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ABSTRACT

Based on the B08RDP (Beijing 2008 Olympic Games Mesoscale Ensemble Prediction Research and De-
velopment Project) that was launched by the World Weather Research Programme (WWRP) in 2004, a
regional ensemble prediction system (REPS) at a 15-km horizontal resolution was developed at the Na-
tional Meteorological Center (NMC) of the China Meteorological Administration (CMA). Supplementing to
the forecasters’ subjective affirmation on the promising performance of the REPS during the 2008 Beijing
Olympic Games (BOG), this paper focuses on the objective verification of the REPS for precipitation fore-
casts during the BOG period. By use of a set of advanced probabilistic verification scores, the value of the
REPS compared to the quasi-operational global ensemble prediction system (GEPS) is assessed for a 36-day
period (21 July–24 August 2008). The evaluation here involves different aspects of the REPS and GEPS,
including their general forecast skills, specific attributes (reliability and resolution), and related economic
values. The results indicate that the REPS generally performs significantly better for the short-range pre-
cipitation forecasts than the GEPS, and for light to heavy rainfall events, the REPS provides more skillful
forecasts for accumulated 6- and 24-h precipitation. By further identifying the performance of the REPS
through the attribute-focused measures, it is found that the advantages of the REPS over the GEPS come
from better reliability (smaller biases and better dispersion) and increased resolution. Also, evaluation of a
decision-making score reveals that a much larger group of users benefits from using the REPS forecasts than
using the single model (the control run) forecasts, especially for the heavy rainfall events.
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1. Introduction

The errors existing in the initial conditions (ICs)

of the numerical prediction models, along with the er-

rors in forecast models due to the approximate na-

ture of the parameterization schemes, cause the pre-

dictability problem of the numerical models at either

short range or medium range. Based on the ratio-

nale of uncertainties caused by these errors, the en-

semble prediction is an efficient method to take these

sources of forecast errors into consideration by repre-

senting the atmospheric circulation through appropri-

ate probability density function (Buizza et al., 2005).

During the past decades, the global ensemble predic-

tion systems (GEPSs) with different initial pertur-

bation methods have been developed at several ma-

jor meteorological centers, and have been successfully

applied to operational weather forecasting, e.g., the

European Center for Medium-range Weather Fore-

casts (ECMWF), the National Centers for Enviromen-

tal Prediction (NCEP), the Meteorological Service of

Canada (MSC). The development of the GEPS at the

National Meteorological Center (NMC) of the China

Meteorological Administration (CMA) started in the

late 1990s and has gone through the upgradation of

model system and experimented with different initial

perturbation methods (Li and Chen, 2002). Since

2007, the forecasts from 10 GEPSs including GEPS

from CMA have been in the collection of the TIGGE

(THORPEX Interactive Grand Global Ensemble) and
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have been providing products to the users worldwide

for research and application purposes (Park et al.,

2008).

Encouraged by the successful application of

GEPSs, the Short-Range Ensemble Forecasting

(SREF; Stensrud et al., 1999; Du and Tracton, 2001)

at NCEP pioneered the regional ensemble forecasting

technique in addressing the errors caused by the low

predictability of mososcale short-range forecasts. The

studies about developing REPSs have caused great at-

tention during the past decades. The operationally-

aimed REPSs were recently being tested and run

by different operational forecast centers, e.g., the

ALADIN-LAEF (Wang et al., 2011) at ZAMG (Zen-

tralAnstalt für Meteorologie und Geodynamik), the

COSMO-LEPS developed within the COSMO consor-

tium by six European countries (Montani et al., 2003;

Marsigli et al., 2005), the SRNWP-PEPS (Heizenreder

el al., 2006) at German Met Service, ect. In order to

enhance technical support to the Beijing 2008 Olympic

Games, in 2004, the World Weather Research Pro-

gramme (WWRP) sponsored the B08RDP (Beijing

2008 Olympic Games Mesoscale Ensemble Prediction

Research and Development Project) for undertaking

the research and development of the REPSs and ap-

plying the results to the quasi real-time forecasting

support. The detailed implementation of the B08RDP

can be found in Duan et al. (2011). Aimed to par-

ticipate in the B08RDP and to promote the research

in this field, an REPS was developed and tested at

NMC (Deng et al., 2010). During the Beijing 2008

Olympic Games, the REPS and GEPS at NMC both

played important roles in providing useful informa-

tion. Based on the subjective evaluation from forecast-

ers, more skillful forecasts for high impact weathers

(HIWs) were made by the REPS. An objective evalu-

ation of the REPs in comparison with its single model

run (control run) and the existing GEPS is necessary

and is of increasing interest with the rapid develop-

ment and application of REPSs (Chessa et al., 2004;

