西藏地热气体的地球化学特征及其地质意义

赵平 谢鄂军 等. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4): 539-550.
引用本文: 赵平 谢鄂军 等. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4): 539-550.
ZHAO Ping 1,XIE EJun 2,DOR Ji 2,JIN Jian 1,HU XianCai 2,DU ShaoPing 2 and YAO ZhongHua 21. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100 029,China 2. Geothermal Geology Team of Tibet,Lhasa 850000,China. Geochemical charact eristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4): 539-550.
Citation: ZHAO Ping 1,XIE EJun 2,DOR Ji 2,JIN Jian 1,HU XianCai 2,DU ShaoPing 2 and YAO ZhongHua 21. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100 029,China 2. Geothermal Geology Team of Tibet,Lhasa 850000,China. Geochemical charact eristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4): 539-550.

西藏地热气体的地球化学特征及其地质意义

  • 基金项目:

    国家自然科学基金项目 (批准号 :4 96 72 1 6 8,4 9972 0 93),国际原子能机构 ( CPR90 95/ R1 )联合资助

Geochemical charact eristics of geothermal gases and their geological implications in Tibet

  • 西藏水热活动是青苦恼高原碰撞造山过程的产物,其成因类型、物质来源和时空分布与青藏高原的隆升过程密切相关,地热流体(气、液相)中携带有中上地壳乃至地幔物质的深部信息。西藏地热流体可以区分出CO2型和N2型两类气体,其中绝大多数的地热气体样品属于CO2型气体,而典型的N2型气体则较少。前者具有岩浆热源和深循环两种成因类型,后者都是深循环成因。西藏气体样品中的He含量变化范围非常宽,最高的可达到1.5%。在门士热泉,首次检测到地幔He组分,这说明西藏地壳深处有地幔物质侵位。根据He同位素组成推断,羊八井、谷露等处的地壳熔融体中约有3%的地幔组分。西藏地热气体中的N2和Ar组分主要是大气成因,CO2组分大多以海相碳酸盐岩成因为主,混有少量有机沉积物成因CO2。当Log(H2/Ar)处于-0.8-0.3的区间时,H2/Ar地热温度计可以良好地指示热储层的温度范围。实际调查表明:西藏水热活动区大多分布在斑公错-怒江链合带以南地区,高温水热活动区主要出现在雅鲁藏布缝合带和那曲-羊八井-亚东活动构造带沿线。
  • 加载中
  • [1]

    [1]Arnorsson S, Fridriksson Th and Gunnarsson I. 1998. Gas geochemistry of the Krafla geothermal Field, Iceland. In: Arehart GB and Hulston JR(eds.) Proc. Ninth Internat Symp Water-Rock Interaction. Rotterdam: A A Balkema. 613-616

    [2]

    [2]Arnorsson S and Gunnlaugsson E. 1985. New gas geothermometers for geothermal exploration - calibration and application. Geochim. Cosmochim. Acta, 49:1307-1325

    [3]

    [3]Arnorsson S, Gunnlaugsson E and Svavarsson H. 1983. The chemistry of geothermal waters in Iceland, III: Chemical geothermometry in geothermal investigations. Geochim. Cosmochim. Acta, 47:567-577

    [4]

    [4]Bottinga Y. 1969. Calculated fractionation factors for carbon and hydrogen isotope exchanges in the system calcite-carbon dioxide-granite-methane-hydrogen-water vapour. Geochim. Cosmochim. Acta, 33:49-64

    [5]

    [5]Dai Jinxing, Dai Chunsen and Song Yan. 1994. Geochemical characteristics of natural gases in selected hot springs in China and their carbon, helium isotope compositions, Science in China. Serials B24:426-433 (in Chinese)

    [6]

    [6]D\'Amore F and Truesdell A H. 1985. Calculation of geothermal reservoir temperatures and steam fraction from gas compositions. GRC Transaction, 9:305-310

    [7]

    [7]D\'Amore F and Panichi C. 1980. Evaluation of deep temperatures in geothermal systems by a new gas geothermometer. Geochim. Cosmochim. Acta, 44:549-556

    [8]

