升阶段和垂直下降阶段云微物理特征差距较大;云体结构不均匀,表现为云粒子在垂 直高度上呈多层分布,中间有夹层。4300~3100 m高度层的过冷水含量最丰富,峰值达0.3 g/m3, 对应温度约-9℃。过冷水丰富区出现在逆温层上方,该层最适合开展碘化银增雪作业。

关键词:云微物理:飞机探测:降雪云系

推动人工影响天气高质量发展,提高人工增雪 技术是必然要求。其中,云微物理结构是人工增雪领 域的重要研究内容。受大气动力和热力影响,云内 潜热释放促使热力抬升、云粒子和冰相粒子的形成 及增长等微物理变化,最终影响降水过程和降水 量[1-3]。因此深入了解降雪云系的微物理结构特征可 为人工增雪提供技术支持。

目前国内已有很多基于飞机探测的云微物理特 征研究以及人工增雨/雪作业条件和作业效果等方 面的研究。在云微物理结构特征分析方面,庞朝云 等。利用机载粒子探测系统对甘肃省中部一次降水 性天气过程进行空中观测,发现低层云滴浓度和含 水量大于上层,而平均直径小于上层;周黎明等6利 用云垂直探测资料,对比分析吉林省两次不同天气 系统下云系的微物理特征,发现高空槽影响下的 As 云中云滴数浓度最大值比冷涡影响的 As-Sc 云系 高一倍;李义宇等¹⁶利用机载云粒子探测(DMT)等

收稿日期:2021-08-12;修回日期:2022-05-14

资料分析了山西省一次降水过程云系的微观特征, 发现层状云在垂直方向和水平方向均存在不均匀 性。在作业条件分析方面,孙玉稳等四利用河北省飞 机作业资料,得到适宜增雨作业的云系为中、低或 高、中、低搭配的层状云;刘伟等18利用冬季一次低 槽冷锋天气系统的云粒子探测资料,分析得出系统 初期层状云云顶过高、温度过低时,层状云为不可播 云。随槽线东移,风速中心高度降低,层状云转变为 可播云;唐林等¹⁹采用云参数方案的 MM5 中尺度模 式对湘南地区受"尤特"台风外围云系影响的一次典 型积层混合云降水过程进行数值模拟,得到积层混 合云的发展前期 450 hPa 附近最有利于人工增雨催 化。在作业效果分析方面,祁红彦等^[10]基于地基碘化 银发生器工作原理,在西岭雪山山区布设合理的作 业点进行远程遥控催化人工增雪作业,降雪量最大 可增加 22%;李斌等四利用克拉玛依地区气象站历 年降水量观测资料,对开展冬季飞机人工增雪作业 12月前后降水量进行系统性差异分析,得出开展冬 季飞机人工增雪作业后克拉玛依市冬季 12 月降水 量平均值增加了 2 mm;郑博华等¹¹²利用新疆两个气 象观测站(对比区和目标区)的历史降水量资料,分 析得到开展人工增水作业的目标区平均年12月降 水量相对增加率比对比区高 9.5%。

上述对云微物理结构特征的研究大多是针对降

基金项目:河北省省级科技计划(20375402D);河北省气象局青年基 金(18ky33)

作者简介:赵利伟(1991一),男,工程师,主要从事人工影响天气研 究。 E-mail: <u>1337767342@qq.com</u>

通信作者:孙玉稳(1963—),女,正高级工程师,主要从事人工影响天 气研究。E-mail: syw2141@sina.com

雨过程,对降雪过程的研究也多集中在对增雪作业 条件和作业效果的分析上,而对降雪云系的微物理 结构特征分析相对较少。本文对 2020 年 1 月 5 日邢 台皇寺上空降雪云系的飞机探测资料进行深入分 析,得到有西南暖湿气流在冷垫上爬升时降雪过程 的云微物理特征,得出适宜催化的高度层,提高了对 降雪云系微物理特征的认识,从而为人工增雪作业 提供参考。

1 研究方法

1.1 机载探测仪器

空中国王 350 飞机上加装了先进的云和降水粒 子探测设备,包括云粒子探头(CDP)、云降水粒子组 合探头(CIP)、云粒子成像组合探头(CPI)、高体积降 雨分光仪(HVPS)、综合气象要素探头(AIMMS-200)和总含水量传感器(Nevzorov LWC/TWC)等。各 个设备的主要探测内容、测量范围、分档数、分辨率 以及生产厂家情况如表1所示。

