多尺度交通出行碳排放影响因素研究进展

杨文越, 曹小曙

地理科学进展 ›› 2019, Vol. 38 ›› Issue (11) : 1814-1828.

PDF(8557 KB)
PDF(8557 KB)
地理科学进展 ›› 2019, Vol. 38 ›› Issue (11) : 1814-1828. DOI: 10.18306/dlkxjz.2019.11.016 CSTR: 32072.14.dlkxjz.2019.11.016
研究综述

多尺度交通出行碳排放影响因素研究进展

作者信息 +

Progress of research on influencing factors of CO2 emissions from multi-scale transport

Author information +
文章历史 +

摘要

减少交通出行碳排放是全球共同面对的重大议题之一,同时也是城市和交通可持续发展的重要目标。论文首先基于文献计量方法对近20年来的全球交通出行碳排放研究现状与趋势进行梳理与分析,在此基础上,分别从国家、城市和社区3个尺度对国家交通能源消耗及其碳排放的驱动力因素、城市形态对交通碳排放的影响以及社区建成环境对居民出行碳排放的影响研究进行了文献综述与归纳凝练。研究发现:① 国家尺度的研究早期大多基于时间序列数据,采用分解法探究交通能源消耗的主要驱动力;近年来,研究进一步根据能源消耗数据“自上而下”地测算交通碳排放,并通过构建面板数据模型探究社会经济、城市形态和交通发展因素对交通碳排放的影响。② 城市尺度的研究早期围绕紧凑城市是否一种低碳的城市形态而进行讨论,主要使用截面数据和相关分析方法;近年来,进一步拓展使用情景预测、GIS空间分析、空间回归、空间模拟等方法探究城市交通碳排放的空间差异及其与城市形态、城市中心分布形式之间的关系。③ 在社区尺度,研究多以截面、非集计的问卷调查数据为主,采用定量的数学模型探究居民社会经济属性和人口密度,土地利用混合度,与就业地、城市中心的距离,路网与交叉口密度、公共交通供给水平等建成环境要素对居民出行碳排放的影响。最后有针对性地提出了未来中国城市交通出行碳排放影响因素的研究趋势。

Abstract

Reducing CO2 emissions from transport is a major issue worldwide. It is also an important goal for sustainable urban and transport development. Using bibliometric methods, this article reviews and summarizes the current research situation and trends of global CO2 emissions from transport over the past two decades. On this basis, the article reviews and analyzes the literature on the driving forces of energy consumption and its related CO2 emissions, and the impacts of urban form and neighborhood built environments on CO2 emissions from transport at the national, city, and neighborhood scales, respectively. Our study found that most of the early national-scale studies were based on time-series data, using decomposition methods to explore the main driving forces of transport energy consumption. In recent years, further studies calculated CO2 emissions from transport with a "top-down" approach based on energy consumption data, and explored the impact of socioeconomic, urban form, and transportation development factors on CO2 emissions from transport by constructing panel data models. Early city-scale studies focused on whether compact cities are a low-carbon urban form, mainly using cross-sectional data and correlation analysis methods. In recent years, scenario forecasting, GIS spatial analysis, spatial regression, spatial simulation, and other methods have been further developed to explore the spatial differences of urban transport carbon emissions and their relationships with urban morphology and urban center distribution. For the neighborhood-scale studies, mathematical models were used to examine the effects of residents’ demographics and built environments on CO2 emissions, mainly based on cross-sectional and disaggregated questionnaire survey data. The built environment factors include population density, land-use mix, distance to employment sites or distance to urban centers, road network and intersection density, and the supply level of public transport. At the end of the article, research trends of influencing factors of CO2 emissions from transport in urban China are analyzed with respect to the three aspects of study data, methodology, and research contents.

关键词

交通 / 出行 / 碳排放 / 影响因素 / 多尺度分析

Key words

transport / travel / CO2 emissions / influencing factors / multi-scale analysis

引用本文

导出引用
杨文越, 曹小曙. 多尺度交通出行碳排放影响因素研究进展[J]. 地理科学进展, 2019, 38(11): 1814-1828 https://doi.org/10.18306/dlkxjz.2019.11.016
YANG Wenyue, CAO Xiaoshu. Progress of research on influencing factors of CO2 emissions from multi-scale transport[J]. PROGRESS IN GEOGRAPHY, 2019, 38(11): 1814-1828 https://doi.org/10.18306/dlkxjz.2019.11.016
交通出行过程中机动车排放的尾气是城市环境污染的主要来源,对公众健康产生巨大的负面影响(马静等, 2017; Li et al, 2018)。同时,交通出行碳排放也是导致全球气候变化的主要原因之一(Dulal et al, 2011; Schwanen et al, 2011)。根据国际能源组织的最新数据(IEA, 2018),2016年全球排放的二氧化碳(CO2)共32314.22 Mt,其中有24.34%是来自于交通部门。中国是目前全球碳排放第一大国家,全年排放的CO2高达9101.53 Mt,占全球的28.17%;其中,交通部门排放的CO2共851.22 Mt(占比9.35%)。虽然目前中国交通部门排放的CO2占比相对全球而言并不高,但增长速度远高于其他部门。2010—2016年间,中国交通碳排放增长速度接近40%。在全球范围内,交通部门也是碳排放增长最快的部门。尽管有不少国家的碳排放总量在近几年已呈现出负增长趋势,但其交通部门排放的CO2仍然不断增长(Kwon, 2005; Brand et al, 2012)。因此,交通部门不仅是全球第二大碳排放部门(IEA, 2018),同时也被不少学者视为碳减排最难实现的部门(Chapman, 2007; Dulal et al, 2011; Schwanen et al, 2011)。随着社会经济的发展、国民收入水平的提高和小汽车拥有量的增加,未来中国交通部门碳排放仍将保持不断增长的态势(Gambhir et al, 2015; Yang et al, 2015),这使中国实现《巴黎协定》签署的减少温室气体排放目标面临巨大压力和挑战(Cai et al, 2018; Pan et al, 2018; Li et al, 2019)。
交通出行碳减排涉及社会、经济、空间、环境、技术、政策和文化等多方面(Geels, 2012),是地理、规划、交通、经济和生态等多学科共同关注的焦点,也是世界各国城市规划师和交通政策制定者一直致力于构建可持续城市空间和交通发展的关键目标之一(Banister et al, 2012)。近年来,交通出行碳排放一直受到社会各界的高度关注(曹小曙等, 2015)。为此,本文首先基于文献计量方法对全球交通出行碳排放研究现状与趋势进行梳理;然后,分别从国家、城市和社区3个尺度对交通出行碳排放的驱动力和影响因素进行归纳和凝练;最后,提出中国城市交通出行碳排放影响因素的未来研究趋势,以期为今后的研究提供思路与借鉴参考,亦为构建低碳的城市空间结构与土地利用模式提供科学依据。

1 交通出行碳排放研究现状与趋势

对交通出行碳排放的相关研究成果进行文献计量分析,有助于把握该领域的发展脉络和国际最新研究趋势,具有较大的研究意义。本文首先以与交通出行和碳排放相关的“交通(transport/transportation/traffic)、出行(travel/trip)、碳(carbon)、二氧化碳(CO2)、温室气体(greenhouse gas, GHG)、排放(emissions)、能源(energy)、燃料(fuel)、机动车(vehicle)”等为关键词,在Web of Science数据库中的核心合集进行主题检索,共检索出结果261290条。然后,进一步对研究领域与方向进行识别与精练,排除不相关的学科,甄选出与本研究主题密切相关的文献。最终精炼检索结果共4484篇文献(年份:1999—2017年),将其导出到文献检索数据库作为文献计量分析的数据基础,使用BIBLIOMETRC.COM文献计量在线分析平台对全球交通出行碳排放研究的特征、进展与趋势进行梳理。
近年来,国内外关于交通出行碳排放的研究一直处于增长态势。1999—2017年,该领域的研究文献年均增长速度高达18.24%。尤其在2008年国际气候峰会召开之后,其研究成果增长速度明显加快,并从2015年开始再一次进入研究热潮阶段。由此可见,近10多年来,交通出行碳排放研究主题一直受到学界的高度关注,且热度与日俱增(图1)。
图1 1999—2017年研究文献数量增长情况

Fig.1 Growth of literature on CO2 emissions from transport, 1999-2017

Full size|PPT slide

虽然从发表文献总量方面来看,目前全球大多数交通出行碳排放研究集中于西方国家,但中国所占的份额也正在不断提升,且近年增长尤为迅速。1999—2017年,美国共发表与该研究主题相关的文章1548篇,占总量的34.52%,是关于交通出行碳排放研究的第一大国家。同时,中国在这段时间内亦发表了615篇文献,占比13.72%,仅次于美国;且近年一直保持年发表文献数量第二大国家的位置,逐渐与排第三的英国拉开距离。欧洲主要以英国为主,发表563篇文献,占比12.56%。此外,还有欧洲的德国、荷兰、意大利和西班牙、北美洲的加拿大和澳洲的澳大利亚(图2)。
图2 发表文献总量前10名国家的历年增长情况

Fig.2 Annual growth of the total number of publications in the top 10 countries

Full size|PPT slide

图3展示了国家间关于该研究主题的合作关系。其中,与中国学者合作最密切的是美国学者,其次是日本、英国、澳大利亚、荷兰、加拿大、瑞典、韩国等。
图3 国家间的研究合作关系

Fig.3 Research cooperation relations among countries

Full size|PPT slide

这些文献主要发表在交通类和地理类的期刊上(表1)。其中,发表文献总数和总被引次数最多的期刊是《Transportation Research Part D: Transport and Environment》。该期刊主要关注交通对环境的影响及其相应的交通政策、规划设计和管理等方面,涵盖多层面的交通系统、出行行为与空气质量、生态系统、全球气候、公共健康、土地使用、经济发展和生活质量之间的相互作用和影响。因此,该期刊的研究主题与交通出行碳排放密切相关,其发表和被引的文章数量远多于其他期刊。此外,交通地理领域的高水平期刊《Journal of Transport Geography》发表文献总数第10名、总被引用次数第9名,其主要从地理学的视角探究交通出行碳排放问题。
表1 发表文献总数前10名的期刊