Bowler et al., 2008). Moreover, it is important to un-

derstand the specific attributes related to probabilis-

tic forecasts, such as their reliability and resolution

(Jolliffe and Stephenson, 2003), through comprehen-

sive verification measures. In this work, the evalua-

tion will be performed on precipitation forecasts. The

accumulated 6- and 24-h precipitation forecasts will

be evaluated by using a number of probabilistic scores

concurrently.

This paper is organized as follows. The configura-

tions of the REPS and GEPS at NMC are introduced

in Section 2. The verification data are described in

Section 3. Section 4 gives the comparison results, and

summary and conclusions are presented in Section 5.

2. Configurations of the REPS and GEPS

A brief description of system configurations of the

REPS and GEPS at NMC is given in this section.

Note that the GEPS not only acts as a comparison

reference, but also provides lateral boundary condi-

tions (LBCs) to the REPS.

2.1 Configuration of the GEPS

The GEPS at NMC is based on 15 T213L31 (spec-

tral triangular truncation T213 with 31 vertical levels)

members, and performs 10-day forecasts twice daily

at 0000 and 1200 UTC. The initial perturbation of

the GEPS adopts the bred-vector (BV) approach pro-

posed by Toth and Kalnay (1993, 1997). The BV ap-

proach is based on the notion that the errors of anal-

ysis fields generated by data assimilation schemes will

grow and accumulate by the virtue of perturbation

dynamics. For the GEPS, 7 breeding cycles, each ini-

tialized with different random perturbation fields, are

used to produce 14 initial perturbations. These 14

initial perturbations are centered as positive-negative

pairs around the T213 SSI (spectral statistical inter-

polation) analysis fields and are used to construct 14

perturbed ensemble members of the GEPS. A regional

rescaling algorithm is applied in the breeding cycles to

reflect the geographically varying uncertainties in the

analyses. In the breeding cycles of the GEPS, the ki-

netic energy of the difference field between NCEP (as

independent field) and T213 analysis fields at 500 hPa

is chosen to measure the uncertainties of T213 analy-

ses. Based on the historical data in 2003, every 5-day

average of kinetic energy of the difference field is

obtained, and its square root is regarded as the
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estimator of the uncertainties of T213 analyses. The

average kinetic energy difference field is then used as

a geographic mask in the rescaling step of the breed-

ing cycle, which ensures that the spatial distribution

of initial perturbations produced by the BV cycle is

similar to the analysis errors.

2.2 Configuration of the REPS

To participate in the B08RDP, an REPS with 15

members was developed with the Weather Research

and Forecasting (WRF) modeling system (Janjié et

al., 2001) at NMC. During the implementation of

B08RDP, the horizontal resolution of the REPS was

15 km, with 35 levels in the vertical. Its integration

was performed up to 36 h, covering northern China.

In July 2010, the REPS was upgraded by expanding

the integration domain to entire China and the fore-

cast length up to 60 h.

The BV method is used to generate the initial

perturbations for the REPS. The 7 breeding cycles,

included in the WRF 3D-VAR assimilation cycles, are

used to produce 7 paired initial perturbations. Based

on these initial perturbations, 15 ICs of the REPS (7

paired perturbed ICs and a control WRF analysis) are

generated, and LBCs are provided by 15 members of

the GEPS. As mentioned earlier, being the function

of geographic location, the rescaling factor plays an

important role in the BV cycles for determining the

magnitude of the perturbations, and two methods for

describing the analysis uncertainty are tested when

constructing WRF-based BV cycles, and similar re-

sults are obtained (Deng et al., 2010). One is similar

to the method used in the GEPS that computes the

kinetic energy difference between the WRF and NCEP

analyses; the other is to use the temperature difference

at 850 hPa between the above analyses.

