青海可鲁克湖孢粉记录的14 cal. ka B.P.以来植被和气候演化历史

余英浩, 金映豫, 徐德克, 王永莉, 李浩, 汪亘, 崔安宁, 魏志福. 青海可鲁克湖孢粉记录的14 cal. ka B.P.以来植被和气候演化历史[J]. 第四纪研究, 2021, 41(5): 1229-1243. doi: 10.11928/j.issn.1001-7410.2021.05.01
引用本文: 余英浩, 金映豫, 徐德克, 王永莉, 李浩, 汪亘, 崔安宁, 魏志福. 青海可鲁克湖孢粉记录的14 cal. ka B.P.以来植被和气候演化历史[J]. 第四纪研究, 2021, 41(5): 1229-1243. doi: 10.11928/j.issn.1001-7410.2021.05.01
余英浩, 金映豫, 徐德克, 王永莉, 李浩, 汪亘, 崔安宁, 魏志福. 青海可鲁克湖孢粉记录的14 cal. ka B.P.以来植被和气候演化历史[J]. 第四纪研究, 2021, 41(5): 1229-1243. doi: 10.11928/j.issn.1001-7410.2021.05.01 YU Yinghao, JIN Yingyu, XU Deke, WANG Yongli, LI Hao, WANG Gen, CUI Anning, WEI Zhifu. Vegetational and climatic changes in the Hurleg Lake, Qinghai, during the last 14000 years[J]. Quaternary Sciences, 2021, 41(5): 1229-1243. doi: 10.11928/j.issn.1001-7410.2021.05.01
Citation: YU Yinghao, JIN Yingyu, XU Deke, WANG Yongli, LI Hao, WANG Gen, CUI Anning, WEI Zhifu. Vegetational and climatic changes in the Hurleg Lake, Qinghai, during the last 14000 years[J]. Quaternary Sciences, 2021, 41(5): 1229-1243. doi: 10.11928/j.issn.1001-7410.2021.05.01

青海可鲁克湖孢粉记录的14 cal. ka B.P.以来植被和气候演化历史

  • 基金项目:

    中国科学院(B类和A类)战略性先导科技专项项目(批准号: XDB26000000和XDA2007010103)、国家自然科学基金项目(批准号: 41771237、42071103和41888101)和国家重点基础研究发展计划项目(批准号: 2017YFA0603403)共同资助

详细信息

Vegetational and climatic changes in the Hurleg Lake, Qinghai, during the last 14000 years

More Information
  • 末次冰消期以来,我国东部季风区和西部干旱区分别呈现出"季风"和"西风"的两种降水模式。柴达木盆地位于二者的过渡区,由于缺乏可靠年代控制下的定量古气候记录,末次冰消期以来该盆地植被和降水变化的过程和模式,以及全新世适宜期季风降水是否影响到该区域至今仍存争议。本研究通过柴达木盆地东北部可鲁克湖西侧湿地深520 cm的沉积物钻孔14 cal.ka B.P.以来的孢粉记录,重建了植被和降水演化历史。结果显示青藏高原东北部干旱-半干旱区末次冰消期和早全新世(约14.1~8.0 cal.ka B.P.)以旱生灌丛-荒漠草原植被为主,降水量从约28 mm增至约249 mm;中全新世(约8.0~3.9 cal.ka B.P.)草原植被扩张到末次冰消期以来的最高水平,降水显著增加,最高值可达约292 mm;晚全新世(约3.9~0.3 cal.ka B.P.)荒漠草原再次扩张,降水量大幅度下降至约20 mm。可鲁克湖区降水过程呈现典型的东亚"季风模式",显示在全新世适宜期东亚季风的影响范围可以向西推进到柴达木盆地东北部。分析认为,柴达木盆地东北部的降水变化受北半球太阳辐射量变化、高纬冰盖及青藏高原热动力强迫的协同影响。

  • 加载中
  • 图 1 

    研究区地理位置

    Figure 1. 

    Geographic settings of the research area.