Tab.1 Top 10 journals of published articles

排名 期刊名称 文献总数/篇 总被引次数/次 平均被引次数/次
1 Transportation Research Part D: Transport and Environment 724 2034 2.81
2 Transportation Research Record 571 629 1.10
3 Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 323 249 0.77
4 International Journal of Automotive Technology 207 239 1.15
5 Transportation Research Part A: Policy and Practice 207 726 3.51
6 Transport Policy 153 377 2.46
7 IEEE Transactions on Intelligent Transportation Systems 150 252 1.68
8 Transportation Research Part C: Emerging Technologies 140 330 2.36
9 International Journal of Vehicle Design 136 51 0.38
10 Journal of Transport Geography 115 239 2.08
通过关键词分析可以从中反映该领域研究所关注的方向与热点。图4展示了1999—2017年间该领域研究出现频率最高的15个关键词。这些高频关键词中包括了与交通能源消耗和碳排放密切相关的词组:“排放(emissions)”“交通(transport)”“能源(energy)”“消耗(consumption)”和“出行(travel)”。除此以外,“模型(model)”和“影响(impact)”是使用最多的关键词,意味着这些研究大多以定量研究为主,通过构建碳排放模型来估算交通出行碳排放,以及通过构建数学模型,如分解模型、回归模型等,来探究交通出行碳排放的影响因素与驱动力。同时,这些研究还关注交通系统(system)、交通需求(demand)和绩效(performance)及系统、需求和绩效之间的优化(optimization),并提出相应的提升改善政策(policy)。城市形态与建成环境的设计(design)和居民出行行为(behavior)也是关注的热点之一,因为它们会直接或间接地影响交通出行碳排放。
图4 1999—2017年交通出行碳排放研究关键词分析

Fig.4 Key words analysis in the study of CO2 emissions from transport, 1999-2017

Full size|PPT slide

进一步对被引用次数最多的前10位学者进行统计分析(表2),并对该领域文献之间的相互引用网络关系进行可视化。总被引用次数最多的学者H. Rakha和K. Ahn均来自于美国弗吉尼亚理工大学土木与环境工程系、交通运输研究所。他们分别在2002年和2004年发表的关于估算机动车能源消耗与排放的论文成为文献引用网络中的2大重要节点。图5展示了最重要节点文献(被引用次数最多)的引用关系子集。这篇文献来自于学者Rakha,同时也被第二重要节点文献(来自学者Ahn)引用,由此可见这2位学者科研合作紧密,相互引用较多。但他们的文章主要被工程(Engineering)、交通运输(Transportation)和环境科学(Environmental Sciences)的学者引用。另外有2篇重要节点文献则是属于地理学科与城市研究的,其中1篇是学者Chapman写的关于交通与气候变化的综述文章,2007年发表在《Journal of Transport Geography》上;1篇是学者Brownstone等关于居住密度与机动车使用、燃料消耗之间关系的实证文章(见4.1节),2009年发表在《Journal of Urban Economics》。
表2 总被引用次数最多的前10位作者

Tab.2 Top 10 authors with the highest total number of citations

作者名 总被引用次数/次 文章总数/篇 第一作者文章
总数/篇
第一作者文章
被引次数/次
通信作者文章
总数/篇
通信作者文章
被引次数/次
H. Rakha 290 27 11 125 21 181
K. Ahn 264 23 11 140 5 111
M. Barth 175 23 7 99 7 99
A. Trani 168 4 0 0 0 0
K. Boriboonsomsin 160 21 10 67 10 71
N. M. Rouphail 144 25 0 0 0 0
D. Banister 123 16 5 25 4 20
T. Bektas 121 8 1 48 6 95
G. Laporte 121 8 0 0 1 0
H. C. Frey 119 29 7 34 21 60
图5 最重要节点文献的引用关系网络图

Full size|PPT slide

Fig.5 Citation relational network of the most important literature
总体上,不同学科关于交通出行碳排放的研究视角具有较大差异。交通运输和工程学偏向于从车辆和技术提升方面展开研究,环境和能源方面则聚焦于研究交通能源效率和燃料经济,而地理学和城市研究领域则主要从城市形态、建成环境等方面探究交通出行碳排放影响因素。为此,本文将分别从国家、城市和社区3个研究层面梳理归纳交通出行碳排放的驱动力与影响因素。

2 国家交通能源消耗及其碳排放的驱动力因素

2.1 不同国家与地区的交通碳排放驱动力因素

关于交通能源消耗及其碳排放驱动力因素的研究主要是在国家层面进行分析的。不少研究在世界范围内进行了国家之间的对比,以此探究交通能源消耗及其碳排放的驱动因素。Scholl等(1996)探讨了9个世界经合组织国家交通活动、模式结构和碳排放强度等方面对客运交通碳排放的影响。Timilsina等(2009)通过将交通碳排放增长分解为燃料构成、模式转变、人均国内生产总值(GDP)、人口、排放系数和交通能源强度等方面,发现人均GDP和人口规模的增长、交通能源强度的变化是推动亚洲国家交通碳排放增长的主要因素。Kiang等(1996)通过对比日本与美国和8个欧洲国家的研究则发现,日本人均客运交通能耗较低很大程度上得益于轨道交通和公共汽车的发展。也有研究针对单一国家进行。Lakshman等(1997)的研究显示,出行需求、人口规模和GDP增长是美国交通能源消耗及其碳排放增长的3大主要因素。Mazzarino(2000)的研究也发现,GDP增长是意大利交通碳排放增加的主要驱动力。
总体上,这些研究大多基于国家尺度的时间序列数据,采用分解法,例如,拉斯佩尔指数(Laspeyres Index) (Lakshmanan et al, 1997)、迪维西亚指数(Divisia Index)(Timilsina et al, 2009; Wang et al, 2018)、对数平均迪维西亚指数(Logarithmic Mean Divisia Index)(Wang et al, 2011; Zhu et al, 2017),将研究数据分解为经济、人口、交通方式和能源强度等方面来分析推动国家能源消耗及其碳排放增长的驱动力因素,较少考虑城市形态方面的影响因素。

2.2 中国交通碳排放影响因素

关于中国的研究,有学者发现中国及各省的交通碳排放与GDP最相关(Cai et al, 2012),产业增长是导致中国交通碳排放增加的主要因素,产业比重和从业人口增长均对交通碳排放具有促进作用(谢守红等, 2016)。也有研究认为,居民收入是影响中国城市居民出行能耗的关键因子,其次为城市空间形态要素(郭洪旭等, 2016)。Wang等(2011)的研究发现,人均GDP增长和由低能源消耗交通方式向高能源消耗交通方式转变是中国交通碳排放的主要驱动因素。Zhu等(2017)关于京津冀地区的研究则认为,经济增长和人口规模是促进交通碳排放增长的两大驱动力因素,但交通碳排放的变化并不总是与经济增长的变化同步,不同地区、省份的情况有差异。
还有部分研究基于面板数据,通过构建面板数据模型对中国交通碳排放的影响因素进行了研究。苏涛永等(2011)以1995—2009年京津沪渝4直辖市的交通能源、GDP、人口规模、车辆拥有量、客运周转量、货运周转量等面板数据进行分析,认为城市人口规模、客运周转量和货运周转量对城市交通碳排放具有正向影响,公交车比重具有负向影响。张陶新等(2013) 基于1995—2010年中国28个省市统计数据的研究发现,人均GDP、车均能耗和城市建成区面积对交通碳排放依次具有由大到小的正向影响作用。Yang等(2015)基于中国30个省(直辖市)2000—2012年的交通能源消耗、社会经济发展、城市形态和交通发展等面板数据,通过构建双向固定效应模型(two-way fixed-effects model)(引入了时间固定效应),发现社会经济发展和居民收入水平提高是交通碳排放增长的主要驱动因素,城市人口密度、建成区规模和城市路网密度对交通碳排放增长具有促进作用,城市公共交通发展水平具有显著的负向效应。Xu等(2015)也利用面板数据通过构建动态非参数可加回归模型探究经济增长、城市化和能源效率提高对中国交通碳排放的非线性影响。然而,这些研究并未考虑空间溢出效应的影响,即本地交通碳排放的增长不仅受到本地因素的推动,同时还可能受到周边地区因素的影响。这很可能会导致对交通碳排放影响因素的实际作用认识不够充分和准确。

2.3 小结

总体上,早期国家层面的研究大多基于交通能源消耗、社会经济发展、交通方式、机动车保有量等时间序列数据,采用分解指标的方法探究国家或地区交通能源消耗的驱动因素。近年来,该领域学者们进一步根据各种能源燃料的碳排放系数(因子)测算交通部门碳排放,并更多地转向使用面板数据,通过构建面板数据模型探究社会经济、城市形态和交通发展等方面的因素对交通碳排放的影响。国内外的研究基本上一致认为,经济增长、人口规模和机动车拥有量的增加是导致交通碳排放增长的3大驱动因素。其中,经济增长是最主要的驱动力。而提高交通能源强度和公共交通发展水平则有利于交通碳减排。由于数据来源和数据可获得性的差异,部分国外文献在该研究尺度上还考虑了乘客出行需求和交通模式转变对交通能源消耗及其碳排放的影响,而有的国内研究则基于统计数据测度了城市形态方面的影响因素。总体而言,该尺度的研究大多只能“自上而下”、从宏观层面识别导致交通碳排放增长的主要驱动因素,为制定国家和地区交通发展战略提供政策启示,难以深入渗透到城市和社区的具体规划设计层面,回答究竟什么样的城市形态和土地利用模式有利于构建低碳的城市空间,什么样的社区建成环境有利于促进居民选择低碳的出行方式和低碳出行,从个人和社区层面排放更少的CO2