1.2 观测数据处理

对所有数据都进行了质量控制。一方面,在单个 数据点检查中修正、剔除了异常数据;另一方面,在 计算冰晶浓度时,删除了影响冰晶浓度的 100 μm 以下的小粒子。

CDP 探头探测的云粒子数浓度计算公式¹¹³如下:

$$N = \sum \Delta D_i N_i . \tag{1}$$

式中: N_i 为第 i通道粒子的数浓度(单位:个·cm⁻³), D_i 为第 i通道粒子的中值直径(单位: μ m)。

CIP 探头探测的冰晶粒子数浓度计算公式^[13]如下:

$$N = \sum \Delta D_i N_i \quad . \tag{2}$$

式中: N_i 为第i通道粒子的数浓度(单位:L⁻¹), D_i 为第i通道粒子的中值直径(单位: μ m);其中, $i \ge 5$ 。

2 天气过程及飞机探测概况

2.1 天气形势概况

2020年1月5日08时地面高压中心位于河北 北部地区,河北中南部处于高压底部,冷空气随东北 气流向太行山东麓汇聚,在山前形成冷垫。此时 850 hPa为东南风,东南暖湿气流在冷垫上爬升,在 河北中南部形成大范围的低云。高压脊线刚经过河 北地区,河北西部转为西南风。在槽前动力抬升和地 面冷空气回流的共同作用下,08时开始,河北中南 部陆续出现降水,降水相态为雨转雪。

2.2 飞机探测概况

如图 1 所示,国王 350 飞机 10:37 从正定机场起 飞后爬升到 2 km,平飞 6 min 后再次爬升到2.7 km 平飞到作业区(邢台皇寺)。11:07 到达作业区后开 始进行垂直探测;首先下降到 1 km 高度层,然后在 6 km 高度盘旋上升、6~1 km 盘旋下降,作垂直探 测,整个探测过程均在云中。探测结束后于 14:04 落 地。

图 1 2020年1月5日国王 350 飞机飞行轨迹

3 云系微物理特征

3.1 飞机上升阶段云系微物理特征

飞机盘旋上升阶段 CDP 探测到的云粒子分别 在 1~1.5 km 和 5~6 km 出现浓度大值区,为上下两

表1 探测设备情况

设备名称	主要探测内容	测量范围	分档数/个	分辨率	厂家
云粒子探头(CDP)	云粒子谱	2~50 μm	30	2 µm	DMT
云降水粒子组合探头(CIP)	云冰雪晶粒子谱	12.5~1 550 μm	62	25 μm	DMT
云粒子成像组合探头(CPI)	云滴、冰雪晶、雨滴粒子图像	10~2 000 µm		2.4 µm	SEPC
高体积降雨分光仪(HVPS)	降水粒子谱	150~19 200 μm	61	150 μm	SEPC
综合气象要素探头(AIMMS-200)	空速、高度、攻角、侧滑角、气压、 温度、相对湿度、GPS等			温度:0.3℃	Aventech
总含水量传感器(Nevzorov LWC/TWC)	液水含量、总水含量	$0.005 \sim 3 \text{ g/m}^3$			Nevzorov

层云(图 2a)。云粒子平均数浓度分别为109、 32个/cm³,浓度最大值分别为471、101个/cm³。可见,下 层云的云粒子数浓度高于上层云。机载风速风向探 测和石家庄站风廓线雷达资料显示,5 km 高度层为 偏南风,6 km 高度转为西南风,风速为15 m/s 左 右,风向随高度升高顺时针旋转,表明5~6 km 有 明显暖平流。此外,上下两层云的平均相对湿度分别 达到 96.2%和 97.6%,槽前暖湿输送对云的形成有 重要作用。

从图 2b 可知,飞机盘旋上升阶段 CIP 探测到的 冰晶粒子浓度变化起伏较大,最大数浓度为 28 个/L, 最小数浓度为 1.3 个/L,分别出现在 4 670 和 5 822 m 高度。整个垂直上升阶段均有冰晶粒子分布,其平 均数浓度为 8 个/L。此外,从冰晶粒子谱分布图可以 看出,低层(1~3 km)的冰晶粒子直径小于中高层 (3~6 km)的冰晶粒子直径。

从图 3 可以看出, 低层(1 386 m)主要以小颗粒 状冰晶为主; 中层(3 553 m)>200 μm 的冰晶数量较 多, 从冰晶形态来看存在片状和柱状; 高层(5 229 m) 的冰晶主要以六角片状为主。

由图 2c 可知, 飞机盘旋上升阶段 HVPS 探头探 测到的粒径>150 μm 的降水粒子数浓度变化趋势 与冰晶粒子浓度变化趋势相吻合,最大数浓度为 7 个/L,最小数浓度为 0.28 个/L,分别出现在 5 960 和 4 530 m 高度。整个垂直上升阶段均有降水粒子分 布,其平均数浓度为 1.67 个/L。此外,从降水粒子谱 分布图可以看出,高层(5.5~6 km)降水粒子粒径分 布范围最窄,主要集中在 2 mm 以下;中层(2.5~ 5.5 km)降水粒子粒径分布范围最广,可达 10 mm; 而低层(1~2.5 km)则以 1 mm 的降水粒子为主。