    图 2 

    德令哈市1956~2010年温度、降雨量和蒸发量逐月数据

    Figure 2. 

    Monthly averaging datasets of temperature, precipitation and evaporation in Delingha

    图 3 

    HL-1钻孔岩性和年龄模式图

    Figure 3. 

    Lithology of core HL-1 and Bacon age model for the study.

    图 4 

    HL-1钻孔花粉百分含量图

    Figure 4. 

    Pollen percentage diagram of core HL-1

    图 5 

    HL-1钻孔花粉浓度图

    Figure 5. 

    Pollen concentration diagram of core HL-1

    图 6 

    排序分析和定量重建MAP结果

    Figure 6. 

    Ordination analysis and quantitative MAP reconstruction results.

    图 7 

    末次冰消期以来青藏高原东(北)部与东亚季风区有效湿度变化比较

    Figure 7. 

    Comparison of effective moisture changes in north(northeastern)Tibetan Plateau with East Asia summer monsoon(EASM) region since the last deglacial period.

    表 1 

    可鲁克湖HL-1钻孔AMS14C测年结果*和碳库校正

    Table 1. 

    AMS14C dating results and reservoir correction of core HL-1

    实验室编号 深度(cm) 测年材料 AMS14C年代a B. P. 校正年龄(95.4%区间) (cal.a B. P.) 中值年龄(cal.a B. P.) 碳库估值(a) 碳库误差(a)
    Beta-500846 9 有机质淤泥 2490±30 2724~2435 2584 2522** 79
    Beta-500847 50 有机质淤泥 3500±30 3868~3650 3767 2767* 69
    Beta-498158 272 有机质淤泥 4230±30 4859~4646 4807 25* 81
    Beta-500849 380 有机质淤泥 7220±30 8168~7960 8014 16** 54
    Beta-527480 400 植物残体 7460±30 8355~8189 8269 0** 49
    Beta-498157 482 有机质淤泥 11340±40 13310~13124 13224 0** 44
    Beta-500851 500 有机质淤泥 12780±40 15421~15095 15241 875** 77
      *根据14C与RPI年龄差值推算
      **根据Bacon模型[52]推算
    下载: 导出CSV

    表 2 

    可鲁克湖HL-1钻孔古地磁相对强度对比定年结果*

    Table 2. 

    RPI comparative dating result of core HL-1

    编号 深度(cm) RPI年龄(a) 测年材料
    HL-49 50 1000 淤泥
    HL-75 75 1400 淤泥
    HL-109 110 2200 淤泥
    HL-205 205 4000 淤泥
    HL-272 272 4832 淤泥
      *马贺,王永莉,靳春胜未发表数据
    下载: 导出CSV

    表 3 

    748个现代花粉组合与环境变量的典型对应分析结果

    Table 3. 

    Result of CCA analysis between 748 modern pollen compositions and environmental variables

    环境变量 单变量占比(%) P 方差膨胀因子(VIF)
    年均降水(MAP(mm)) 3.25 0.001 10.53
    年均温(MAAT(℃)) 1.58 0.001 11.60
    湿度(Humi(%)) 0.87 0.001 11.14
    1月降水(MAPJan(mm)) 0.68 0.001 2.52
    1月均温(MAATJan(℃)) 0.48 0.001 11.77
    蒸发量(Evap(mm)) 0.43 0.001 7.91
    下载: 导出CSV

    表 4 

    MAT、WA、LWWA和WA-PLS4种定量降水重建的参数

    Table 4. 