The multi-physics technique (Stensrud et al.,

2000; Du et al., 2003) is employed in the REPS to rep-

resent the model uncertainty. The practical applica-

tion of the multi-physics method in the REPS focuses

on the combinations of cumulus convective parame-

terizations, boundary layer schemes, and land surface

schemes, wherein the selection of each physical param-

eterization is tested by carefully designed experiments

(Deng et al., 2010).

3. Verification data

The evaluation methodology here is based on

the station-to-station comparison between the interpo-

lated model forecasts and observations. The gridded

forecasts of the REPS and GEPS are interpolated onto

the station points using bilinear interpolation tech-

nique.

The verification period is from 20 July to 24 Au-

gust 2008, which includes 36-day forecasts initialized

at 1200 UTC daily. The observations come from 400

conventional surface stations shown in Fig. 1, and the

quality control with the operational standard of data

collecting at NMC has been applied to these data. It

should be noted that the verified GEPS forecasts are

not on their original resolution due to the unavailabil-

ity of the original data, but at 1.0 degree obtained

from the TIGGE archive. This might affect slightly

the fairness of comparison due to the additional inter-

polation process.

In this study, our goal is to evaluate the value of

the REPS for precipitation forecasts within the fore-

cast window of 36 h compared to the GEPS forecasts

and the forecasts from the REPS control run. To in-

vestigate the forecast ability of the REPS for quan-

titative precipitation forecasts (QPFs), three kinds of

evaluation are conducted. First, suitable verification

measures will be used to evaluate the performance of

each accumulated 6-h precipitation forecast during the

Fig. 1. Surface observation stations (dots) for precipita-

tion forecast verification.
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36-h forecast window that indudes a total of 6 verifica-

tion periods (00–06, 06–12, 12–18, 18–24, 24–30, and

30–36 h; hereafter referred as to verified periods 1, 2,

3, 4, 5, and 6). Then, the specific thresholds for di-

chotomous predictands for accumulated 6-h precipita-

tion are chosen to be evaluated by various probabilistic

scores. For this type of evaluation, unlike the evalu-

ation for each 6-h period listed before, the 6-h pre-

cipitation accumulation is examined instead. Finally,

the 24-h accumulated precipitation is also measured

by using the GEPS forecasts as reference.

4. Comparative verification of the REPS and

GEPS

The verification methodology for ensemble proba-

bilistic forecasts is quite different from the traditional

verification technique for deterministic forecasts. The

specific attributes related to probabilistic forecasts,

“reliability” and “resolution” (Jolliffe and Stephenson,

2003), need to be evaluated. The “reliability” indi-

cates the statistical agreement between the predicted

probability of an event and the mean observed fre-

quency of the event under consideration. The “resolu-

tion” is the ability of the forecasts to resolve the set of

sample events into subsets with characteristically dif-

ferent frequencies. Most of the ensemble verification

scores are specifically developed or designed to assess

one or both of specific attributes with various focuses.

To assess the performance of ensemble system com-

prehensively, various verification measures are needed

concurrently.

For the evaluation of two systems, the estimation

of statistical significance of performance difference is

necessary. In this paper, the statistical bootstrap tech-

nique (Efron and Tibshirani, 1993) is adopted to esti-

mate the uncertainty of the verification scores. When

applying the bootstrap technique to the verification

scores, we recompute the scores a number of times

(Nb) with a sample randomly extracted from the sam-

ple pool of n = Ns×Nd realizations, with replacement

from the original data set. Here, Ns is the number

of verification stations, and Nd is the number of the

days in the verification period. Following Candille et

al. (2007), we resample over Nd days instead of over

all n realizations, where each new sample of n realiza-

tions is obtained with all the Ns observations of each

selected day. Then, the 90% confidence interval (CI)

is obtained by upper and lower bounds (95% and 5%)

with Nb times (200 times used in this paper).

