气候变化研究进展 ›› 2023, Vol. 19 ›› Issue (1): 49-62.doi: 10.12006/j.issn.1673-1719.2022.045
收稿日期:
2022-03-14
修回日期:
2022-04-02
出版日期:
2023-01-30
发布日期:
2022-08-08
通讯作者:
周波涛
作者简介:
孙晓玲,女,硕士研究生,基金资助:
SUN Xiao-Ling(), XIE Wen-Xin, ZHOU Bo-Tao(
)
Received:
2022-03-14
Revised:
2022-04-02
Online:
2023-01-30
Published:
2022-08-08
Contact:
ZHOU Bo-Tao
摘要:
基于国际耦合模式比较计划第六阶段(CMIP6)模式模拟以及观测数据,评估了9个CMIP6模式对亚洲地区叶面积指数(LAI)、总初级生产力(GPP)和净初级生产力(NPP)的模拟性能。模拟评估结果表明,9个CMIP6模式能够较好地模拟出亚洲地区陆地生态系统LAI、GPP和NPP的时空分布特征。综合来看,多模式集合(MME)模拟效果最佳,其模拟的LAI、GPP和NPP与观测的空间相关系数分别达到0.90、0.81和0.89,均方根误差在0.5左右。在此基础上,利用MME结果进一步预估了亚洲地区陆地生态系统在SSP1-2.6、SSP2-4.5和SSP5-8.5情景下的未来变化。总体而言,亚洲地区LAI、GPP和NPP到21世纪末都呈现上升趋势。其中,温室气体高排放情景下的上升趋势大于温室气体低排放情景下的上升趋势,亚洲中高纬度地区的增幅大于低纬度地区的增幅。从区域平均来看,到21世纪末期,与当今气候态相比,北亚LAI、GPP和NPP的增幅最大,其在SSP5-8.5情景下分别增加68%、106%和90%;东南亚增幅最小,分别为15%、34%和39%。在SSP1-2.6情景下,北亚LAI、GPP和NPP在21世纪末的增幅分别为23%、29%和26%;东南亚分别为3%、10%和11%,意味着未来全球变暖背景下亚洲区域陆地生态系统变绿和固碳幅度加强。
孙晓玲, 谢文欣, 周波涛. CMIP6模式对亚洲陆地生态系统的模拟评估与预估[J]. 气候变化研究进展, 2023, 19(1): 49-62.
SUN Xiao-Ling, XIE Wen-Xin, ZHOU Bo-Tao. CMIP6 evaluation and projection of terrestrial ecosystem over Asia[J]. Climate Change Research, 2023, 19(1): 49-62.
图1 观测和MME模拟的北亚(a~c)、中亚(d~f)、东亚(g~i)、西亚(j~l)、南亚(m~o)和东南亚(p~r)地区1985—2014年平均LAI、GPP和1982—2011年平均NPP距平百分率的时间序列 注:*表示通过0.01的显著性水平检验。
Fig. 1 Time series of observed and multi-model ensemble (MME) simulated percentage anomalies of annual leaf area index (LAI), gross primary productivity (GPP) during 1985-2014 and annual net primary productivity (NPP) during 1982-2011 in North Asia (a-c),Central Asia (d?f), East Asia (g-i), West Asia (j-l), South Asia (m-o), and Southeast Asia (p-r)
图2 观测(a~c)和MME模拟(d~f)的亚洲地区1995—2014年平均LAI、GPP和1992—2011年平均NPP的气候态分布
Fig. 2 Climatological distribution of observed (a-c) and MME simulated (d-f) annual mean LAI, GPP during 1995-2014 and NPP during 1992-2011 in Asia
图4 3种情景下亚洲地区年平均LAI距平百分率的20 a滑动平均时间序列
Fig. 4 Temporal changes in percentage anomalies of annual LAI under three scenarios in Asia. (Time series are smoothed with a 20-year running mean filter and shadings represent the ranges of two standard deviations of model simulations)
图5 MME预估的3种情景下到21世纪近期、中期和末期亚洲地区年平均LAI距平百分率 注:打点区域表示相对基准期的变化通过0.05的显著性水平检验。
Fig. 5 Spatial distribution of the MME projected percentage anomalies of annual LAI during 2021-2040, 2041-2060 and 2081-2100 under three scenarios in Asia. (Significant changes are dotted)
[1] | Friedlingstein P, O′Sullivan M, Jones M, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12 (4): 3269-3340 |
[2] | Piao S L, Wang X H, Park T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth and Environment, 2020, 1 (1): 14-27 |
[3] | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle[J]. Nature, 2013, 500 (7462): 287-295 |
[4] | IPCC. Climate change 2014: synthesis report[M]. Cambridge: Cambridge University Press, 2014 |
[5] | 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学: 地球科学, 2019, 49 (9): 1321-1334. |
Piao S L, Zhang X P, Chen A P, et al. The impacts of climate extremes on the terrestrial carbon cycle: a review[J]. Science China: Earth Sciences, 2019, 49 (9): 1321-1334 (in Chinese) | |