3 城市形态对交通碳排放的影响

3.1 紧凑城市与交通碳排放

城市形态对交通能源消耗及其碳排放具有非常大的影响作用。早在20世纪八九十年代,Newman、Kenworthy和Ewing等学者就提出高城市人口密度有利于减少城市交通能源消耗及其碳排放的观点,认为紧凑、高密度的城市形态有利于提高公共交通使用比例和减少小汽车出行(Newman et al, 1989; Kenworthy et al, 1996; Ewing, 1997)。之后,Newman(2006)将中国城市(人口密度全部大于100 人/hm2)与美国亚特兰大(6 人/hm2)进行对比,发现中国城市人均交通能源消耗(2 GJ/人)远小于亚特兰大(103 GJ/人)。
然而,城市紧凑发展有利于减少交通能源消耗及其碳排放的观点受到分散主义学者的质疑(Gordon et al, 1989)。倡导分散发展的美国学者Gordon等(1997)认为,市场机制能够促使城市多中心化,并能相对地降低能源消耗。持续的城市扩散会导致各种活动自然地“协调布局(co-location)”,从而减少出行及其碳排放。在美国城市分散化发展背景下,其通勤距离正趋于稳定和下降的趋势。这归因于人们通过调整居住地或就业地的位置以缩短通勤距离。Reichert等(2016)在德国的实证研究认为,假如把长距离的出行统计在内,紧凑发展模式并不一定能够减少出行碳排放。同时,很多学者也质疑Newman(1989)Kenworthy(1996)的研究过于关注城市密度,认为出行行为与城市形态、社会经济和态度之间具有复杂的关系,城市密度不是影响出行模式和出行行为的唯一因素,即使是紧凑城市,其出行模式也未必是可持续的。
还有研究认为城市形态对城市交通能源消耗及其碳排放的影响不大。Schimek(1996)认为,城市密度对家庭小汽车使用的影响非常有限,即使城市密度有大规模的转变,对机动车出行的影响也是微不足道的。Anderson等(1996)的研究则认为城市形态对城市交通能源使用及排放的影响不大。Breheny(1997)则提出应考虑紧凑城市是否能被公众所接受,充分分析紧凑城市政策的可靠性、可行性和可接受性,因为郊区化是居民生活方式选择的模式。Holz-Rau等(2019)也质疑地方的土地利用和交通规划对交通碳减排的作用,他认为必须在国家层面对交通碳排放进行正常干预。另外,Schafer等(1999)指出,亚洲国家在人口密度和出行方式结构上与欧美国家有巨大差异,欧美国家的研究结论未必适用于中国。总体上,宏观城市形态与城市交通能耗及其碳排放的因果关系尚未得出明确的结论。
紧凑城市虽然被很多学者质疑,但至今仍然是城市发展模式的主流思想,21世纪以来的很多研究都证实了其在减少交通碳排放中的作用。尤其是人口密度的提高、土地功能的混合、支持公共交通的发展、削弱小汽车的依赖等都对减少居民出行和交通碳排放具有相当积极的作用。

3.2 城市中心分布形式与交通碳排放

继Newman和Kenworthy之后的很多支持紧凑城市的研究已不再单一地分析人口密度因素对交通碳排放的影响,同时还分析了城市中心分布形式、与城市中心的距离、通勤距离、职住空间匹配等方面的作用。Shim等(2006)基于韩国61个中小城市数据的研究发现,交通能源消耗随城市人口规模、人口密度和城市集中度的增加而降低,多中心城市比单中心城市的交通能耗低。Chow(2016)在中国香港地区的研究则通过情景预测方法认为双中心的城市形态最有利于香港减少通勤交通碳排放。Carty等(2011)在都柏林的研究认为,影响通勤碳排放的主要因素是通勤距离,而非传统上认为的通勤方式。城市中心区域就业供给和需求在空间上相匹配,以至于以短距离通勤为主。通勤距离通过对通勤方式选择的影响进一步影响通勤碳排放。Määttä-Juntunen等(2011)则通过估算大型零售中心选址所对应的城市交通碳排放总和为发展紧凑城市提供了理论依据。
国内学者龙瀛等(2011)通过建立多智能体模型模拟了不同城市形态下的通勤交通能耗和碳排放,发现多就业中心紧凑和单就业中心紧凑的城市形态所对应的交通碳排放远比多就业中心分散和单就业中心分散的城市形态小。杨文越等(2015b)基于碳排放-位置分配模型的公共中心规划支持系统对广州规划1~6个公共中心的小汽车出行碳排放空间格局进行模拟,发现构建新的中心能有效地减少小汽车出行碳排放总量,但具有边际效应。此外,通过构建社区出行低碳指数模型和地理加权回归模型对广州社区出行低碳指数的影响因素空间异质性进行研究,发现社区人口密度对社区出行低碳指数的影响以正向作用为主,公共交通供给水平和路网密集程度的影响以负向作用为主,且这些因素的影响作用具有空间异质性(杨文越等, 2015a)。此外,Ma等(2018)结合活动日志数据,采用自下而上的空间微观模拟方法对广州交通碳排放空间特征进行空间模拟,以此量化城市形态与交通碳排放之间的关系。He等(2013)也通过采用自下而上的居民出行情景分析预测方法发现,出行方式的转变对减少中国城市交通碳排放作用最有效,若加以优化街道网络和城市形态将能使效果翻倍。

3.3 小结

城市尺度的研究主要基于截面数据,采用集计(aggregate)分析的方法研究城市交通碳排放的空间特征与差异,及其与城市(人口)密度和城市中心分布形式之间的关系。早期,学者们主要围绕城市紧凑发展和分散发展哪种模式更有利于降低城市交通能源消耗而进行讨论。他们大多使用城市层面的统计数据和相关分析方法比较城市之间的密度与交通能源消耗之间的关系。近年来,随着大数据的发展和数据可获得性的提高,研究方法和技术手段得到大幅提升,不仅进一步扩展到情景分析预测、构建复杂数学模型和空间模拟等,更有学者开始探索使用元胞自动机和多智能体等模拟方法,由此通过“自下而上”的方法来论证不同城市形态、城市中心分布形式与城市交通碳排放之间的关系,GIS空间分析和地理加权回归等方法也被广泛应用于探究和分析交通碳排放的空间差异与影响因素。然而,由于主要采用集计分析方法和空间回归、空间模拟等,该尺度较少考虑出行个体方面的影响因素,例如居民的社会经济属性和出行态度、偏好等。

4 社区建成环境对居民出行碳排放的影响

已有社区尺度的研究关注的建成环境影响因素主要有人口密度,土地利用混合度,与就业地、城市中心的距离,路网与交叉口密度,公共交通供给水平等方面。

4.1 人口密度

人口密度是出行碳排放研究中考虑得最多的建成环境影响因素。在大多数实证研究中,社区人口密度与居民出行碳排放之间呈反比关系,但也有部分研究发现它对出行碳排放的影响并不显著。Brownstone等(2009)基于美国家庭出行调查数据的研究发现,居住人口密度每平方英里(1英里≈1.609 km)减少1000户家庭,每户家庭每年汽车行驶里程将增加1200英里,汽车燃料将增加65加仑(美制l加仑=3.785 L)。同时,居住人口密度还会通过影响居民选择不同类型(燃料经济)的车型对交通能源消耗造成影响。Modarres(2013)的研究证实了人口密度和不同族群在空间上的集聚对交通能源消耗的重要影响作用,居住在高密度地区的少数民族和低收入群体的通勤能源消耗较少。Alford等(2009)对墨尔本地区的研究也证实了居住和就业密度越高,交通能源消耗越小的关系。Barla等(2011)对加拿大魁北克的研究发现,较低人口密度的城市郊区和城市外围区域的被调查者其出行碳排放普遍比城市中心地区的分别高27%和70%。但同时他们也指出,增加城市郊区的居住人口密度未必能够大量减少出行碳排放,除非在郊区新建一个城市中心。Song等(2016)基于11037份美国马萨诸塞州出行调查数据的研究认为,以高密度为特征的新城市主义建成环境有利于减少居民出行碳排放。Zahabi等(2012)对蒙特利尔的研究则更加具体地指出,人口密度提高10%将减少3.5%的家庭交通温室气体排放。但也有研究发现,居住人口密度与交通碳排放之间呈非线性关系,当人口密度高达一定水平的时候,继续提高其密度对减少交通碳排放的效应将不显著(Hong, 2015)。并且,Brand等(2013)对英国的研究则显示居住人口密度对出行碳排放的影响并不显著。而Ding等(2014)以美国华盛顿为例的研究则发现,工作地人口密度比居住地人口密度对减少机动车行驶里程及其能源消耗和温室气体排放更加重要。此外,居住密度(建筑密度)也和交通碳排放呈负相关关系。Hong等(2013)在美国普捷湾地区的研究发现,提高居住密度能够显著减少交通碳排放(其弹性系数为-0.15%~-0.37%)。
但国内不少研究得出了与国外相反的研究结论。姜洋等(2011)以济南为例的研究显示,居住人口密度和容积率最高的社区其居民户均出行能耗远高于其他类型社区。他们指出,高密度的城市建成环境在中国并非减少交通能耗的有效模式。肖作鹏等(2011)在北京的研究也得出了人口密度与居民出行碳排放相关性不显著的结论。Cao等(2017)在考虑了居住自选择效应的基础上发现,居住人口密度虽然对通勤碳排放没有直接效应,但具有显著的负向总体效应。然而,在其他类型出行,例如社交、休闲娱乐和日常购物出行,居住人口密度对其碳排放却具有显著的正向总体效应(杨文越等, 2018)。

4.2 土地利用混合度

土地利用混合度与出行碳排放之间呈负相关关系,社区土地利用越多元化,居民出行碳排放则越少。Zahabi等(2012)的研究显示,土地利用混合度每提高10%,将能减少2.5%的家庭交通温室气体排放。Hong等(2014)的研究显示,土地利用多样性对交通碳排放的弹性系数在-0.072~-0.112之间。国内柴彦威等(2011)、肖作鹏等(2011)的研究认为,土地利用混合度与居民出行碳排放呈显著的负相关关系,在中国城市郊区提高土地混合度比提高人口密度更能减少出行碳排放。Qin等(2013)对北京的研究发现,社区土地混合程度越高,将会提高居住/就业比例,从而家庭出行碳排放越小。黄经南等(2013)以武汉为例的研究发现,土地混合度越高,居民日常交通碳排放越低。出行碳排放高的家庭一般位于城市郊区、功能单一的大型住宅区和工业区、城市周边独立发展的新区。还有其他学者以广州、南京和济南的实证研究也得出了类似的结论(姜洋等, 2011; 张杰等, 2013; Cao et al, 2017; 刘清春等, 2018; 满洲等, 2018)。