4.1 The continuous ranked probability score

The continuous ranked probability score (CRPS;

Stanski et al., 1989; Hersbach, 2000; Candille et al.,

2007) measures the distance between the predicted

and the observed cumulative density functions (CDFs)

of a scalar variable as follows:

CRPS =

∫ ∞

−∞

[

Pf(x)− Po(x)
]2
dx, (1)

where Pf and Po are the forecast and observed CDFs

for the variable of interest, respectively, and

Pf(x) =

∫ x

−∞

ρ(y)dy,

Po(x) = H(x− xo), (2)

where ρ(y) is the probability density function (PDF)

of the forecast variable x from ensemble system,

and xo is the actually observed value. Po follows

the distribution of the Heaviside function. To ap-

ply CRPS to ensemble system with N numbers, at

each verification location, the outcomes of N ensem-

ble members are ranked from the lowest to the high-

est (x1, . . . , xN , where xi < xj if i < j), and N + 1

bins are obtained relative to the sorted ensemble out-

comes. In the discrete cases, Pf can be expressed as a

piecewise constant function with respect to these N+1

bins, for instance, in the bin i [xi, xi+1], Pf is written

as Pf(x) = pi = i/N for xi < x < xi+1. For Po, its

value is either 0 or 1, or partly 0, partly 1, depending

on the location of observed xo in the bin [xi, xi+1]. In

this case, the discrete CRPS can be formulated as:

ci =

∫ xi+1

xi

[Pi −H(x− xo)]dx

= αip
2
i + βi(1− pi)

2,

CRPS =

N
∑

i=0

ci, (3)

where αi and βi are the parameters that depend on

the location of xo with respect to the i bin, with the
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dimension of variable x and the details about specify-

ing the above two parameters can be found in Hers-

bach (2000). Since the CRPS has the dimension of the

predicted variable, it can be used as a global skill to

quantitatively evaluate the performance of an ensem-

ble system. Moreover, the CRPS can be decomposed

into the reliability and resolution component, and the

decomposition of Eq. (3) can be written as:

CRPS =

N
∑

i=0

gi[(1− oi)p
2
i + oi(1− pi)

2]

= Reli + CRPSpot

=
N
∑

i=0

gi(oi − pi)
2 +

N
∑

i=1

gioi(1− oi), (4)

where gi is the average width of the bin i: gi =

xi+1 − xi, and oi is the average frequency that the

observation xo is less than the middle of the bin i,

that is, (xi + xi+1)/2. The Reli in Eq. (4) is the

reliability term of the CRPS, and CRPSpot measures

the difference between resolution term and the uncer-

tainty term associated with the variable considered.

Since the uncertainty term is only related to the refer-

ence climatology and is independent of the ensemble

system, so the CRPSpot can be used to represent the

resolution information. The CRPS and its decompo-

sition components are all negatively oriented, indicat-

ing that smaller values have higher forecast skills. The

Reli is equal to 0 if the system is perfectly reliable, and

CRPSpot reaches its minimum for a perfect determin-

istic system.

The overall performance of the REPS and the

GEPS for the precipitation forecasts are evaluated by

the CRPS. The significance of CRPS difference be-

tween the two systems (the score of GEPS minus the

score of REPS used in this paper, hereafter GEPS–

REPS) is calculated by the bootstrap technique. The

negatively oriented features of the CRPS and its de-

composition components lead to the following compar-

ison for the CRPS difference: the positive (negative)

GEPS–REPS difference means that the REPS has a

better (worse) forecast skill than the GEPS. Figure

2 displays the CRPSs of the REPS and GEPS (left

panel), and the CRPS difference between the two sys-

tems with the CIs (right panel). Compared to the

GEPS, salient skill improvements for 6-h precipitation

forecasts are observed in the REPS for all verified pe-

riods, and the magnitude of improvement is generally

more than 0.20 mm (6 h)−1. Also, there is clear skill

improvement for REPS after spin-up time (6 h). The

improvement of the REPS compared to the GEPS is

statistically significant since the 5% and 95% confi-

dence bounds of the CRPS differences (GEPS–REPS)

are all greater than zero for most verified periods. Fig-

ure 3 shows the decomposition components of CRPS

for 6-h precipitation during different verified periods.

The results show that the REPS has clear advantages

in both the reliability and resolution features

compared to the GEPS, and both improvements are

Fig. 2. The CRPSs of accumulated 6-h precipitation from the REPS and GEPS, and the CRPS difference between

GEPS and REPS with CIs (5%–95%), as a function of verified periods (1: 00–06 h, 2: 06–12 h, 3: 12–18 h, 4: 18–24 h,

5: 24–30 h, and 6: 30–36 h).
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Fig. 3. As in Fig. 2, but for the CRPS resolution (upper panels) and reliability components (lower panels).

statistically significant for verified periods except dur-

ing the spin-up time. It is noted that for the REPS the

improvement in the reliability seems generally larger

than in the resolution.