    Parameters of MAP reconstructions by MAT, WA, LWWA and WA-PLS

    转换函数(Method) 决定系数(R2) 检验后的决定系数(Boot_R2) 均方根误差RMSE (mm) 检验后的误差RMSEPBoot (mm)
    MAT 0.81 0.81 85.41 91.26
    WMAT 0.85 0.84 72.99 81.30
    WA_Inv 0.73 0.72 99.36 102.18
    WA_Cla 0.73 0.72 116.46 118.16
    WATOL_Inv 0.75 0.73 94.41 100.90
    WATOL_Cla 0.75 0.74 108.71 112.18
    LWWA_Inv 0.86 0.85 72.87 81.08
    LWWA_Cla 0.82 0.85 82.70 90.38
    WA-PLS Component 1 0.75 0.74 94.98 97.67
    WA-PLS Component 2 0.79 0.76 87.74 96.48
    WA-PLS Component 3 0.80 0.76 85.11 98.39
    下载: 导出CSV
  • [1]

    Marcott S, Shakun J, Clark P, et al. A reconstruction of regional and global temperature for the past 11, 300 years[J]. Science, 2013, 339(6124): 1198-1201. doi: 10.1126/science.1228026

    [2]

    Shakun J, Clark P, He F, et al. Global warming preceded by increasing carbon dioxide concentrations during the Last Deglaciation[J]. Nature, 2012, 484(7392): 49-54. doi: 10.1038/nature10915

    [3]

    Clark P, Dyke A, Shakun J, et al. The Last Glacial Maximum[J]. Science, 2009, 325(5941): 710-714. doi: 10.1126/science.1172873

    [4]

    Clark P, Shakun J, Baker P, et al. Global climate evolution during the Last Deglaciation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19): 1134-1142. doi: 10.1073/pnas.1116619109

    [5]

    Wang P X, Wang B, Cheng H, et al. The global monsoon across timescales: Coherent variability of regional monsoons[J]. Climate of the Past, 2014, 10(6): 2007-2052. doi: 10.5194/cp-10-2007-2014

    [6]

    An Z S, Porter S, Kutzbach J, et al. Asynchronous Holocene Optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8): 743-762. doi: 10.1016/S0277-3791(99)00031-1

    [7]

    Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017

    [8]

    Herzschuh U, Cao X Y, Laepple T, et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China[J]. Nature Communications, 2019, 10: 2376-2384. doi: 10.1038/s41467-019-09866-8.

    [9]

    Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in Northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004.

    [10]

    COHMAP. Climatic changes of the last 18, 000 years: Observations and model simulations[J]. Science, 1988, 241(4869): 1043-1052. doi: 10.1126/science.241.4869.1043

    [11]

    Berger A, Loutre M-F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q

    [12]

    Kutzbach J. Monsoon climate of the Early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago[J]. Science, 1981, 214(4516): 59-61. doi: 10.1126/science.214.4516.59

    [13]

    Ruddiman W. Earth's Climate: Past and Future[M]. New York: W.H. Freeman and Company, 2008: 172-273.

    [14]

    刘东生. 第四纪环境[M]. 北京: 科学出版社, 1997: 1-258.

    Liu Tungsheng. Quaternary Environment[M]. Beijing: Science Press, 1997: 1-258.

    [15]

    刘东生, 丁仲礼. 二百五十万年来季风环流与大陆冰量变化的阶段性耦合过程[J]. 第四纪研究, 1992, (1): 12-23. doi: 10.3321/j.issn:1001-7410.1992.01.003

    Liu Tungsheng, Ding Zhongli. Periodic coupling between monsoon circulation and continental ice volume change over 2.5 Ma[J]. Quaternary Sciences, 1992, (1): 12-23. doi: 10.3321/j.issn:1001-7410.1992.01.003

    [16]

    Ding Z L, Liu T S, Rutter N, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years[J]. Quaternary Research, 1995, 44(2): 149-159. doi: 10.1006/qres.1995.1059

    [17]

    Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across Northern China in the past 3.5 Ma and implication for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2): 45-55. doi: 10.1016/j.epsl.2005.06.036

    [18]

    Broccoli A, Dahl K, Ronald S. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): L01702. doi: 10.1029/2005GL024546.