4.3 与就业地、城市中心的距离

居住地与就业地的距离对居民出行碳排放有显著影响。Brand等(2013)的研究发现,居住地与就业地距离大于20 km的居民出行碳排放几乎都比距离只有2~5 km的大,但居住-就业距离仅仅影响通勤碳排放,对其他类型出行(如购物和娱乐出行)碳排放影响不大。郑思齐等(2010)以北京为例的研究发现,居住地与就业地、公共服务设施之间的空间不匹配将增加私家车的出行碳排放。童抗抗等(2012)通过情景分析方法论证了减少通勤距离对减少出行碳排放的作用。Qin等(2013)对北京的研究认为,街区居住就业比例越平衡、到就业地的可达性越高,家庭交通碳排放越小。Ma等(2015)对北京的研究也发现,居住在高就业密度、邻近就业中心的居民趋向于更短出行距离、选择低碳出行方式,更少通勤碳排放。杨上广等(2014)以上海为例的研究认为,居住郊区化与就业、医疗、教育等资源集中在中心城区所形成的空间不匹配导致了居民出行的高碳排放。还有以广州为例的研究也认为,社区到城市公共中心的距离对通勤碳排放具有显著的正向总体效应,因此应控制城市无序扩张和积极引导多中心发展,尽可能缩短社区与城市公共中心的距离(Cao et al, 2017; 杨文越等, 2018)。

4.4 路网与交叉口密度

路网密度与交叉口也对居民出行碳排放有较大的影响。不少学者指出,小尺度、小网格街区有利于减少居民出行能耗(姜洋等, 2011; 张杰等, 2013)。Hong等(2014)的研究显示,道路交叉口密度与交通碳排放呈负相关,弹性系数在-0.035~-0.135之间。黄经南等(2015)的研究也显示,道路交叉口密度与交通出行碳排放呈负相关关系。杨文越等(2018)的研究发现,社区路网密度对不同类型出行碳排放均具有显著的负向总体效应。这意味着,应加密社区道路网络,构建尺度宜人的非机动化出行环境,而不是采用大街区和宽马路的模式。

4.5 公共交通供给水平

公共交通供给水平对居民出行碳排放也具有较大的影响。澳大利亚的研究认为,公共交通的出行比例与交通能源消耗之间呈负相关性(Alford et al, 2009)。Zahabi等(2012)的研究也发现,公共交通可达性提高10%将减少5.8%的家庭交通温室气体排放。Barla等(2011)以加拿大魁北克为例的实证研究认为,城市中心较低的出行碳排放在一定程度上得益于较充足的公共交通供给,而居民出行碳排放较高的城市郊区和外围地区则缺乏公共交通服务的覆盖。国内的研究几乎一致显示,地铁服务供给能够有效地减少出行碳排放(肖作鹏等, 2011; Qin et al, 2013; Ma et al, 2015; Cao et al, 2017; Yang et al, 2018; 杨文越等, 2018),但常规公交的作用并不显著(刘清春等, 2018)。甚至有的学者在北京和广州的实证研究中发现其对出行碳排放具有正向影响作用(肖作鹏等, 2011; Cao et al, 2017)。

4.6 小结

早期的相关研究主要关注社区建成环境对居民出行行为、小汽车使用和机动车行驶里程的影响(Handy et al, 2005; Cervero et al, 2010)。然而,出行距离和出行频率的多少,以及是否选择高碳排放的出行方式(如小汽车),并不能直接地反映其出行碳排放。出行碳排放也是一种量化的出行行为结果,侧重于反映交通出行的环境成本和环境影响(Cao, 2017; Cao et al, 2017; 杨文越等, 2018)。随着对全球气候变化和碳排放的日益关注,不少文献开始把研究对象由传统的出行行为(如出行距离、出行时间、出行频率、出行方式等)进一步转换和聚焦为出行碳排放。受限于出行问卷调查较高的投入成本,社区层面的研究大多基于截面的问卷调查数据探究居民社会经济属性和建成环境对出行碳排放的影响(马静等, 2011; 柴彦威等, 2012; Brand et al, 2013; Liu et al, 2017; 杨文越等, 2018)。近些年,有少量国外的研究尝试探索使用多天-多年活动问卷调查数据(multiday-multiyear activity-based panel survey)或纵向(longitudinal)数据进行研究(Barla et al, 2011; Brand et al, 2014),但由于纵向数据获取难度较大、限制性太多,样本规模相对较小。此外,近年还有研究在居民出行问卷数据基础上,结合开源数据库、地理位置服务(LBS)开放平台和出行OD点智能查询系统的开发测算出行碳排放,在一定程度上提高了测算的精确度(Cao et al, 2017; Yang et al, 2017; 杨文越等, 2018)。同时,该尺度研究进一步拓展使用了更加高级的数学模型定量测度社区建成环境对出行碳排放的影响,例如非线性模型、结构方程模型、联立方程模型和多层次模型等。并且,已有研究提出需要考虑居住自选择效应在出行碳排放影响机理中的作用,以及把建成环境的影响进一步细分为直接效应和间接效应(杨文越等, 2018)。

5 结论与展望

国内外关于交通出行碳排放的研究始于对交通能源消耗与交通环境影响的关注。随着温室气体排放和全球气候变暖问题凸显,在2008年国际气候峰会召开前后,学界进一步将对交通能源消耗的研究拓展延伸为对交通出行碳排放的研究。
在国家尺度,早期研究主要基于国家和地区之间的时间序列数据,采用分解法探究交通能源消耗的主要驱动力;近年来的研究大多进一步根据交通能源消耗数据“自上而下”地测算交通碳排放,通过构建面板数据模型探究社会经济、城市形态和交通发展因素对交通碳排放的影响。研究基本上一致认为,经济增长、人口规模和机动车拥有量的增加是交通能源消耗与碳排放增长的主要驱动力,而提高交通能源强度和公共交通发展水平是减少交通能源消耗及其碳排放的2个关键途径(图6)。
图6 不同尺度交通出行碳排放研究脉络

Fig.6 Data, method, and content of research on CO2 emissions from transport at different scales

Full size|PPT slide

在城市尺度,早期的研究主要围绕紧凑城市是否一种能够有效降低城市交通能源消耗的城市形式进行讨论。他们主要使用城市统计数据和相关分析方法探究城市密度与交通能源消耗之间的关系。近年来,得益于研究数据和技术方法的变革性提升,研究方法进一步拓展到情景预测、GIS空间分析、空间回归、空间模拟和元胞自动机、多智能体模拟的开发应用,通过“自下而上”的方法探究城市交通碳排放的空间特征差异及其与城市形态、城市中心分布形式之间的关系。研究总体上认为,紧凑、多中心的城市形态有利于减少城市交通碳排放,是一种低碳的城市形态。
在社区尺度,早期的相关文献主要关注建成环境对居民出行行为、小汽车使用和机动车行驶里程的影响。随后,不少研究开始转向于关注建成环境对出行碳排放的影响。这些研究主要采用截面形式的出行问卷调查数据进行研究,但近期也有研究开始探索使用多年纵向的问卷调查数据,以及结合开源数据库、地理位置服务(LBS)开放平台和智能查询系统的开发以提高出行碳排放测算的精确度。研究方法亦进一步拓展到非线性模型、结构方程模型、联立方程模型和多层次模型等更为高级的数学模型,以探究建成环境要素与出行碳排放之间的非线性关系,控制和剔除居住自选择的混淆效应,以及将建成环境的影响进一步细分为直接效应和间接效应等。
综上,社区尺度的研究将是未来中国交通出行碳排放影响因素研究的重点方向。因为国家尺度和城市尺度的研究基本上已取得较为一致的结论,而社区尺度的研究根据选择不同城市作为案例地、采用不同的方法模型或研究不同类型的出行碳排放(例如,通勤、社交、休闲娱乐或日常购物出行),其研究结果很可能并不一样。就目前研究而言,中国城市的实证结论与西方城市并不一致,中国城市之间亦有所差异,总体上,社区建成环境对居民出行碳排放的影响及其机制尚未取得一致的研究结论。由于中国城市居民的出行态度偏好、生活方式和社会规范与西方国家存在较大差异(Wang et al, 2014),中国城市在空间结构、土地利用模式、交通系统等方面都与西方城市有巨大差异,且中国城市的交通能源消耗及其相关碳排放比例普遍小于欧洲国家和美国(Dodman, 2009),已有的西方研究结论并不适用于中国。因此,亟需以中国城市为背景,探索与归纳具有中国特色的交通出行碳排放研究理论。未来中国城市交通出行碳排放影响因素的研究趋势主要有以下几方面:
第一,在研究数据方面,目前大多数社区尺度的研究主要基于截面的出行调查数据探究建成环境与居民出行碳排放之间的关系。截面数据具有一定的局限性,有可能会遗漏一些难以观察的影响因素以及有些影响因素的实际影响效果存在估算偏差。而且,实质上截面数据仅能得出其间关联关系。倘若要探究建成环境与居民出行碳排放之间的因果关系,未来的研究很有必要充分利用信息科技和移动互联网的深入普及,开展多个时间段的纵向居民出行问卷调查,或通过类纵向的(quasi-longitudinal)居民出行问卷设计,以科学测度居民社会经济属性和建成环境变量的变化对其出行碳排放的影响。
第二,在研究方法方面,应从传统的、仅能测度直接影响的数学模型转向能够探究多变量之间的相互关系、同时能够测度间接效应的模型,例如结构方程模型。基于此,可以进一步识别和探究建成环境与出行碳排放之间的中介变量所发挥的作用,例如小汽车拥有、出行方式、出行距离等。因为建成环境对出行碳排放的影响很可能并不是直接的,而是通过影响其他中介变量从而进一步影响居民出行碳排放。
第三,在研究内容上,很有必要考虑居住自选择效应对居民出行碳排放的影响。目前国内的出行研究还较少考虑到居住自选择的影响。若不剔除居住自选择的混淆效应,很可能会错误地估计建成环境对出行碳排放的影响,进而误导相关低碳交通与土地利用政策的制定。上述倡导使用纵向的出行调查问卷数据和可以探究多变量之间相互关系的数学模型方法,是检验和控制居住自选择效应的有效方法。对于不同类型的出行,例如通勤、社交、休闲娱乐或日常购物出行等,建成环境的影响作用也不一样。因此,应该分别探究建成环境对不同类型出行碳排放的影响作用,以全面、综合地认识建成环境对居民出行碳排放的影响机制。此外,目前的研究大多仅关注单一尺度的建成环境对居民出行碳排放的影响,尤其是居住地建成环境。不同地理尺度(社区、街道等)和不同地理背景(居住地、就业地或其他出行起讫地)的建成环境对出行碳排放的影响是不一致的。因此,随着GIS技术和大数据方法的发展,很有必要同时考虑和测度不同地理尺度与地理背景下的建成环境对居民出行碳排放的影响作用。