4.2 The reduced centered random variable

The reduced centered random variable (RCRV;

Talagrand et al., 1999) is a score to further investigate

the reliability property of a system. After Candille et

al. (2007), the modified RCRV taking the observation

error into account is used in this study:

y =
xo − xm
√

σ2
o + σ2

, (5)

where xo is the observed value of the verified vari-

able and σo is its observation error, and xm and σ are

ensemble mean and standard deviation of the corre-

sponding ensemble prediction. Two statistical param-

eters can be further derived from Eq. (5). Firstly, the

average of y over all the verification realizations,

b = E(y), (6)

is calculated to measure the bias of the ensemble sys-

tem (hereafter referred to as the bias term of RCRV);

secondly, the standard deviation of y,

d =

√

n

n− 1
E[(y − b)2], (7)

is computed to identify the agreement of ensemble

spread and the specified observational error. This pa-

rameter can provide the dispersion attribute (system-

atic over- or under-dispersive) of the ensemble system

(hereafter referred to as the dispersion term of RCRV).

A perfect reliable system will have zero value of bias

term b and 1 value of dispersion term d, and the sign

of bias value indicates the bias type, and the value

of dispersion term d greater/smaller than 1 represents

under-dispersion/over-dispersion of a system.

In order to compare the GEPS (A) with REPS
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(B) using RCRV score, the following treatments are

applied to the bias and dispersion difference: (1)

the absolute value of bias difference will be com-

pared, for instance, if |A| − |B| > (<)0, which means

system B has less (more) bias than system A; (2)

function F (A,B) is defined to measure the disper-

sion difference: if |logA| > |logB|, then F (A,B) =

e|logA|−|logB| − 1; if |logA| < |logB|, then F (A,B) =

1 − e|logA|−|logB|, and the positive (negative) value of

F (A,B) indicates that system B has a better (worse)

dispersion feature than system A. Figure 4 shows the

bias and dispersion term associated with the RCRV

from the GEPS and REPS, and bias and dispersion

differences between the two systems for 6-h precipita-

tion forecasts. It is noticed that both systems have

positive biases, however, the REPS has significantly

less bias for all verified periods. With respect to the

dispersion attribute, both systems are underdispersive

for all listed periods, but the REPS has less dispersion

with statistical significance than the GEPS. Moreover,

the dispersion of the REPS seems to exhibit small

changes for verified periods.

4.3 Brier score and attribute diagram

Besides the above general skill measures, the

probabilistic skill for 6-h QPF (6-h accumulated pre-

cipitation during 6–36-h forecast lead time) related to

certain threshold events also needs to be evaluated.

The Brier score (BS; Brier, 1950; Murphy, 1973)

is the most common probabilistic score for dichoto-

mous predictands. It can be estimated from a sample

of past forecasts by:

BS =
1

n

n
∑

i=1

(pi − oi)
2, (8)

where n is the number of realizations of the forecasts

Fig. 4. (a) The biases terms of RCRV from the REPS and GEPS, (b) bias difference between GEPS and REPS with
CIs, (c) the dispersion terms of RCRV from the GEPS and REPS, and (d) the dispersion difference between GEPS and
REPS with CIs (5%–95%), for accumulated 6-h precipitation as a function of verified periods (1: 00–06 h; 2: 06–12 h;
3: 12–18 h; 4 18–24 h: 5: 24–30 h, and 6: 30–36 h).
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issued over which the verification is performed. For

each realization i, pi is the forecast probability of the

occurrence of the event, and oi is actual outcome of

the event with value of 1 or 0 depending on whether

the event occurs or not. The BS is negatively oriented,

with value of zero for the perfect system. The BS can

be further decomposed into three components after al-

gebraic transformation (Murphy, 1973):

BS =
1

n

I
∑

i=1

Ni(pi − oi)
2 −

1

n

I
∑

i=1

Ni(oi − o)2

+o(1− o), (9)

where I is the number of total prescribed forecast

probability bins or categories, which is usually deter-

mined by the ensemble size (N). For example, with N

member, this creates N+1 bins with following values:

0/N, 1/N, . . . , (N − 1)/N,N/N . In this paper, the en-

semble sizes of GEPS and REPS are both 15, so the

value of I is 16. Ni is the number of times, a forecast

pi is used in the collection of forecast-verification pairs,

and oi = P (o = 1|pi) =
1

Ni

∑

k∈Ni

ok is the conditional

observed probability, and o =
1

n

n
∑

k=1

ok is the sample

climatology. The three terms on the right-hand side

of Eq. (9) are called reliability, resolution, and uncer-

tainty, respectively.