由图 2d 可知,上升阶段温度在-3.2~-18.7 ℃,在 2 164~2 342 m 高度出现 178 m 的逆温层,温度 从-7 ℃上升至-4.4 ℃,逆温强度为14.6 ℃/km。此 外,上升阶段固态水含量丰富,其含量明显大于液态 水含量。整个云层固态水随高度变化曲线呈多峰 分布,平均含量为 0.107 g/m³。相比较而言,中层(2.5~ 5 km)固态水含量最丰富,可达0.3 g/m³;上层(5~6 km) 固态水含量相对较低,在 0.1 g/m³ 以下。而整个云层

图 3 2020年1月5日飞机垂直上升阶段 CPI 图像

中过冷水平均含量仅为 0.024 g/m³,其中高层(5~6 km)和低层(1~1.5 km)过冷水含量相对较高,可达 0.1 g/m³以上。

综上所述,云垂直结构为高层(5~6 km)和低层 (1~1.5 km)均以冰水混合云为主,中间夹层(1.5~ 5 km)则以冰晶为主。

3.2 飞机下降阶段云系微物理特征

图 4a 显示,飞机盘旋下降阶段云粒子分别在 6 064~5 992、5 053~4 643、4 333~3 054 和 2 378~ 1 071 m 出现了浓度大值区,粒子平均数浓度分别 为 48、55、71 和 328 个/cm³,浓度最大值分别为 76、 106、136 和 891 个/cm³。随着高度的下降,云粒子的 浓度逐渐升高,且趋势明显,但中间有夹层。

由图 4b 可知,飞机盘旋下降阶段冰晶粒子浓 度垂直变化呈多峰分布,分别在 6 064~5 222、 4 728~4 572 和 2 456~1 744 m 出现了浓度大值区, 粒子平均数浓度分别为 11、5、9 个/L,浓度最大值分 别为 66、19、23 个/L。表明高层(6 064~5 222 m)和低 层(2 456~1 744 m)的冰晶粒子含量较丰富,中层 (4 728~4 572 m)的冰晶粒子含量相对较少。从其 粒子谱分布图可以看出,冰晶粒子直径主要集中在 500 μ m 以下;且在低层云(2 456~1 744 m)中,冰晶 粒子直径呈随高度降低逐渐减小的趋势。高层 (5 545 m)主要以六角片状冰晶为主,温度为–15.7 °C; 低层(2 395 m)主要以柱状冰晶和少量过冷水为主, 温度为–5.3 °C。

由图 4c 可知,飞机盘旋下降阶段粒径>150 μm 的降水粒子浓度变化趋势与冰晶粒子浓度变化趋势 相吻合,分别在 6 064~5 173、4 653~4 603 和 2 606~ 1 806 m 出现了浓度大值区,粒子平均数浓度分别 为 2.4、0.9 和 2.8 个/L,浓度最大值分别为 7、2 和 10.5 个/L。表明降水粒子主要集中在高层(6 064~ 5 173 m)和低层(2 606~1 806 m)。此外,从其粒子谱 分布可知,在高层降水粒子直径在 1 mm 左右;而在低 层,降水粒子直径随高度降低逐渐从 1 mm 以下增 加至 1.5 mm 左右,表明该层降水粒子在下落的过程 中逐渐长大。

由图 4d 可知, 垂直下降阶段温度在 -18.8~ -4.7 ℃, 在 2 435~2 151 m 高度出现明显逆温层,温 度从-4.8 ℃下降至-7.2℃,逆温强度为 8.5 ℃/km。下 降阶段固态水含量分别在高层(5~5.5 km)和低层 (1~2 km)出现两个大值区,其中高层固态水含量最 为丰富,达 0.3 g/m³。而过冷水含量较上升阶段有明 显增加,其含量随高度变化出现三个较为明显的波 峰,分别在 5.2~4.5、4.3~3.1 和 1.6~1.1 km,其中4.3~ 3.1 km 高度层的过冷水含量最丰富,达 0.3 g/m³,对 应温度约-9 ℃。故此层应为播撒碘化银催化剂的最 佳高度层。

与上升阶段相比,下降阶段的云微物理特征发 生明显变化。主要表现在云粒子、冰晶粒子和降水粒 子的浓度以及过冷水含量总体均增大。尤其是过冷 水的含量,较上升阶段增加了3倍左右。这可能是由 于飞行探测阶段处于系统发展初期,且高空风速较 大,云体移动较快;随着时间的推移,水汽被源源不 断的输送过来导致。