参考文献

1
曹小曙, 杨文越, 黄晓燕 . 2015. 基于智慧交通的可达性与交通出行碳排放: 理论与实证[J]. 地理科学进展, 34(4):418-429.
[ Cao X S, Yang W Y, Huang X Y . 2015. Accessibility and CO2 emissions from travel of smart transportation: Theory and empirical studies. Progress in Geography, 34(4):418-429. ]
2
柴彦威, 肖作鹏, 刘志林 . 2011. 基于空间行为约束的北京市居民家庭日常出行碳排放的比较分析[J]. 地理科学, 31(7):843-849.
[ Chai Y W, Xiao Z P, Liu Z L . 2011. Comparative analysis on CO2 emission per household in daily travel based on spatial behavior constraints. Scientia Geographica Sinica, 31(7):843-849. ]
3
柴彦威, 肖作鹏, 刘志林 . 2012. 居民家庭日常出行碳排放的发生机制与调控策略: 以北京市为例[J]. 地理研究, 31(2):334-344.
摘要
根据2007年北京市居民活动日志调查数据,利用Amos7.0软件建立单效标因素的路径分析模型,试图在"社区-家庭"层面上挖掘"空间利用-出行特征-碳排放"的内在发生机理,藉此寻找城市空间组织低碳化的调控路径。研究发现:影响居民家庭日常出行碳排放的主要因素是出行距离和出行方式。社区空间利用特征对家庭出行的距离总量有显著影响,对小汽车出行比率则没有明显作用效果;私家车的购置对居民家庭出行行为的高碳化具有不可逆的作用特点;在现有设施条件、空间环境和车辆使用政策下,公共交通对私人交通出行没有替代性。研究认为,城市空间组织和调控优化应通过土地混合利用、设施供给等物质空间组织与再组织手段,形成空间行为组织和行为规划策略,引导居民降低交通发生量,优化居民交通发生的时空结构,建构低碳的城市空间结构。
[ Chai Y W, Xiao Z P, Liu Z L . 2012. Low-carbon optimization strategies based on CO2 emission mechanism of household daily travels: A case study of Beijing. Geographical Research, 31(2):334-344. ]
4
郭洪旭, 黄莹, 赵黛青 , 等. 2016. 中国典型城市空间形态对居民出行能耗的影响[J]. 城市发展研究, 23(3):95-100.
[ Guo H X, Huang Y, Zhao D Q , et al. 2016. Impact of urban form on private travel energy use of typical city in China. Urban Studies, 23(3):95-100. ]
5
黄经南, 杜宁睿, 刘沛 , 等. 2013. 住家周边土地混合度与家庭日常交通出行碳排放影响研究: 以武汉市为例[J]. 国际城市规划, 28(2):25-30.
[ Huang J N, Du N R, Liu P , et al. 2013. An exploration of land use mix around residence and family commuting caused carbon emission: A case study of Wuhan city in China. Urban Planning International, 28(2):25-30. ]
6
黄经南, 高浩武, 韩笋生 . 2015. 道路交通设施便利度对家庭日常交通出行碳排放的影响: 以武汉市为例[J]. 国际城市规划, 30(3):97-105.
[ Huang J N, Gao H W, Han S S . 2015. The effect of traffic facilities accessibility on household commuting caused carbon emission: A case study of Wuhan city, China. Urban Planning International, 30(3):97-105. ]
7
姜洋, 何东全 , Zegras C. 2011. 城市街区形态对居民出行能耗的影响研究[J]. 城市交通, 9(4):21-29.
[ Jiang Y, He D Q, Zegras C . 2011. Impact of neighborhood land use on residents travel energy consumption. Urban Transport of China, 9(4):21-29. ]
8
刘清春, 张莹莹, 肖燕 , 等. 2018. 济南市主城区私家车日常出行碳排放特征及影响因素[J]. 资源科学, 40(2):262-272.
[ Liu Q C, Zhang Y Y, Xiao Y , et al. 2018. Characteristics and determinants of carbon emissions from daily private cars travel in central area of Jinan. Resources Science, 40(2):262-272. ]
9
龙瀛, 毛其智, 杨东峰 , 等. 2011. 城市形态、交通能耗和环境影响集成的多智能体模型[J]. 地理学报, 66(8):1033-1044.
摘要
城市能耗占全球能耗的比重随着城市化率的不断提高而增大,交通能耗作为城市能耗的重要构成部分,已有较多研究证明城市形态对其具有显著影响,这些研究多属于城市间层次,而少有城市内的研究对城市形态与交通能耗、环境影响的关系进行定量识别。本文拟建立城市形态、交通能耗和环境的集成模型,对单一城市内的不同空间组织(即城市形态),如土地使用方式、开发密度、就业中心的数量和分布等,对潜在的通勤交通能耗和环境影响的关系进行定量识别。该模型采用多智能体(multi-agent) 方法,一方面针对同一假想空间采用蒙特卡洛方法根据约束条件生成多个城市形态,并采用就业地斑块数目、平均斑块分形指数、香农多样性和平均近邻距离等14 个指标表征城市形态。另一方面,固定数量的居民agent 在所生成的每个城市形态内,选择居住区位和就业区位,根据通勤距离和社会经济特征选择交通方式,进而计算通勤交通能耗和环境影响,在城市层面统计通勤交通能耗和环境影响总和。最后分析城市形态与通勤交通能耗和环境影响的定量关系,主要得到以下结论,① 对于不同的城市空间布局和密度分布,通勤交通能耗的弹性范围约为3 倍;② 城市形态评价指数中,就业中心斑块的数量是对通勤交通能耗影响最大的变量;③ 多种城市形态所对应的通勤交通能耗基本呈正态分布。此外,还对城市形状对通勤交通能耗的影响进行了识别,并针对假想空间的多个典型城市形态(如紧凑与分散、单中心与多中心、TOD政策、绿隔政策),进行了通勤交通总量的计算,进而对典型规划理念进行了定量对比。本模型不仅可以用于识别城市形态与通勤交通能耗和环境影响的定量关系,定量对比典型的规划理念,还可以用于空间规划方案的能耗和环境影响评价。
[ Long Y, Mao Q Z, Yang D F , et al. 2011. A multi-agent model for urban form, transportation energy consumption and environmental impact integrated simulation. Acta Geographica Sinica, 66(8):1033-1044. ]
10
马静, 柴彦威, 符婷婷 . 2017. 居民时空行为与环境污染暴露对健康影响的研究进展[J]. 地理科学进展, 36(10):1260-1269.
[ Ma J, Chai Y W, Fu T T . 2017. Progress of research on the health impact of people's space-time behavior and environmental pollution exposure. Progress in Geography, 36(10):1260-1269. ]
11
马静, 柴彦威, 刘志林 . 2011. 基于居民出行行为的北京市交通碳排放影响机理[J]. 地理学报, 66(2):1023-1032.
[ Ma J, Chai Y W, Liu Z L . 2011. The mechanism of CO2 emissions from urban transport based on individuals' travel behavior in Beijing. Acta Geographica Sinica, 66(2):1023-1032. ]
12
满洲, 赵荣钦, 袁盈超 , 等. 2018. 城市居住区周边土地混合度对居民通勤交通碳排放的影响: 以南京市江宁区典型居住区为例[J]. 人文地理, 33(1):70-75.
[ Man Z, Zhao R Q, Yuan Y C , et al. 2018. Impact of land-mixing degree of residential area on carbon emissions of commuting: A case study of typical residential district, Jiangning district, Nanjing. Human Geography, 33(1):70-75. ]
13
苏涛永, 张建慧, 李金良 , 等. 2011. 城市交通碳排放影响因素实证研究: 来自京津沪渝面板数据的证据[J]. 工业工程与管理, 16(5):134-138.
[ Su T Y, Zhang J H, Li J L , et al. 2011. Influence factors of urban traffic carbon emission: An empirical study with panel data of big four city of China. Industrial Engineering and Management, 16(5):134-138. ]
14
童抗抗, 马克明 . 2012. 居住-就业距离对交通碳排放的影响[J]. 生态学报, 32(10):2975-2984.
摘要
城市扩张过程使交通需求量增加,导致来自交通部门的碳排放量增加。紧凑型城市发展有助于减少交通需求从而降低交通部门的碳排放量。基于一个问卷调查利用情景分析的方法定量探讨居住-就业距离变化对通勤碳排放量的影响,为科学规划城市格局提供理论依据。研究结果表明在居住-就业距离不超过15 km(适宜公共交通出行距离)的情景中居住-就业距离缩短21.3%,交通碳排放量减小28.2%,费用节省21.2%;在居住-就业距离不超过5 km(适宜非机动车出行距离)的情景中居住-就业距离缩短56.3%,碳排放量减小53.1%,费用节省34.6%。两种情景下不同出行方式中,公交系统对行驶里程缩短的影响最大,私家车对碳排放量减小和花费降低的影响最大。在城市扩张过程中应该力求实现功能多元化的扩张格局,城市交通体系建设应为低碳出行提供最大便利。
[ Tong K K, Ma K M . 2012. Significant impact of job-housing distance on carbon emissions from transport: A scenario analysis. Acta Ecologica Sinica, 32(10):2975-2984. ]
15
肖作鹏, 柴彦威, 刘志林 . 2011. 北京市居民家庭日常出行碳排放的量化分布与影响因素[J]. 城市发展研究, 18(9):104-112.
[ Xiao Z P, Chai Y W, Liu Z L . 2011. Quantitative distribution and related factors for household daily. Urban Studies, 18(9):104-112. ]
16
谢守红, 蔡海亚, 夏刚祥 . 2016. 中国交通运输业碳排放的测算及影响因素[J]. 干旱区资源与环境, 30(5):13-18.
[ Xie S H, Cai H Y, Xia G X . 2016. Calculation of the carbon emissions of Chinese transportation industry and the driving factors. Journal of Arid Land Resources and Environment, 30(5):13-18. ]
17
杨上广, 王春兰, 刘淋 . 2014. 上海家庭出行碳排放基本特征、空间模式及影响因素研究[J]. 中国人口·资源与环境, 24(6):148-153.
[ Yang S G, Wang C L, Liu L . 2014. Study on basic characteristics, spatial pattern and influence factors of Shanghai family commuting carbon emission. China Population, Resources and Environment, 24(6):148-153. ]
18
杨文越, 曹小曙 . 2018. 居住自选择视角下的广州出行碳排放影响机理[J]. 地理学报, 73(2):346-361.
摘要
国内外已有不少研究从国家、城市和社区层面探讨了交通出行碳排放的影响因素,然而,很少研究考虑到居住自选择的影响。若忽略该影响,将很可能会错误地估计建成环境的作用,以至于相关规划与政策制定有所偏离。中国城市是否与西方国家一样也具有居住自选择效应?在考虑了居住自选择后,建成环境是否对出行碳排放具有显著的影响,如何产生影响?为了回答以上科学问题,基于2015年广州15个社区1239份问卷数据和出行O-D点智能查询系统(TIQS)的开发与应用,对居民出行碳排放进行了测度,并通过构建结构方程模型(SEM)探究了不同类型出行碳排放的影响机理。研究发现:中国城市同样存在居住自选择效应,转变居民出行方式选择偏好有利于减少出行碳排放。在控制居住自选择效应后,建成环境仍然对居民出行碳排放产生显著的影响。这些影响有的属于直接影响,有的则是通过影响其他中介变量,例如小汽车拥有或出行距离,进而再对出行碳排放造成间接影响。对于不同类型出行,其碳排放的影响机理并不一样。
[ Yang W Y, Cao X S . 2018. The influence mechanism of travel-related CO2 emissions from the perspective of residential self-selection: A case study of Guangzhou. Acta Geographica Sinica, 73(2):346-361. ]
19
杨文越, 李涛, 曹小曙 . 2015 a. 广州市社区出行低碳指数格局及其影响因素的空间异质性[J]. 地理研究, 34(8):1471-1480.
摘要
通过构建社区出行低碳指数(CTLCI)模型,对广州市社区出行低碳指数的空间格局及其差异特征进行了分析,并利用全局回归(OLS)模型和地理加权回归(GWR)模型对社区出行低碳指数的影响因素以及其间关系的空间异质性进行了研究。结果表明,广州市社区出行低碳指数由中心城区向外逐渐递增,呈明显的圈层结构。内圈层的社区出行低碳指数内部差异最小,中间过渡圈层的最大。社区人口密度对社区出行低碳指数的影响以正向作用为主,公共交通供给水平和路网密集程度对社区出行低碳指数的影响以负向作用为主,且它们的影响作用具有空间异质性。具体指出了在不同地域空间内社区人口密度、公共交通供给水平和路网密集程度对社区出行低碳指数在影响程度和作用方向上的差异,为减少广州城市交通碳排放、针对不同空间制定有效的低碳政策和构建低碳城市空间结构提供了科学依据。
[ Yang W Y, Li T, Cao X S . 2015. The spatial pattern of Community Travel Low Carbon Index (CTLCI) and spatial heterogeneity of the relationship between CTLCI and influencing factors in Guangzhou. Geographical Research, 34(8):1471-1480. ]
20
杨文越, 李涛, 曹小曙 . 2015 b. 基于碳排放-位置分配模型的公共中心规划支持系统设计与应用研究[J]. 华南师范大学学报(自然科学版), 47(5):119-125.
[ Yang W Y, Li T, Cao X S . 2015. The Study of design and application of CO2 emissions-location allocation model based public center planning support system. Journal of South China Normal University (Natural Science Edition), 47(5):119-125. ]
21
张杰, 杨阳, 陈骁 , 等. 2013. 济南市住区建成环境对家庭出行能耗影响研究[J]. 城市发展研究, 20(7):83-89.
[ Zhang J, Yang Y, Chen X , et al. 2013. A research on neighborhood built environment and household travel energy in Jinan. Urban Studies, 20(7):83-89. ]
22
张陶新, 曾熬志 . 2013. 中国交通碳排放空间计量分析[J]. 城市发展研究, 20(10):14-20.
[ Zhang T X, Zeng A Z . 2013. Spatial econometrics on china transport carbon emissions. Urban Studies, 20(10):14-20. ]
23
郑思齐, 霍燚 . 2010. 低碳城市空间结构:从私家车出行角度的研究[J]. 世界经济文汇, ( 6):50-65.
摘要
中国城市的内部空间结构正在发生巨大演变,空间集聚在带来经济效率的同时,也引发了交通拥堵与环境污染等问题.本文利用2009年9月开展的北京市社区住户"家庭出行能耗与居住环境"调查数据,重点分析了城市空间结构(居住、就业及城市公共品的空间布局)对居民选择购买私家车以及私家车碳排放的影响.我们发现:居住分布与城市公共品分布的空间匹配程度越高,家庭拥有私家车的概率越小;私家车出行成本越低,就业可达性越差,碳排放越高.这些实证发现可以给城市规划者以启示,提高城市空间结构的低碳效果.
[ Zheng S Q, Huo Y . 2010. Low carbon urban spatial structure: Research from the angle of private cars. World Economic Papers, ( 6):50-65. ]
24
Alford G, Whiteman J . 2009. Macro-urban form and transport energy outcomes: Investigations for Melbourne[J]. Road & Transport Research, 18(1):53-67.
Physical activity at schools is an important component in combatting childhood obesity. Studies have shown that physical activity at school is positively associated with academic outcomes. The purpose of this study is to examine associations between opportunity of physical activity time at school and academic outcomes.
25
Anderson W P, Kanaroglou P S, Miller E J . 1996. Urban form, energy and the environment: A review of issues, evidence and policy[J]. Urban Studies, 33(1):7-35.
26
Banister D, Schwanen T, Anable J . 2012. Introduction to the special section on theoretical perspectives on climate change mitigation in transport[J]. Journal of Transport Geography, 24:467-470.
This pieces introduces the papers brought together in this special section of journal of Transport Geography. It explores some of the difficulties of decarbonising transport and argues that the social sciences, including human geography and its many sub-disciplines, can make important contributions to understanding the links between climate change, energy use and transport. Some research priorities for social scientists interested in these issues are outlined, and reflections are offered on how the social sciences can make further contributions to the thinking about transport's decarbonisation. (C) 2012 Elsevier Ltd.
27