Based on the standards of the Central Meteoro-

logical Observatory of CMA, four binary events re-

lated to the thresholds 0.1, 1, 2, and 6 mm (6 h)−1 for

accumulated 6-h precipitation are chosen to evaluate

the forecast abilities of the two systems for small to

heavy rainfall. Table 1 gives the BSs of the REPS and

GEPS, and it is shown that the REPS has better QPF

skills for all thresholds compared to the GEPS. More-

over, the significance test of BS difference between the

GEPS and REPS reveals that the skill improvement of

the REPS is statistically significant for all thresholds

(figure omitted).

Table 1. The BSs of accumulated 6-h precipitation

from the GEPS and REPS for the different thresholds

(0.1, 1, 2 and 6 mm (6 h)−1)

0.1 mm 1 mm 2 mm 6 mm

REPS 0.172 0.114 0.094 0.054

GEPS 0.314 0.182 0.142 0.065

Attribute diagram is the visualized presentation

of reliability of system. It compares the prior predicted

probability (pi) against the subsequent observed fre-

quency (oi) for all probability categories (I). More-

over, the information on resolution of BS and sharp-

ness attribute of the forecast system is also presented

in this diagram. The diagonal line in the attribute di-

agram indicates the perfect reliability (the closer the

curve to the diagonal line, the better the reliability is),

and the deviation from this line shows the conditional

bias. The no resolution line (horizontal and vertical)

is featured by the climatological frequency to identify

if the forecast probability is higher or lower than the

climatological frequency. The flatter the curve is, the

lower resolution it has. The sharpness diagram (inset

histogram in Fig. 5) shows the occurrence frequency

of predicted probability for each forecast probability

category. The no skill line is obtained when reliability

and resolution components of the BS are equal. When

the reliability curve lies between the diagonal and the

no skill line, that is, the resolution is greater than re-

liability, the forecast is skillful.

Figure 5 shows the attribute diagrams of accu-

mulated 6-h precipitation from the GEPS and REPS

for thresholds 1, 2, and 6 mm (6 h)−1. The sample

climatological frequencies associated with the above

thresholds are 10.2% (1 mm), 9.2% (2 mm), and 5.2%

(6 mm), respectively. It can be clearly found that

the REPS is much reliable than the GEPS for all

thresholds, though both systems are underdispersive.

For the REPS, at 2- and 6-mm thresholds (moder-

ate and high precipitation), the forecast probabilities

are underpredicted for the probability categories less

than climatological frequency, and are overpredicted

for larger values. Moreover, it should be noted that

the reliability of the REPS at 2 and 6 mm (6 h)−1 is

enhanced compared to the one at 1-mm threshold for

the low probability categories, and this improvement

might indicate the advantage of the REPS forecast for

middle to heavy rainfall in the reliability attribute.

The relative effect of reliability and resolution com-

ponent on the BS can be found further through the

attribute diagram for the GEPS, which exhibits quite

poor resolution (close to the no resolution line) and

reliability (below the no skill line). Obviously, these



576 ACTA METEOROLOGICA SINICA VOL.25

Fig. 5. Attribute diagrams of accumulated 6-h precipitation from the GEPS and REPS for three thresholds: (a) 1,

(b) 2, and (c) 6 mm (6 h)−1. The slope line below the diagonal line denotes the no skill line, and the horizontal and

vertical lines denote the no resolution line (climatological frequency during the verified period). Insert histogram is

the sharpness diagram of the REPS for non-zero forecast probability categories. The occurrence frequencies for zero

probability categories for different thresholds are 66% (1 mm), 71.9% (2 mm), and 83.7% (6 mm).

have negative contributions to the BS of the GEPS.

The sharpness diagram (shown only for the

REPS) reveals the distribution of occurrence fre-

quency for forecast probability categories. The oc-

currence frequencies for zero probability categories for

different thresholds are 66% (1 mm), 71.9% (2 mm),

and 83.7% (6 mm), which make positive contributions

to the BS for these thresholds. It should be noted that

the performance of the GEPS presented here might be

deteriorated to some extent by the multi-interpolation

process mentioned earlier.