[6] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
[7] | 翟盘茂, 周佰铨, 陈阳, 等. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17 (6): 629-635. |
Zhai P M, Zhou B Q, Chen Y, et al. Several new understandings in the climate change science[J]. Climate Change Research, 2021, 17 (6): 629-635 (in Chinese) | |
[8] | 周波涛. 全球气候变暖: 浅谈AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44 (5): 667-671. |
Zhou B T. Global warming: scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44 (5): 667-671 (in Chinese) | |
[9] | 周波涛, 钱进. IPCC AR6报告解读: 极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17 (6): 713-718. |
Zhou B T, Qian J. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17 (6): 713-718 (in Chinese) | |
[10] | Fang H L, Baret F, Plummer S, et al. An overview of global leaf area index (LAI): methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57 (3): 739-799 |
[11] | 方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001, 25 (4): 414-419. |
Fang J Y, Ke J H, Tang Z Y, et al. Implications and estimations of four terrestrial productivity parameters[J]. Chinese Journal of Plant Ecology, 2001, 25 (4): 414-419 (in Chinese) | |
[12] | Anav A, Friedlingstein P, Kidston M, et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models[J]. Journal of Climate, 2013, 26 (18): 6801-6843 |
[13] | Mahowald N, Lo F, Zheng Y, et al. Leaf area index in Earth System Models: evaluation and projections[J]. Earth System Dynamics Discussions, 2015, 6 (1): 761-818 |
[14] | Kim D, Lee M I, Jeong S J, et al. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models[J]. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54 (2): 145-163 |
[15] | Zeng Z Z, Zhu Z C, Lian X, et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth System Models[J]. Environmental Research Letters, 2016, 11 (10): 104006 |
[16] | Park H, Jeong S. Leaf area index in Earth System Models: how the key variable of vegetation seasonality works in climate projections[J]. Environmental Research Letters, 2021, 16 (3): 034027 |
[17] | Wittig V E, Ainsworth E A, Naidu S L, et al. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis[J]. Global Change Biology, 2009, 15 (2): 396-424 |
[18] | Song X, Wang D Y, Li F, et al. Evaluating the performance of CMIP6 Earth System Models in simulating global vegetation structure and distribution[J]. Advances in Climate Change Research, 2021, 12 (4): 584-595 |
[19] |
Wang S P, Duan J C, Xu G P, et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow[J]. Ecology, 2012, 93 (11): 2365-2376
pmid: 23236908 |
[20] | Yu M, Wang G L, Parr D, et al. Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs[J]. Climatic Change, 2014, 127 (2): 257-271 |
[21] | Schlund M, Eyring V, Camps-Valls G, et al. Constraining uncertainty in projected gross primary production with machine learning[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125 (11): e2019JG005619 |
[22] | 施红霞, 王澄海. 21世纪北半球中高纬度净初级生产力(NPP)变化及其与气候因子之间的关系[J]. 冰川冻土, 2015, 37 (2): 327-335. |