Barla P, Miranda-Moreno L F, Lee-Gosselin M . 2011. Urban travel CO2 emissions and land use: A case study for Quebec City[J]. Transportation Research Part D-Transport and Environment, 16(6):423-428.
The paper examines the determinants of urban travel greenhouse gas emissions. Specifically, we examine the impact of individual and household socio-economic characteristics as well as the effect of land use and transit supply characteristics around the residence and work place. The analysis uses an activity-based longitudinal panel survey in the Quebec City region of Canada. We find that emissions vary considerably depending on the respondent gender, professional status, age, family structure, income level and day of the week. Particularly, we find evidence of significant economies of scale within Quebec City households in the production of greenhouse gas emissions. We also find major differences in emissions depending upon the type of neighbourhood. A respondent living in the city periphery would produce on average 70% more emissions than if he was located at the city center. Land use and transit supply attributes are, however, also extremely different between these two locations. When estimating the elasticity of emissions with respect to land use and transit supply indicators such as residential density, these emerge as relatively small. (C) 2011 Elsevier Ltd.
28
Brand C, Goodman A, Ogilvie D . 2014. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: A controlled longitudinal study[J]. Applied Energy, 128:284-295.
Walking and cycling is widely assumed to substitute for at least some motorized travel and thereby reduce energy use and carbon dioxide (CO2) emissions. While the evidence suggests that a supportive built environment may be needed to promote walking and cycling, it is unclear whether and how interventions in the built environment that attract walkers and cyclists may reduce transport CO2 emissions. Our aim was therefore to evaluate the effects of providing new infrastructure for walking and cycling on CO2 emissions from motorized travel.
A cohort of 1849 adults completed questionnaires at baseline (2010) and one-year follow-up (2011), before and after the construction of new high-quality routes provided as part of the Sustrans Connect2 programme in three UK municipalities. A second cohort of 1510 adults completed questionnaires at baseline and two-year follow-up (2012). The participants reported their past-week travel behaviour and car characteristics from which CO2 emissions by mode and purpose were derived using methods described previously. A set of exposure measures of proximity to and use of the new routes were derived.
Overall transport CO2 emissions decreased slightly over the study period, consistent with a secular trend in the case study regions. As found previously the new infrastructure was well used at one- and two-year follow-up, and was associated with population-level increases in walking, cycling and physical activity at two-year follow-up. However, these effects did not translate into sizeable CO2 effects as neither living near the infrastructure nor using it predicted changes in CO2 emissions from motorized travel, either overall or disaggregated by journey purpose. This lack of a discernible effect on travel CO2 emissions are consistent with an interpretation that some of those living nearer the infrastructure may simply have changed where they walked or cycled, while others may have walked or cycled more but few, if any, may have substituted active for motorized modes of travel as a result of the interventions. While the findings to date cannot exclude the possibility of small effects of the new routes on CO2 emissions, a more comprehensive approach of a higher 'dosage' of active travel promotion linked with policies targeted at mode shift away from private motorized transport (such as urban car restraint and parking pricing, car sharing/pooling for travel to work, integrating bike sharing into public transport system) may be needed to achieve the substantial CO2 savings needed to meet climate change mitigation and energy security goals. (C) 2014 Elsevier Ltd.
29
Brand C, Goodman A, Rutter H , et al. 2013. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel[J]. Applied Energy, 104:158-169.
Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and efficient approach to meeting carbon mitigation targets. (C) 2012 Elsevier Ltd.
30
Brand C, Tran M, Anable J . 2012. The UK transport carbon model: An integrated life cycle approach to explore low carbon futures[J]. Energy Policy, 41:107-124.
Current debate focuses on the need for the transport sector to contribute to more ambitious carbon emission reduction targets. In the UK, various macro-economic and energy system wide, top-down models are used to explore the potential for energy demand and carbon emissions reduction in the transport sector. These models can lack the bottom-up, sectoral detail needed to simulate the effects of integrated demand and supply-side policy strategies to reduce emissions. Bridging the gap between short-term forecasting and long-term scenario "models", this paper introduces a newly developed strategic transport, energy, emissions and environmental impacts model, the UK Transport Carbon Model (UKTCM). The UKTCM covers the range of transport-energy-environment issues from socio-economic and policy influences on energy demand reduction through to life cycle carbon emissions and external costs. The model is demonstrated in this paper by presenting the results of three single policies and one policy package scenario. Limitations of the model are also discussed. Developed under the auspices of the UK Energy Research Centre (UKERC) the UKTCM can be used to develop transport policy scenarios that explore the full range of technological, fiscal, regulatory and behavioural change policy interventions to meet UK climate change and energy security goals. (C) 2010 Elsevier Ltd.
31
Breheny M . 1997. Urban compaction: Feasible and acceptable?[J]. Cities, 14(4):209-217.
32
Brownstone D, Golob T F . 2009. The impact of residential density on vehicle usage and energy consumption[J]. Journal of Urban Economics, 65(1):91-98.
33
Cai B, Guo H, Cao L , et al. 2018. Local strategies for China's carbon mitigation: An investigation of Chinese city-level CO2 emissions[J]. Journal of Cleaner Production, 178:890-902.
34
Cai B, Yang W, Cao D , et al. 2012. Estimates of China's national and regional transport sector CO2 emissions in 2007[J]. Energy Policy, 41:474-483.
This study has proposed a new solution concerning fuel consumption in China's transport sector, which has provided a more accurate basis for estimating CO2 emissions in the transport sector both on national and regional level. Our analysis indicated that CO2 emissions in China's transport sector in 2007 reached to 436 Mt, higher than 408 Mt estimated by IEA. The CO2 emissions in transport sector accounted for 7% of China's total fossil fuel combustion CO2 emissions, which is much lower than the global average level of 23%. The CO2 emission from road transportation was 376.6 Mt, 37% higher than IEA's estimation. Therefore we thought IEA significantly underestimated the amount of CO2 emissions from road transportation in China, inevitably they overestimated CO2 emissions in other transportation means. The IEA's result of road transportation CO2 emissions is only 67.64% in the entire transport sector, but our study showed this ratio could be up to 86.32%. This study also preliminarily analyzed the driving-forces of CO2 emissions in transport sector at regional level. The results showed that the CO2 emissions in transport sector are closely associated with GDP. Finally the article had reviewed some policies in China's transport sector. (C) 2011 Elsevier Ltd.
35
Cao X J . 2017. Land use and transportation in China[J]. Transportation Research Part D: Transport and Environment, 52:423-427.
Reclaimed water is an important water resource for agricultural irrigation. Based on the systematic analysis of experimental data, this paper studies the spatiotemporal transformation and distribution of As in soil-crop system. Through the comparison with groundwater irrigation, reclaimed water irrigation was tested and studied in connection with the greenhouse vegetables in the growing season. The accumulation, distribution and transportation of As in different depths of soil within 7 days after reclaimed water irrigation were analyzed and discussed. The results showed that the concentration of As was the highest on the first day after irrigation; it was the highest at the depth of 100 cm on the third day after irrigation, but its concentration in the topsoil slightly decreased; from the fifth to the seventh day, the concentrations of As in the different layers of soil were almost the same, but it was the highest at the depth of 80-120 cm; and it decreased slightly with the increase in depth when the depth was less than 120 cm. As in soil during the growing season varied as the frequency of irrigation increased. The specific situation was as follows: as the accumulated As in the topsoil increased, the increased As at the depth of 80-120 cm would become less and the concentration of As at 200 cm would fall. Therefore, when the appropriate concentration of reclaimed water is used for irrigation, the concentration of As in the deep layer soil will comply with the standard limits of GB15618-1995 and the irrigation with reclaimed water of appropriate concentration will not cause As pollution.
36
Cao X S, Yang W Y . 2017. Examining the effects of the built environment and residential self-selection on commuting trips and the related CO2 emissions: An empirical study in Guangzhou, China[J]. Transportation Research Part D: Transport and Environment, 52:480-494.
37
Carty J, Ahern A . 2011. Introducing a transport carbon dioxide emissions vulnerability index for the Greater Dublin area[J]. Journal of Transport Geography, 19(6):1059-1071.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).