    [8]Ellis A J. 1957. Chemical equilibrium in magmatic gas. Am. J. Sci., 255:416-431

    [9]

    [9]Ferrara G C, Ferrara G and Gonfiantini R. 1963. Carbon isotopic composition of carbon dioxide and methane from steam jets of Tuscany. In: Tongiorgi (ed.). Nuclear geology on geothermal areas. Spoleto, 277-284

    [10]

    [10]Fournier R O. 1979. A revised equation for the Na/K geothermometer. GRC Transaction, 3:221-224

    [11]

    [11]Giggenbach W F. 1992. The composition of gases in geothermal and volcanic systems as a function of tectonic setting. In: Kharaka Y K and Maest A S (eds.) Proc. Seventh Internat. Symp. Water-Rock Interaction. Rotterdam: A A Balkema. 873-878

    [12]

    [12]Giggenbach W F. 1980. Geotheraml gas equilibrium. Geochim. Cosmochim. Acta, 44:2021-2032

    [13]

    [13]Giggenbach W F and Goguel R L. 1989. Collection and analysis of geothermal and volcanic water and gas discharges. DSIR Report No. CD 2401, 1-81

    [14]

    [14]Hochstein M P and Zhongke Yang. 1995. The Himalayan geothermal belt (Kashmir, Tibet, West Yunnan). In: Gupta L M and Yamano M (eds.). Terrestrial heat flow and geothermal energy in Asia. New Delhi: Oxford & IBH Publishing CO. PVT. LTD., 331-368

    [15]

    [15]Hoefs J. 1978. Stable isotope geochemistry. New York: Springer-Verlag. 1-140

    [16]

    [16]Hou Zengqian, Li Zhengqing, Qu Xiaoming, Gao Yongfeng, Hua Lichen, Zheng Mianping, Li Shengrong and Yuan Wanming. 2001. The uplifting processes of the Tibetan Plateau since 0.5 Ma B.P. - Evidence from hydrothermal activity in the Gangdise Belt. Science in China (Series D), 44 (Supp.):35-44

    [17]

    [17]Hulston J R and Lyon J L. 1991. Isotopic evidence for the origin of methane from New Zealand geothermal system. Proc. Deep gas workshop, Hannover, May 1990. International Energy Agency Report.

    [18]

    [18]Hulston J R and McCabe W J. 1962. Mass spectrometer measurements in the thermal areas of New Zealand, Part 2: Carbon isotopic rates. Geochim. Cosmochim. Acta, 26:300-410

    [19]

    [19]Liao Zhijie, Zhao Ping, et al. 1999. Yunnan-Tibet Geothermal Belt - Geothermal resources and case histories. Beijing, Science Press, 1-153 (in Chinese with extended English abstract)

    [20]

    [20]Mizutani Y and Rafter T A. 1969. Oxygen isotopic composition of sulphates - Part 3. Oxygen isotopic fractionation in the bisulphate ion-water system. New Zealand Journal of Science, 12:54-59

    [21]

    [21]Nehring N L and D\'Amore F. 1984. Gas geochemistry of the Cerro Prieto, Mexico, geothermal field. Geothermics, 13:75-89

    [22]

    [22]Shen Xianjie. 1996. Crust-mantle thermal structure and tectonothermal evolution of the Tibetan plateau. Beijing: Science Press. 1-224

    [23]

    [23]Tong Wei, Liao Zhijie, Liu Shibin, Zhang Zhifei, You Maozheng, and Zang Mingtao. 2000. Thermal springs in Tibet. Beijing: Science Press, 1-153 (in Chinese)

    [24]

    [24]Tong Wei and Zhang Mingtao. 1994. Thermal Springs in Hengduan Mountains. Beijing: Science Press, 1-326 (in Chinese)

    [25]

    [25]Tong Wei and Zhang Mingtao. 1989. Geothermics in Tengchong. Beijing: Science Press, 1-262 (in Chinese)

    [26]

    [26]Tong Wei, Zhang Mingtao, Zhang Zhifei, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Guoying and Liu Shibin. 1981. Geothermics in Tibet. Beijing: Science Press, 1-170 (in Chinese)

    [27]