    [19]

    Hu Z Z, Latif M, Roeckner E, et al. Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations[J]. Geophysical Research Letters, 2000, 27(17): 2681-2684. doi: 10.1029/2000GL011550

    [20]

    Yancheva G, Nowaczyk N, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77. doi: 10.1038/nature05431

    [21]

    王淑云, 吕厚远, 刘嘉麒, 等. 湖光岩玛珥湖高分辨率孢粉记录揭示的早全新世适宜期环境特征[J]. 科学通报, 2007, 52(11): 1285-1291. doi: 10.3321/j.issn:0023-074X.2007.11.012

    Wang Shuyun, Lü Houyuan, Liu Jiaqi, et al. The Early Holocene Optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in Southern China. [J]. Chinese Science Bulletin, 2007, 52(11): 1285-1291. doi: 10.3321/j.issn:0023-074X.2007.11.012

    [22]

    Zhou X, Sun L G, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region[J]. Earth and Planetary Science Letters, 2016, 456(15): 39-46. http://www.onacademic.com/detail/journal_1000039676739910_c00b.html

    [23]

    Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the Last Deglaciation[J]. Scientific Reports, 2015, 5: 11186. doi: 10.1038/srep11186

    [24]

    Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 2005, 136(1): 131-140. doi: 10.1016/j.quaint.2004.11.014

    [25]

    Wen R L, Xiao J L, Chang Z G, et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China[J]. Boreas, 2009, 39(2): 262-272.

    [26]

    Xiao J L, Xu Q H, Nakamura T, et al. Holocene vegetation variation in the Daihai Lake region of north-central China[J]. Quaternary Science Reviews, 2004, 23(14): 1669-1679. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200412003011.htm

    [27]

    Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the Late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146(15): 134-146. http://www.sciencedirect.com/science/article/pii/S0277379116302025

    [28]

    Huang X Z, Chen F H, Fan Y X, et al. Dry late-glacial and Early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1): 19-27. http://www.onacademic.com/detail/journal_1000035434039310_f444.html

    [29]

    Tao S C, An C B, Chen F H, et al. Pollen-inferred vegetation and environmental changes since 16.7 ka BP at Balikun Lake, Xinjiang[J]. Chinese Science Bulletin, 2010, 55(22): 2449-2457. doi: 10.1007/s11434-010-3174-8

    [30]

    An Z S, Colman S, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2(1): 619. doi: 10.1038/srep00619

    [31]

    Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. doi: 10.1038/nclimate1580

    [32]

    Cheng B, Chen F, Zhang J. Palaeovegetational and palaeoenvironmental changes since the Last Deglacial in Gonghe Basin, northeast Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(1): 136-146. doi: 10.1007/s11442-013-0999-5

    [33]

    Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129. doi: 10.1016/j.quascirev.2016.10.021.

    [34]

    Zhao Y, Yu Z C, Chen F H, et al. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, Northwest China[J]. Review of Palaeobotany and Palynology, 2007, 145(3-4): 275-288. doi: 10.1016/j.revpalbo.2006.12.002

    [35]

    Hou J Z, D'Andrea W, Liu Z H. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau[J]. Quaternary Science Reviews, 2012, 48: 67-79. doi: 10.1016/j.quascirev.2012.06.008.

    [36]

    蒋庆丰, 季峻峰, 沈吉, 等. 赛里木湖孢粉记录的亚洲内陆西风区全新世植被与气候变化[J]. 中国科学: 地球科学, 2013, 43(2): 243-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201302009.htm

    Jiang Qingfeng, Ji Junfeng, Shen Ji, et al. Holocene vegetation and climate changes in inland Westerly region of Asia recorded by pollen record of Sayram Lake[J]. Science China: Earth Sciences, 2013, 43(2): 243-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201302009.htm

    [37]

    Tilman D. Biodiversity: Population versus ecosystem stability[J]. Ecology, 1996, 77(2): 350-363. http://onlinelibrary.wiley.com/doi/10.2307/2265614/pdf

    [38]

    Tilman D, Downing J. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461): 363-365. doi: 10.1038/367363a0

    [39]

    中国植被编辑委员会. 中国植被[M]. 北京: 科学出版社, 1980: 1-1144.