4.4 Area under the relative operating charac-

teristics

The relative operating characteristic (ROC; Ma-

son, 1982) is a verification measure based on the sig-

nal detection theory. In the ensemble verification, the

ROC diagram is constructed by plotting the hit rate

H = a/(a+c) versus the false alarm rate F = b/(b+d)

for a range of probability thresholds, where a, b, c, and

d are components of the contingency table (Table 2).

In this study, 15 values of threshold probabilities are

used, ranging from 1/15 to 15/15 with an even inter-

val of 1/15. The area under the ROC curve (AROC)

is usually used to indicate the discriminating ability

of the event at the selected thresholds, which has the

value of 1 for perfect forecast, and the value of 0.5 for

Table 2. The contingency table of precipitation fore-

casts and observations for a certain event

Observed Not observed

Forecasted a b

Not forecasted c d

An event occurs when the precipitation exceeds a threshold.
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no skill forecast.

Figure 6 gives the AROCs of accumulated 6-h pre-

cipitation from the GEPS and REPS, and AROC dif-

ference between GEPS and REPS. The stable AROC

values more than 0.7 are observed in the REPS for

all thresholds, and the values of GEPS remain around

0.5 with small changes for verified thresholds, indicat-

ing that we can obtain more skillful forecasts from the

REPS for small to heavy rainfall. The behavior of

the GEPS is consistent with its resolution feature pre-

sented in the attribute diagram, showing that it has no

forecast skill compared to the climatological frequency

of the sample. From the AROC difference between the

GEPS and REPS, it can be found that the skill im-

provement of the REPS is statically significant for all

thresholds compared to the GEPS.

4.5 The potential economic value

The potential economic value (PEV; Richardson,

2000; Zhu et al., 2002) is a user-oriented measure based

on the cost-loss analysis method for determining the

potential economic benefit associated with the use of

ensemble forecast relative to the use of climatology

information. The specific definition of PEV can be

found in related articles. The calculation of PEV is

given here only for clarification:

PEV =
min(r, o)− F (1− o)r +Ho(1− r)− o

min(r, o)− or
, (10)

where r = C/L is the user specified cost-loss ratio, o is

the climatological probability of the occurring event,

and H and F are the hit rate and false alarm rate

defined in the description of the ROC. Based on Eq.

(10), PEV is the function of the probability thresholds

since H and F are the functions of a set of probability

thresholds. The PEV is positively oriented with value

of 1 for perfect deterministic forecast. The PEV also

allows for comparison of the economic value of the en-

semble forecast and the one of an equivalent control

run. Usually, the envelope of PEV (called optimal

PEV) among all probability thresholds is used to rep-

resent economic value of the ensemble system, and in

this study we utilize the optimal PEV. Figure 7 de-

picts the optimal PEV from the REPS and its control

run for 1, 2, and 6 mm (6 h)−1 thresholds, as a func-

tion of cost-loss ratio C/L. The positive optimal PEV

of the control forecast for three thresholds are mainly

located for C/L ratio ranges of 5%–30%. Compared

to the control forecast, not only the range of cost-loss

ratios, for which the ensemble forecasts exhibit pos-

itive value, is widened up to 3%–40%, but also the

corresponding optimal PEV is improved substantially.

The largest PEV improvement from the REPS fore-

cast compared to the control forecast is found around

5% for the C/L ratio at 6 mm. Also, it is noticeable

that the PEV improvement from the REPS tends to

distinctly increase for the C/L ratio range of 20%–40%

for all thresholds compared to the control forecast.

Note that for each threshold, the largest economic

Fig. 6. AROCs of accumulated 6-h precipitation from the GEPS and REPS, and AROC difference between the GEPS

and REPS with CIs (5%–95%), as a function of thresholds (0.1, 1, 2, and 6 mm (6 h)−1).
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Fig. 7. The optimal REV of the REPS (solid lines) and

the control run (dashed lines) for three thresholds (1, 2,

and 6 mm (6h)−1).

value, as expected from its definition, is obtained when

the C/L ratio is approximately equal to climatological

frequency, which is 10% for 1 mm, 9% for 2 mm, and

11% for 6 mm. Also, it is interesting to find that with

increasing thresholds, this peak value of the REPS is

enhanced, showing a maximum value of 0.45 at 6 mm,

which is contrary to the reduced peak values with in-

creasing thresholds observed in the control forecast.