This article has been retracted at the request of Editor. The authors have plagiarized part of a paper that had already appeared in Transportation Research Part A, 43 (2009) 580–591. doi:10.1016/j.tra.2009.02.005. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

As a consequence, pages 1059–1071 originally occupied by the retracted article are missing from the printed issue. The publisher apologizes for any inconvenience this may cause.

38
Cervero R, Murakami J . 2010. Effects of built environments on vehicle miles traveled: Evidence from 370 US urbanized areas[J]. Environment and Planning A, 42(2):400-418.
39
Chapman L . 2007. Transport and climate change: A review[J]. Journal of Transport Geography, 15(5):354-367.

Abstract

Transport accounts for 26% of global CO2 emissions and is one of the few industrial sectors where emissions are still growing. Car use, road freight and aviation are the principal contributors to greenhouse gas emissions from the transport sector and this review focuses on approaches to reduce emissions from these three problem areas. An assessment of new technologies including alternative transport fuels to break the dependence on petroleum is presented, although it appears that technological innovation is unlikely to be the sole answer to the climate change problem. To achieve a stabilisation of greenhouse gas emissions from transport, behavioural change brought about by policy will also be required. Pressure is growing on policy makers to tackle the issue of climate change with a view to providing sustainable transport. Although, there is a tendency to focus on long-term technological solutions, short-term behavioural change is crucial if the benefits of new technology are to be fully realised.

40
Chow A S Y . 2016. Spatial-modal scenarios of greenhouse gas emissions from commuting in Hong Kong[J]. Journal of Transport Geography, 54:205-213.
41
Ding C, Wang Y, Xie B , et al. 2014. Understanding the role of built environment in reducing vehicle miles traveled accounting for spatial heterogeneity[J]. Sustainability, 6(2):589-601.
42
Dodman D . 2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories[J]. Environment and Urbanization, 21(1):185-201.
43
Dulal H B, Brodnig G, Onoriose C G . 2011. Climate change mitigation in the transport sector through urban planning: A review[J]. Habitat International, 35(3):494-500.
The transport sector contributes significantly to the emission of global greenhouse gases (GHGs) resulting in a rise in global temperature and climate change. A troubling aspect of emissions from the transport sector is that they are increasing rapidly. With the ongoing rapid increase in population, expansion of middle class in developing countries, and availability of cheaper vehicles such as Tata Nano in India, the desire to own private vehicles is within reach now than ever for millions of people in the developing world. This could have a huge implication on ongoing effort towards containment of GHG emissions. We look at the role of urban design forms - settlement density - housing and employment activities and the effects they could have in reducing travel demands, motor vehicle dependency and GHG emissions. Although urban planning has a limited effect on the reduction of GHG emissions, in the short term, due to the time needed to build up the necessary infrastructures, in the long term, it can be very effective through the shift from private vehicle dependency to public and other alternative environmentally friendly modes of transports (such as walking and cycling). A mixture of high residential and employment density could influence shorter commuter journeys and a reduction in private vehicle use if it is supported by an efficient public transport system and appropriate fiscal and regulatory instruments. Among the set of available instruments to reduce GHGs from the transport sector, urban planning, may be equally important, if not more to contain emissions from the transport sector. (C) 2011 Elsevier Ltd.
44
Ewing R . 1997. Is Los Angeles-style sprawl desirable?[J]. Journal of the American Planning Association, 63(1):107-126.
45
Gambhir A, Tse L K C, Tong D , et al. 2015. Reducing China's road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis[J]. Applied Energy, 157:905-917.
46
Geels F W . 2012. A socio-technical analysis of low-carbon transitions: Introducing the multi-level perspective into transport studies[J]. Journal of Transport Geography, 24:471-482.
Climate change and deep cuts in CO2 emissions require transitions to new kinds of transport systems. To understand the dynamics of these transitions, this paper introduces a socio-technical approach which goes beyond technology fix or behaviour change. Systemic transitions entail co-evolution and multidimensional interactions between industry, technology, markets, policy, culture and civil society. A multi-level perspective (MLP) is presented as a heuristic framework to analyze these interactions. The paper aims to introduce the MLP into transport studies and to show its usefulness through an application to the auto-mobility system in the United Kingdom and the Netherlands. This application aims to assess the drivers, barriers and possible pathways for low-carbon transitions. (C) 2012 Elsevier Ltd.
47
Gordon P, Richardson H W . 1989. Gasoline consumption and cities: A reply[J]. Journal of the American Planning Association, 55(3):342-346.
48
Gordon P, Richardson H W . 1997. Are compact cities a desirable planning goal?[J]. Journal of the American Planning Association, 63(1):95-106.
49
Handy S, Cao X, Mokhtarian P . 2005. Correlation or causality between the built environment and travel behavior? Evidence from Northern California[J]. Transportation Research Part D: Transport and Environment, 10:427-444.
The negative signal provided by some co-inhibitory factors like PD-1 was associated with chronic hepatitis B infection induced-T cell exhaustion, but the correlation of CpG methylation of Pdcd1 gene with PD-1 expression and medical laboratory indicators in chronic hepatitis B infection has not been elucidated yet.
50
Hankey S, Marshall J D . 2010. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions[J]. Energy Policy, 38(9):4880-4887.
摘要

Abstract

Urban form – for example, sprawl versus infill development – impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000–2020 cumulative emissions by up to 3.2 GtCO2e (15–20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth).