    Editorial Group for Chinese Vegetation. Chinese Vegetation[M]. Beijing: Science Press, 1980: 1-1144.

    [40]

    李景文. 森林生态学(第二版)[M]. 北京: 中国林业出版社, 1994: 1-209.

    Li Jingwen. Forest Ecology(Second Edition)[M]. Beijing: China Forestry Press, 1994: 1-209.

    [41]

    肖霞云, 沈吉, 谭金凤. 末次冰消期滇西地区气候突变事件: 湖泊孢粉记录[J]. 第四纪研究, 2019, 39(4): 964-974. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.15

    Xiao Xiayun, Shen Ji, Tan Jinfeng. Climatic abrupt events during the last deglaciation in the western Yunnan Province revealed by pollen records[J]. Quaternary Sciences, 2019, 39(4): 964-974. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.15

    [42]

    张生瑞, 肖举乐, 温锐林, 等. 东亚中高纬Heinrich 1事件的表现特征: 呼伦湖孢粉记录[J]. 第四纪研究, 2019, 39(4): 905-915. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.10

    Zhang Shengrui, Xiao Jule, Wen Ruilin, et al. The character and impact of the Heinrich event 1 in the middle-high latitude of East Asia: Pollen records from the Hulun Lake[J]. Quaternary Sciences, 2019, 39(4): 905-915. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.10

    [43]

    郑卓, 黄康有, 邓韫, 等. 中国东部大陆尺度南北样带尘土花粉散布规律与现状植被的关系[J]. 中国科学(D辑), 2007, 37(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704011.htm

    Zheng Zhuo, Huang Kangyou, Deng Yun, et al. The relationship between samples from South-North dust pollen dispersal regularity and current vegetation in the continental scale in Eastern China[J]. Science in China(Series D), 2007, 37(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704011.htm

    [44]

    郑卓, 黄康有, 许清海, 等. 中国表土花粉与建群植物地理分布的气候指示性对比[J]. 中国科学(D辑), 2008, 38(6): 701-714. doi: 10.3321/j.issn:1006-9267.2008.06.006

    Zheng Zhuo, Huang Kangyou, Xu Qinghai, et al. The comparison of climatic indicative of the distribution of geographical flora and modern soil pollen assemblages. [J]. Science in China(Series D), 2008, 38(6): 701-714. doi: 10.3321/j.issn:1006-9267.2008.06.006

    [45]

    Lu H Y, Wu N Q, Liu K B, et al. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes[J]. Quaternary Science Reviews, 2011, 30(7-8): 947-966. doi: 10.1016/j.quascirev.2011.01.008

    [46]

    Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. doi: 10.1016/j.earscirev.2019.03.005

    [47]

    Lu H Y, Yi S W, Liu Z Y, et al. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing[J]. Geology, 2013, 41(9): 1023-1026. doi: 10.1130/G34488.1

    [48]

    Zhou W J, Yu S Y, Burr G, et al. Postglacial changes in the Asian summer monsoon system: A pollen record from the eastern margin of the Tibetan Plateau[J]. Boreas, 2010, 39(3): 528-539.

    [49]

    中国科学院植物研究所. 中国植被图 1: 4, 000, 000[M]. 北京: 中国地图出版社, 1996.

    Institute of Botany, Chinese Academy of Sciences. Chinese Vegetation Map 1: 4, 000, 000[M]. Beijing: China Cartographic Publishing House, 1996.

    [50]

    王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1989: 1-580.

    Wang Sumin, Dou Hongshen. Lake Records of China[M]. Beijing: Science Press, 1989: 1-580.

    [51]

    张忠孝. 青海地理(第二版)[M]. 北京: 科学出版社, 2009: 1-252.

    Zhang Zhongxiao. Geography of Qinghai Province(Second Edition)[M]. Beijing: Science Press, 2009: 1-252.