Shi H X, Wang C H. Change of NPP at the mid-high latitude of Northern Hemisphere in the 21st century and its relation with climate factors[J]. Journal of Glaciology and Geocryology, 2015, 37 (2): 327-335 (in Chinese) | |
[23] | 朱再春, 刘永稳, 刘祯, 等. CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估[J]. 气候变化研究进展, 2018, 14 (1): 31-39. |
Zhu Z C, Liu Y W, Liu Z, et al. Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models[J]. Climate Change Research, 2018, 14 (1): 31-39 (in Chinese) | |
[24] | Zhao Q, Zhu Z C, Zeng H, et al. Future greening of the Earth may not be as large as previously predicted[J]. Agricultural and Forest Meteorology, 2020, 292-293: 108111 |
[25] | Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9 (5): 1937-1958 |
[26] | Eyring V, Bock L, Lauer A, et al. Earth System Model Evaluation Tool (ESMValTool) v2.0: an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth System Models in CMIP[J]. Geoscientific Model Development, 2020, 13 (7): 3383-3438 |
[27] | 於琍, 朴世龙. IPCC第五次评估报告对碳循环及其他生物地球化学循环的最新认识[J]. 气候变化研究进展, 2014, 10 (1): 33-36. |
Yu L, Piao S L. Key scientific points on carbon and other biogeochemical cycles from the IPCC Fifth Assessment Report[J]. Climate Change Research, 2014, 10 (1): 33-36 (in Chinese) | |
[28] | O′Neill, B C, Tebaldi C, van Vuuren D P, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9: 3461-3482 |
[29] | Riahi K, van Vuuren D P, Kriegler E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42: 153-168 |
[30] | Li W P, Zhang Y W, Shi X L, et al. Development of land surface model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6[J]. Journal of Meteorological Research, 2019, 33 (5): 851-869 |
[31] |
Swart N C, Cole J N S, Kharin V V, et al. The Canadian Earth System Model version 5 (CanESM5.0.3)[J]. Geoscientific Model Development, 2019, 12 (11): 4823-4873
doi: 10.5194/gmd-12-4823-2019 |
[32] | Wyser K, van Noije T, Yang S, et al. On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2020, 13 (8): 3465-3474 |
[33] | Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12 (11): e2019MS002015 |
[34] | Volodin E M. Atmosphere-ocean general circulation model with the carbon cycle[J]. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43 (3): 266-280 |
[35] | Volodin E M, Mortikov E V, Kostrykin S V, et al. Simulation of the modern climate using the INM-CM48 climate model[J]. Russian Journal of Numerical Analysis and Mathematical Modelling, 2018, 33 (6): 367-374 |
[36] | Lurton T, Balkanski Y, Bastrikov V, et al. Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12 (4): e2019MS001940 |
[37] |
Mauritsen T, Bader J, Becker T, et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2[J]. Journal of Advances in Modeling Earth Systems, 2019, 11 (4): 998-1038
doi: 10.1029/2018MS001400 pmid: 32742553 |
[38] | Zhu Z C, Bi J, Pan Y Z, et al. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011[J]. Remote Sensing, 2013, 5 (2): 927-948 |
[39] | Wang S H, Zhang Y G, Ju W M, et al. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data[J]. Science of The Total Environment, 2021, 755: 142569 |