51
He D, Liu H, He K , et al. 2013. Energy use of, and CO2 emissions from China's urban passenger transportation sector:Carbon mitigation scenarios upon the transportation mode choices[J]. Transportation Research Part A: Policy and Practice, 53:53-67.
52
Holz-Rau C, Scheiner J . 2019. Land-use and transport planning: A field of complex cause-impact relationships. Thoughts on transport growth, greenhouse gas emissions and the built environment[J]. Transport Policy, 74:127-137.
53
Hong J . 2015. Non-linear influences of the built environment on transportation emissions: Focusing on densities[J]. Journal of Transport and Land Use, 10(1):229-240.
54
Hong J, Goodchild A . 2014. Land use policies and transport emissions: Modeling the impact of trip speed, vehicle characteristics and residential location[J]. Transportation Research Part D: Transport and Environment, 26:47-51.
55
Hong J, Shen Q . 2013. Residential density and transportation emissions: Examining the connection by addressing spatial autocorrelation and self-selection[J]. Transportation Research Part D: Transport and Environment, 22:75-79.
56
IEA. 2018. CO2 Emissions from Fuel Combustion [R]. Paris, France: IEA.
57
Kenworthy J R, Laube F B . 1996. Automobile dependence in cities: An international comparison of urban transport and land use patterns with implications for sustainability[J]. Environmental Impact Assessment Review, 16(4-6):279-308.
58
Kiang N, Schipper L . 1996. Energy trends in the Japanese transportation sector[J]. Transport Policy, 3(1-2):21-35.
This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.
59
Kwon T H . 2005. A scenario analysis of CO2 emission trends from car travel: Great Britain 2000-2030[J]. Transport Policy, 12(2):175-184.
60
Lakshmanan T R, Han X . 1997. Factors underlying transportation CO2 emissions in the U.S.A.: A decomposition analysis[J]. Transportation Research Part D: Transport and Environment, 2:1-15.
61
Li H, Qin Q . 2019. Challenges for China's carbon emissions peaking in 2030: A decomposition and decoupling analysis[J]. Journal of Cleaner Production, 207:857-865.
62
Li P, Zhao P, Brand C . 2018. Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach[J]. Applied Energy, 211:820-842.
63
Liu Z, Ma J, Chai Y . 2017. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing: Implications for low-carbon urban planning[J]. Urban Geography, 38(3):381-400.
64
Ma J, Liu Z, Chai Y . 2015. The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China[J]. Habitat International, 47:1-10.
65
Ma J, Zhou S, Mitchell G , et al. 2018. CO2 emission from passenger travel in Guangzhou, China: A small area simulation[J]. Applied Geography, 98:121-132.
66
Määttä-Juntunen H, Antikainen H, Kotavaara O , et al. 2011. Using GIS tools to estimate CO2 emissions related to the accessibility of large retail stores in the Oulu region, Finland[J]. Journal of Transport Geography, 19(2):346-354.
Everyday traffic accounts for a significant share of overall greenhouse gas emissions, in particular carbon dioxide (CO2). While several solutions have been proposed for decreasing the emissions, a new kind of land use planning is required in order to achieve long-term effects. This study focuses on the effect of large retail store locations in the urban structure on overall CO2 emissions, by using the Oulu region, Finland, as a case study. The aim was to utilize GIS tools to assess store locations in terms of CO2 emissions from private cars used for consumer traffic. In this case, not only are the locations of the existing and planned retail units investigated with respect to population distribution and car ownership, but the analysis is also carried out by regarding any location within the study area as a hypothetical site for a large retail unit. According to the applied method, CO2 values are lowest near the centre of the studied region, the region with the highest population density, although the city centre itself did not turn out to be the most optimal location for a retail store in terms of CO2 emissions. Nevertheless, by generally reducing trip length, a compact urban structure is an important way of achieving long-term cuts in CO2 emissions. (C) 2010 Elsevier Ltd.
67
Mazzarino M . 2000. The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy[J]. Energy Policy, 28(13):957-966.
68
Modarres A . 2013. Commuting and energy consumption: Toward an equitable transportation policy[J]. Journal of Transport Geography, 33:240-249.
69
Newman P W, Kenworthy J R . 1989. Gasoline consumption and cities: A comparison of US cities with a global survey[J]. Journal of the American Planning Association, 55(1):24-37.
70
Newman P . 2006. The environmental impact of cities[J]. Environment & Urbanization, 18(2):275-295.
With human activity, modern medicine, and climate change all intensifying the impact of fungi on global health, agriculture, and biodiversity, it is more crucial than ever to advance our understanding of the fascinating biology of fungi in order to harness their extraordinary potential and evade the devastation they can impose. To tackle this challenge, the American Academy of Microbiology convened a colloquium in October 2017, bringing together an international and interdisciplinary team of experts. This meeting transpired a decade after the first of its kind hosted by the Academy in 2007. This new report, titled One Health: Fungal Pathogens of Humans, Animals, and Plants, highlights the remarkable advances in the field and provides updated recommendations to address scientific and public health challenges in the new environment.
71
Pan X, Wang H, Wang L , et al. 2018. Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals[J]. Energy, 155:853-864.
72
Qin B, Han S S . 2013. Planning parameters and household carbon emission: Evidence from high- and low-carbon neighborhoods in Beijing[J]. Habitat International, 37:52-60.
This paper contributes to the study of planning for low-carbon cities by providing empirical evidence on the relationship between planning parameters (i.e., density, land use mix, accessibility to public transportation and jobs-housing balance) and household carbon emission in Beijing, China. Five neighborhoods representing different levels of carbon emission are selected using a household survey dataset that includes 1227 sample households; these neighborhoods are analyzed using the survey dataset together with land use data provided by the Beijing Municipal Urban Planning Commission. Findings confirm that higher population density, mixed land-use patterns, better accessibility to public transportation, and job-housing balance are important planning parameters that reduce household carbon emission in Beijing. This research provides the first empirical evidence from a large Asian city that can assist planners and policy makers in estimating the impact that planning principles can have on reducing household carbon emission. (C) 2011 Elsevier Ltd.
73
Reichert A, Holz-Rau C, Scheiner J . 2016. GHG emissions in daily travel and long-distance travel in Germany: Social and spatial correlates[J]. Transportation Research Part D: Transport and Environment, 49:25-43.
74
Schafer A, Victor D G . 1999. Global passenger travel: Implications for carbon dioxide emissions[J]. Energy, 24(8):657-679.
75
Schimek P . 1996. Household motor vehicle ownership and use: How much does residential density matter?[J]. Transportation Research Record: Journal of the Transportation Research Board, 1552:120-125.
76
Scholl L, Schipper L, Kiang N . 1996. CO2 emissions from passenger transport: A comparison of international trends from 1973 to 1992[J]. Energy Policy, 24(1):17-30.
77
Schwanen T, Banister D, Anable J . 2011. Scientific research about climate change mitigation in transport: A critical review[J]. Transportation Research Part A: Policy and Practice, 45(10):993-1006.
China is Asia's most important upstream riparian country, sharing 110 rivers and lakes with 18 downstream countries. Consequently, China's management of transboundary water resources must consider both environmental and geopolitical risks.The major threats to and conflicts over international rivers in China revolve around biotic homogenisation due to the installation of transport links, water allocation, water pollution, alteration of natural flow patterns and disruption of fisheries due to the installation of hydropower dams, and droughts and floods exacerbated by climate change. Because these problems have an international component, they fall under China's Peaceful Rise strategy, mandating that transboundary conflicts be resolved amicably as part of the overarching goal of increasing regional economic growth with as little conflict as possible.Science-backed policy is more likely to result in long term, mutually agreeable solutions; the results of applied ecological research have already resulted in a number of mitigation measures, including setting operational thresholds to reduce the downstream impact of dams, designating protected areas along key river stretches where dams cannot be installed (one dam in a critical location has been cancelled), and the installation of terrestrial protected-area networks.Synthesis and applications. Applied ecology will continue to play an important role in the diagnosis and resolution of environmental threats to China's transboundary waters. More importantly, applied ecology can inform the development of a transboundary environmental compensation mechanism and regional consultative mechanisms that support informed, cooperative decision-making for China and its riparian neighbours.
78
Shim G E, Rhee S M, Ahn K H , et al. 2006. The relationship between the characteristics of transportation energy consumption and urban form[J]. The Annals of Regional Science, 40(2):351-367.
79
Song S, Diao M, Feng C . 2016. Individual transport emissions and the built environment: A structural equation modelling approach[J]. Transportation Research Part A: Policy and Practice, 92:206-219.
80
Timilsina G R, Shrestha A . 2009. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options[J]. Energy Policy, 37(11):4523-4539.

Abstract

This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO2) emissions in selected Asian countries during the 1980–2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

81
Wang D, Lin T . 2014. Residential self-selection, built environment, and travel behavior in the Chinese context[J]. Journal of Transport and Land Use, 7(3):5-14.
82
Wang W W, Zhang M, Zhou M . 2011. Using LMDI method to analyze transport sector CO2 emissions in China[J]. Energy, 36(10):5909-5915.
China has been the second CO2 emitter in the world, while the transportation sector accounts for a major share of CO2 emissions. Analysis of transportation sector CO2 emissions is help to decrease CO2 emissions. Thus the purpose of this paper is to investigate the potential factors influencing the change of transport sector CO2 emissions in China. First, the transport sector CO2 emissions over the period 1985-2009 is calculated based on the presented method. Then the presented LMDI (logarithmic mean Divisia index) method is used to find the nature of the factors those influence the changes in transport sector CO2 emissions. We find that: (1) Transport sector CO2 emissions has increased from 79.67 Mt in 1985 to 887.34 Mt in 2009, following an annual growth rate of 10.56%. Highways transport is the biggest CO2 emitter. (2) The per capita economic activity effect and transportation modal shifting effect are found to be primarily responsible for driving transport sector CO2 emissions growth over the study period. (3) The transportation intensity effect and transportation services share effect are found to be the main drivers of the reduction of CO2 emissions in China. However, the emission coefficient effect plays a very minor role over the study period. (C) 2011 Elsevier Ltd.
83
Wang Y, Zhou Y, Zhu L , et al. 2018. Influencing factors and decoupling elasticity of China's transportation carbon emissions[J]. Energies, 11(5):1157. doi: 10.3390/en11051157.
84
Xu B, Lin B . 2015. Factors affecting carbon dioxide (CO2) emissions in China's transport sector: A dynamic nonparametric additive regression model[J]. Journal of Cleaner Production, 101:311-322.
85
Yang W Y, Chen B Y, Cao X S , et al. 2017. The spatial characteristics and influencing factors of modal accessibility gaps: A case study for Guangzhou, China[J]. Journal of Transport Geography, 60:21-32.
86
Yang W Y, Li T, Cao X S . 2015. Examining the impacts of socio-economic factors, urban form and transportation development on CO2 emissions from transportation in China: A panel data analysis of China's provinces[J]. Habitat International, 49:212-220.
87
Yang W Y, Wang S J, Zhao X M . 2018. Measuring the direct and indirect effects of neighborhood-built environments on travel-related CO2 Emissions: A structural equation modeling approach[J]. Sustainability, 10(5):1-14.
88
Zahabi S A H, Miranda-Moreno L, Patterson Z , et al. 2012. Transportation greenhouse gas emissions and its relationship with urban form, transit accessibility and emerging green technologies: A Montreal case study[J]. Procedia-Social and Behavioral Sciences, 54:966-978.
89
Zhu X P, Li R R . 2017. An analysis of decoupling and influencing factors of carbon emissions from the transportation sector in the Beijing-Tianjin-Hebei Area, China[J]. Sustainability, 9(5):1-19.

基金

国家自然科学基金项目(41701169)
国家自然科学基金项目(41671160)
广东省哲学社会科学规划项目(GD17YSH01)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(8557 KB)
可视化

3454

Accesses

0

Citation

Detail

段落导航
相关文章

/