    [52]

    Blaauw M, Christen J. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474. doi: 10.1214/ba/1339616472

    [53]

    Ramsey C. Bayesian analysis of radiocarbon dates[J]. Radiocarbon, 2009, 51(1): 337-360. doi: 10.1017/S0033822200033865

    [54]

    Reimer P, Austin W, Bard E, et al. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve(0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757. doi: 10.1017/RDC.2020.41

    [55]

    Li C-G, Zheng Y, Wang M D, et al. Refined dating using palaeomagnetic secular variations on a lake sediment core from Guozha Co, northwestern Tibetan Plateau[J]. Quaternary Geochronology, 2020, 62: 101146. doi: 10.1016/j.quageo.2020.101146.

    [56]

    Xu D K, Lu H Y, Jin C S, et al. Application of multiple dating techniques to the Holocene sediments of Angrenjin Co in the southern Tibetan Plateau[J]. Quaternary Geochronology, 2020, 62: 101148. doi: 10.1016/j.quageo.2020.101148.

    [57]

    Faegri K, Iversen J. Textbook of Pollen Analysis[M]. Chichester: John Wiley & Sons, 1989: 1-295.

    [58]

    李宜垠, 侯树芳, 赵鹏飞. 微炭屑的几种统计方法比较及其对人类活动的指示意义[J]. 第四纪研究, 2010, 30(2): 356-363. http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2010.02.12

    Li Yiyin, Hou Shufang, Zhao Pengfei. Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities[J]. Quaternary Sciences, 2010, 30(2): 356-363. http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2010.02.12

    [59]

    Juggins S. Software for ecological and palaeoecological data analysis and visualisation[J/OL]. Tutorial Version, 2003, 13: 1-24. Retrieved from https://www.researchgate.net/profile/Stephen-Juggins/publication/281600383_C2_Version_15_User_Guide/links/5fcf738e299bf188d40064a3/C2-Version-15-User-Guide.pdf.

    [60]

    ter Braak C, Smilauer P. Canoco reference manual and user's guide: Software of ordination(version 5.0)[J/OL]. Microcomputer Power, Ithaca, USA, 2012.

    [61]

    Grimm E. CONISS: A fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares[J]. Computers & Geosciences, 1987, 13(1): 13-35. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=76F344FA8BDA36481B8E8AB97AADCD1D?doi=10.1.1.452.8960&rep=rep1&type=pdf

    [62]

    ter Braak C. The analysis of vegetation-environment relationships by Canonical Correspondence Analysis[J]. Vegetatio, 1987, 69(1): 69-77. http://link.springer.com/content/pdf/10.1007%2FBF00038688.pdf

    [63]

    羊向东, 王苏民, 夏威岚, 等. 典型对应分析在青藏高原现代湖泊硅藻与环境研究中的应用[J]. 中国科学(D辑), 2001, 31(S1): 273-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1041.htm

    Yang Xiangdong, Wang Sumin, Xia Weilan, et al. Application of Canonical Correspondence Analysis to the study of diatoms and environment in modern lakes on the Qinghai-Tibet Plateau[J]. Science in China(Series D), 2001, 31(S1): 273-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1041.htm

    [64]

    Li J Y, Dodson J, Yan H, et al. Quantitative precipitation estimates for the northeastern Qinghai-Tibetan Plateau over the last 18, 000 years[J]. Journal of Geophysical Research: Atmospheres, 2017, 122: 5132-5143. doi: 10.1002/2016JD026333.

    [65]

    Stebich M, Rehfeld K, Schlütz F, et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake[J]. Quaternary Science Reviews, 2015, 124: 275-289. doi: 10.1016/j.quascirev.2015.07.021.