    [27]Xu S, Nakai S, Wakita H, Wang X. and Chen J. 1994. Helium isotopic compositions in Quaternary volcanic geothermal area near Indo-Eurasian collisional margin at Tengchong, China. In: Matsuda (ed.). Noble Gas Geochemistry and Cosmochemistry. Tokyo: TERRAPUB. 305-313

    [28]

    [28]Yokoyama T, Nakai S and Wakita H. 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. J. Volcan. Geochem. Res., 88:99-107

    [29]

    [29]Zhao Ping and Armannsson H. 1996. Evaluation and interpretation of gas geothermometry results from selected Icelandic geothermal fields with comparative examples from Kenya. Geothermics, 25(3):307-347

    [30]

    [30]Zhao Ping, Dor Ji, Liang Tingli, Jin Jian and Zhang Haizheng. 1998. Characteristics of gas geochemistry in the Yangbajain geothermal field, Tibet. Chinese Science Bulletin, 43(21):1770-1777

    [31]

    [31]Zhao Ping, Jin Jian, Dor Ji and Liang Tingli. 1997. Deep geothermal resources in the Yangbajain field, Tibet. GRC Transactions, 21:227-230

    [32]

    [32]Zhao Ping, Liao Zhijie, Guo Guoying and Zhao Fengshan. 1996. Steam quantitative analysis and its implication in the Rehai geothermal field, Tengchong. Chinese Science Bulletin, 41:501-505

    [33]

    [33]Zhao Ping, Kennedy M, Dor Ji, Xie Ejun, Du Shaoping, Shuster D and Jin Jian. 2001. Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet. Acta Petrologica Sinica, 17(3):497-503 (in Chinese with English alstract)

    [34]

    [34]Zheng Mianping, Liu Jie, Dor Ji and Pingcuo Wangjie. 1995. A new type of cesium deposit - cesium-bearing geyserite. Beijing: Geological Publishing House, 1-77

    [35]

    [35]Zhu Meixiang and Xu Yong. 1993. Hydrothermal alternation and evaluation in the Yangyi geothermal field of Tibet, China. In: Ren Xiang, Liu Shibin and Dunzhujiacan (eds.). Proceedings of the utilization of high temperature geothermal resources in Tibet. Beijing: Geological Publishing House, 125-133 (in Chinese with English abstract)

    [36]

    [36]戴金星, 戴春森, 宋岩. 1994. 中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成. 中国科学(B辑), 24:426-433

    [37]

    [37]侯增谦, 李振清, 曲晓明, 高永丰, 华力臣, 郑绵平, 李胜荣, 袁万明. 2001. 0.5Ma以来的青藏高原隆升过程--来自冈底斯带热水活动的证据. 中国科学(D辑), 44(增刊):27-33

    [38]

    [38]廖志杰, 赵平等. 1999. 滇藏地热带--地热资源和典型地热系统. 北京:科学出版社, 1-153

    [39]

    [39]佟伟, 廖志杰, 刘时彬, 张知非, 由懋正, 章铭陶. 2000. 西藏温泉志. 北京:科学出版社, 1-300

    [40]

    [40]佟伟, 章铭陶编. 1994. 横断山区温泉志. 北京:科学出版社, 1-326

    [41]

    [41]佟伟, 章铭陶编. 1989. 腾冲地热. 北京:科学出版社, 1-262

    [42]

    [42]佟伟, 章铭陶, 张知非, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬编. 1981. 西藏地热. 北京:科学出版社, 1-170

    [43]

    [43]赵平, Kennedy M, 多吉, Shuster D, 谢鄂军, 杜少平, 金建. 2001. 西藏羊八井热田地热流体成因及演化的惰性气体制约. 岩石学报, 17:497-503

    [44]

    [44]朱梅湘, 徐勇. 1993. 羊易地热田的水热蚀变及其热田演化. 见: 任湘, 刘时彬, 顿主佳参主编. 中国西藏高温地热开发和利用国际研讨会论文集. 北京:地质出版社, 125-133

  • 加载中
计量
  • 文章访问数:  8550
  • PDF下载数:  7765
  • 施引文献:  0
出版历程
修回日期:  2002-08-15
刊出日期:  2002-11-30

目录