首页 | 官方网站   微博 | 高级检索  
     


Meltwater erosion process of frozen soil as affected by thawed depth under concentrated flow in high altitude and cold regions
Authors:Yunyun Ban  Tingwu Lei  Chao Chen  Zhe Yin  Dengfeng Qian
Affiliation:1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P. R. China;2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shanxi Province, P. R. China;3. China Institute of Water Resources and Hydropower Research, Beijing, P. R. China;4. College of Resource and Environment, Xizang Agriculture and Animal Husbandry College, Linzhi, Tibet Autonomous Region, P. R. China
Abstract:Changes in thawed depth of frozen soil caused by diurnal and seasonal temperature fluctuations are commonly found in high altitude and latitude regions of the world. These changes significantly influence hydrologic and erosion processes. Experimental data are necessary to improve the understanding and modeling of the phenomenon. Laboratory experiments were conducted in Beijing to assess the impacts of thawed soil depth, slope gradient, and flow rate on soil erosion by concentrated meltwater flow over an underlying frozen soil layer. Soil samples from watershed were filled in flumes, saturated before being frozen. After the soil was completely frozen, flumes were taken out of storage to thaw the frozen soil from top to the designed depths. Meltwater flow was simulated using a tank filled with water and icecubes at approximately 0°C. The erosion experiments involved four thawed soil depths of 1, 2, 5, and 10 cm; three slope gradients of 5°, 10°, and 15°; and three flow rates of 1, 2, and 4 l/min; and seven rill lengths of 0.5, 1, 2, 3, 4, 5, and 6 m. Sediment‐laden water samples were collected at the lower end of the flume for determination of sediment concentration. The results showed that sediment concentration increased exponentially with rill length to approach a maximum value. The sediment concentrations were closely correlated with thawed soil depth, flow rate, and slope gradient. Shallower thawed depths delivered more sediments than deeper thawed depths. Slope gradient was the primary factor responsible for severe erosion. The effect of flow rate on sediment concentration which decreased with increasing slope gradient, was not as significant as that of slope gradient. Results from these experiments are useful for understanding the effect of thawed soil depth on erosion process in thawed soils subject to freezing and for estimating erosion model parameters. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:meltwater erosion  erosion process  thawed soil depth  slope gradient  flow rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号