    [66]

    郑卓, Guiot Joel. 我国热带地区40万年以来古气候的定量恢复[J]. 中山大学学报(自然科学版), 1999, 38(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ199906019.htm

    Zheng Zhuo, Guiot Joel. A 400000-year paleoclimate reconstruction in tropical region of China[J]. Acta Scientiarum Naturalium Universitatis Sunyatsen, 1999, 38(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ199906019.htm

    [67]

    Jiang W Y, Joel G, Chu G Q, et al. An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions[J]. Boreas, 2010, 39(1): 145-153. doi: 10.1111/j.1502-3885.2009.00115.x

    [68]

    Cour P, Zheng Z, Duzer D, et al. Vegetation and climatic significance of modern pollen rain in northwestern Tibet[J]. Review of Palaeobotany and Palynology, 1999, 104(3-4): 183-204. doi: 10.1016/S0034-6667(98)00062-1

    [69]

    Herzschuh U, Kurschner H, Ma Y Z. The surface pollen and relative pollen production of the desert vegetation of the Alashan Plateau, western Inner Mongolia[J]. Chinese Science Bulletin, 2003, 48(14): 1488-1493. doi: 10.1360/02wd0256

    [70]

    Liu H Y, Cui H T, Pott R, et al. The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China[J]. Review of Palaeobotany and Palynology, 1999, 105(3): 237-250. http://ftxt.eurekamag.com/003/003315806.pdf

    [71]

    Ma Y Z, Zhang H C, Pachur H-J, et al. Modern pollen-based interpretations of mid-Holocene palaeoclimate(8500 to 3000 cal. BP) at the southern margin of the Tengger Desert, Northwestern China[J]. The Holocene, 2004, 14(6): 841-850. doi: 10.1191/0959683604hl764rp

    [72]

    Yu G, Tang L Y, Yang X D, et al. Modern pollen samples from alpine vegetation on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2001, 10(5): 503-519. doi: 10.1046/j.1466-822X.2001.00258.x

    [73]

    Wang Y B, Liu X Q, Herzschuh U. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal Central Asia[J]. Earth-Science Reviews, 2010, 103(3-4): 135-153. doi: 10.1016/j.earscirev.2010.09.004

    [74]

    Dyke A. An outline of North American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2: 373-424. doi: 10.1016/S1571-0866(04)80209-4.

    [75]

    Liu X Q, Lai Z P, Madsen D, et al. Last Deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3): 245-257. doi: 10.1002/jqs.2777

    [76]

    Yu J Q. Lake Qinghai, China: A Multi-proxy Investigation on Sediment Cores for the Reconstructions of Paleoclimate and Paleoenvironment since the Marine Isotope Stage 3[D]. Darmstadt: The Doctoral Dissertation of Technical University of Darmstadt, 2005: 1-122.

    [77]

    Qiang M R, Chen F H, Song L, et al. Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China[J]. Quaternary Research, 2013, 79(3): 403-412. doi: 10.1016/j.yqres.2013.03.003

    [78]

    Qiang M R, Jin Y X, Liu X X, et al. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 2016, 132: 57-73. doi: 10.1016/j.quascirev.2015.11.010.

    [79]

    Fan Q S, Ma H Z, Wei H C, et al. Holocene lake-level changes of Hurleg Lake on northeastern Qinghai-Tibetan Plateau and possible forcing mechanism[J]. The Holocene, 2014, 24(3): 274-283. doi: 10.1177/0959683613517399

    [80]

    Lu H Y, Zhao C, Mason J, et al. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area(northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms[J]. The Holocene, 2011, 21(2): 297-304. doi: 10.1177/0959683610378884

    [81]

    曾方明, 杨欢, 卞昊昆. 青海湖地区全新世风尘堆积的GDGTs化合物及其环境指示意义[J]. 第四纪研究, 2018, 38(5): 1233-1243. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.05.17

    Zeng Fangming, Yang Huan, Bian Haokun. GDGTs compounds of the Holocene eolian deposits in Qinghai Lake area and their paleoenvironmental implications[J]. Quaternary Sciences, 2018, 38(5): 1233-1243. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.05.17

    [82]

    Sato T. Influences of subtropical jet and Tibetan Plateau on precipitation pattern in Asia: Insights from regional climate modeling[J]. Quaternary International, 2009, 194(1-2): 148-158. doi: 10.1016/j.quaint.2008.07.008

  • 加载中

(7)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-12-21
修回日期:  2021-01-25
刊出日期:  2021-09-30

目录