图 4 2020 年 1 月 5 日 邢台 皇 寺 飞 机 垂 直 下 降 阶 段 云 微 物 理 量 垂 直 变 化 (a 为 CDP 浓度和相对湿度随高度的变化,b 为 CIP 浓度和粒径谱随高度的变化, c 为 HVPS 浓度和粒径谱随高度的变化,d 为温度和含水量随高度的变化)

4 结论

通过分析垂直上升和垂直下降阶段云微物理量 的垂直变化特征,得出以下结论:

(1)本次探测飞行时段处于系统发展初期阶段, 冷云中不同高度层次上冰晶化进程不一,同一位置 垂直上升阶段和垂直下降阶段云微物理特征差距较 大;云体结构不均匀,表现为云粒子在垂直高度上呈 多层分布,中间有夹层。

(2)在垂直上升探测阶段,高层(5~6 km)和低层 (1~1.5 km)以冰水混合云为主,中间夹层(1.5~5 km) 则以冰晶为主;在垂直下降探测阶段,云中冰雪晶粒 子数浓度和过冷水含量较垂直上升阶段均有明显增 加,其中4.3~3.1 km高度层的过冷水含量最丰富, 峰值达0.3 g/m³,对应温度为-9℃。由此可见,有西 南暖湿气流在冷垫上爬升时,过冷水丰富区出现在 逆温层上方,该层最适合开展碘化银增雪作业。

参考文献:

- [1] 王泽林,倪洪波,裴昌春.我国干旱地区一次直升机自然
 结冰试飞天气个例分析[J].沙漠与绿洲气象,2020,14(2):
 68-74.
- [2] 张微,李德泉,刘星光,等.裴昌春冷涡前部飞机人工增雨
 作业条件数值模拟研究[J].沙漠与绿洲气象,2020,14
 (6):54-60.
- [3] DONG X B,ZHAO C F,HUANG Z C, et al.Increase of precipitation by cloud seeding observed from a case

study in November 2020 over Shijiazhuang, China [J]. Atmospheric Research, 2021, 262(5):105766.

- [4] 庞朝云,黄山,张丰伟.甘肃中部降水性层状云微物理结构特征个例分析[J].气象科技,2016,44(5):805-810.
- [5] 周黎明,牛生杰,王俊.不同天气系统层状云微物理特征 个例分析[J].气象,2014,40(3):327-335.
- [6] 李义宇,杨俊梅,李培仁,等.山西省层状云微物理结构探测分析[J].气候与环境研究,2012,17(6):37-47.
- [7] 孙玉稳,李宝东,刘伟,等.河北秋季层状云物理结构及适 播性分析[J].高原气象,2015,34(1):237-250.
- [8] 刘伟,孙玉稳,谢祥永,等.河北省冬季低槽冷锋层状云结构特征和可播性分析[J].气象与环境学报,2021,37(3): 110-116.
- [9] 唐林,李琼,黎祖贤,等.一次积层混合云云系微物理结构 数值模拟与增雨条件分析[J].干旱气象,2020,38(1):100– 108.
- [10] 祁红彦,申辉,韦巍,等.西岭雪山地形云人工增雪试验 研究[J].气象与环境学报,2017,33(4):93-101.
- [11] 李斌,郑博华,兰文杰,等.克拉玛依市冬季飞机人工增 雪作业效果统计分析[J].干旱区地理(汉文版),2018,41
 (4):686-692.
- [12] 郑博华,李圆圆,赵克明,等.利用统计检验对比法对克 拉玛依市冬季飞机人工增雪作业效果再分析[J].沙漠与 绿洲气象,2019,13(5):132-138.
- [13] 康增妹,孙玉稳,董晓波,等.一次冬季层状云的人工催 化效果响应分析[J].高原气象,2020,39(3):620-627.

Microphysical Characteristics of Cloud System in Winter Based on Aircraft Detection

ZHAO Liwei, SUN Yuwen, ZHANG Jiannan, SUN Xiaoshen, SHU Zhiyuan, LI Zhenghao (Hebei Provincial Weather Modification Office, Shijiazhuang 050000, China)

Abstract A Kingair –350 research aircraft was mounted with a cloud and precipitation particle measuring system and flew over Huangsi, Xingtai, Hebei Province on January 5,2020, for microphysical retrievals of snowfall clouds. The results were as follows: during the vertical sounding period, a gap was found in microphysical properties between the ascending and descending stage at the exact location, which proved the developing clouds. The cloud structure was non-uniform since cloud particles were detected and distributed in several layers with different peak values. The most abundant super-cooled water was at the height of 4.3~3.1 km with a maximum of 0.3 g/m³, and the corresponding temperature was -9 °C. The area with sufficient super-cooled water was above the inversion layer, where was the most suitable for artificial snow augmentation.

Key words cloud microphysics; aircraft detection; snowfall cloud system