The above results indicate that a larger group of users

can benefit from using the ensemble forecasts com-

pared to using the control forecasts, and encouraging

advantage of using the REPS for heavy rainfall fore-

cast is obtained.

4.6 Brier skill score of the REPS for accumu-

lated 24-h precipitation

The Brier skill score (BSS; Jollife and Stephen-

son, 2003) is a forecast skill score derived from the BS

with respect to a reference system:

BSS = 1−
BS

BSref

. (11)

The BSS is positively oriented with value of 1 for per-

fect forecast, and positive value of BSS indicates the

skillful forecast compared to the reference system. In

this study, the GEPS forecast is used as reference sys-

tem (BSref) to evaluate the performance of the REPS,

and the positive (negative) BSS indicates that the

REPS forecast is better (worse) than the GEPS fore-

cast.

In previous sections, the significant advantages of

the REPS for 6-h QPFs compared to the GEPS are

observed. It is now of interest to investigate the fore-

cast skill improvement when using the REPS instead

of the GEPS for the accumulated 24-h precipitation

(from 12- to 36-h forecast lead time). The evalua-

tion here is conducted for 11 thresholds (1, 2.5, 5, 10,

15, 20, 30, 35, 40, 45, and 50 mm (24 h)−1). Figure

8 displays the BSS of the REPS with CIs for accu-

mulated 24-h precipitation, and the positive BSSs are

observed for all thresholds, which indicate that we can

obtain more skillful 24-h QPFs when using the REPS

forecasts instead of using the GEPS. Moreover, based

on the 95% confidence bound shown in Fig.8, it can

be found that the precipitation forecast skill improve-

ments by the REPS can be significant up to 30 mm.

5. Summary and conclusions

A REPS at NMC was originally established and

had been developing as one of the B08RDP partici-

pants for providing mesoscale ensemble forecasting to

the Beijing 2008 Olympic Games. After the Olympic

Games, this system has been running in real time,

Fig. 8. The BSSs of accumulated 24-h precipitation from

the REPS, as a function of precipitation thresholds (1, 2.5,

5, 10, 15, 20, 30, 35, 40, 45, and 50 mm (24 h)−1). The

error bars represent the 5%–95% confidence interval.
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and its products, especially surface parameters, pro-

vide extra useful information to forecasters besides

the existing GEPS forecasts and other deterministic

forecasts. This study focuses on the evaluation of the

REPS for short-range precipitation forecasts in com-

parison with its control run and the GEPS forecasts,

and comprehensive verifications are performed over

a 36-day period during the Beijing Olympic Games

(21 July–24 August 2008). All verification measures

used in this study indicate that the REPS performs

significantly better than the GEPS for precipitation

forecasts, showing that the REPS has prevailing ad-

vantages for 6-h precipitation forecasts in the global

forecast skill measures. By specifying advantages of

the REPS, it is shown that the REPS has better

reliability and resolution (discrimination) attributes

compared to the GEPS. Moreover, the superior relia-

bility of REPS can be characterized with less bias and

better dispersion.

The PEV comparison between the REPS and its

control run reveals that the ensemble-based proba-

bilistic forecasts exhibit much higher PEV than the

control forecast. Moreover, this PEV improvement

tends to increase with increasing of rainfall amount.

For the forecasts of accumulated 24-h precipitation,

the forecast skill improvement of the REPS against

the GEPS as the reference system can be found up to

50 mm, in which the statistic significance is up to 30

mm. Generally, the verification results in this study

support the expectation that regional ensemble fore-

casts are capable of providing more useful information

for the short-range forecasts.

Note that the unavoidable multi-interpolation

process for the GEPS data might be unfavorable for

the evaluation of the GEPS, and the lack of model

perturbation might play another important role for

the poor performance of the GEPS. In addition, the

conclusion drawn here might be affected by under-

sampling effect (only 36-day cases), since some prob-

abilistic scores are sensitive to the sample climatol-

ogy. Fortunately, the pre-operationally running of the

REPS at NMC (starting from November 2010) is still

ongoing, which allows us to conduct extended studies

for larger samples.
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