[40] | Kolby S W, Reed S C, Cleveland C C, et al. Large divergence of satellite and Earth System Model estimates of global terrestrial CO2 fertilization[J]. Nature Climate Change, 2016, 6 (3): 306-310 |
[41] | IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013 |
[42] | Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106 (D7): 7183-7192 |
[43] | 黄禄丰, 朱再春, 黄萌田, 等. 基于CMIP6模式优化集合平均预估21世纪全球陆地生态系统总初级生产力变化[J]. 气候变化研究进展, 2021, 17 (5): 514-524. |
Huang L F, Zhu Z C, Huang M T, et al. Projection of gross primary productivity change of global terrestrial ecosystem in the 21st century based on optimal ensemble averaging of CMIP6 models[J]. Climate Change Research, 2021, 17 (5): 514-524 (in Chinese) | |
[44] | Peng X B, Yu M, Chen H S. Projected changes in terrestrial vegetation and carbon fluxes under 1.5℃ and 2.0℃ global warming[J]. Atmosphere, 2022, 13 (1): 42 |
[45] | Jeong S. Autumn greening in a warming climate[J]. Nature Climate Change, 2020, 10 (8): 712-713 |
[46] | Slater A G, Lawrence D M. Diagnosing present and future permafrost from climate models[J]. Journal of Climate, 2013, 26 (15): 5608-5623 |
[47] |
Chen J M, Ju W, Ciais P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink[J]. Nature Communications, 2019, 10 (1): 4259
doi: 10.1038/s41467-019-12257-8 pmid: 31534135 |
[48] | Park H, Jeong S, Ho C, et al. Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the Northern Hemisphere remote sensing of environment[J]. Remote Sensing of Environment, 2015, 165: 100-108 |
[49] | Berg A, Sheffield J. Evapotranspiration partitioning in CMIP5 models: uncertainties and future projections[J]. Journal of Climate, 2019, 32 (10): 2653-2671 |
[1] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[2] | 徐影, 韩振宇, 吴婕, 李柔珂. 低排放情景下全球极端气候事件变化在温升过冲前后达到1.5℃的差异[J]. 气候变化研究进展, 2024, 20(4): 389-402. |
[3] | 周天仪, 江志红, 李伟, 孙岑霄. 不同物理约束方案下西北地区夏季降水的未来预估对比[J]. 气候变化研究进展, 2024, 20(4): 403-415. |
[4] | 程阳, 韩振宇. 全球升温1.5℃和2℃下中国群发性高温事件与人口暴露度预估[J]. 气候变化研究进展, 2024, 20(3): 278-290. |
[5] | 赵鹏, 姜彤, 苏布达, 高妙妮. 基于SSA-BP神经网络模型的全球入海径流量未来变化趋势[J]. 气候变化研究进展, 2024, 20(2): 182-192. |
[6] | 胡佳怡, 赵林, 王翀, 胡国杰, 邹德富, 幸赞品, 焦梦迪, 乔永平, 刘广岳, 杜二计. CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正[J]. 气候变化研究进展, 2024, 20(1): 10-25. |
[7] | 王科, 黄晶. 国内外太阳能资源评估方法研究现状和展望[J]. 气候变化研究进展, 2023, 19(2): 160-172. |
[8] | 姜克隽. IPCC AR6:长期减排路径[J]. 气候变化研究进展, 2023, 19(2): 133-138. |
[9] | 聂心宇, 谭红建, 蔡榕硕, 高学杰. 利用区域气候模式预估未来登陆中国热带气旋活动[J]. 气候变化研究进展, 2023, 19(1): 23-37. |
[10] | 张诗妍, 胡永云, 李智博. 我国西北降水变化趋势和预估[J]. 气候变化研究进展, 2022, 18(6): 683-694. |
[11] | 高美勋, 陈敏鹏, 滕飞. “一带一路”沿线国家适应气候变化的技术需求评估[J]. 气候变化研究进展, 2022, 18(6): 731-742. |
[12] | 梅梅, 侯威, 周星妍. 新、旧气候态差异及对中国地区气候和极端事件评估业务的影响[J]. 气候变化研究进展, 2022, 18(6): 653-669. |
[13] | 王卓妮, 袁佳双, 庞博, 黄磊. IPCC AR6 WGIII报告减缓主要结论、亮点和启示[J]. 气候变化研究进展, 2022, 18(5): 531-537. |
[14] | 彭雪婷, 吕昊东, 张贤. IPCC AR6报告解读:全球碳捕集利用与封存(CCUS)技术发展评估[J]. 气候变化研究进展, 2022, 18(5): 580-590. |
[15] | 胡轶伦, 冀国旭, 李积宏, 干珠扎布, 胡国铮, 高清竹. IPCC AR6报告解读:陆地和淡水生态系统及其服务变化[J]. 气候变化研究进展, 2022, 18(4): 395-404. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2224
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1855
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|