山西断陷盆地内强震的原地重复特点

굽 列 (山西省地震局)

摘 要

山西的一些断陷盆地是华北地震区内6级以上地震活动的重要场所。本文 在详细研究每个6级以上地震的震中部位、烈度等震线特点、时间序列特征、 发震构造走向后得出:在同一盆地内, 6级以上地震原地重复发生, 而且震级 相近, 时间间隔较短, 发震构造走向正交或斜交, 发震构造的类型 也有所不 同。

一、前言

山西隆起区的轴部,展示着一系列的断陷盆地(以下简称盆地)。每个盆地长100~150公 里, 宽15~40公里。盆地的两侧发育了规模宏大的深大断裂, 在盆地内部也发育了许多隐伏 的断裂,如北北东、北东、北西及近东西向的活动断裂。它们既控制了盆地的基本格局,也 影响着地震的分布。特别是 6 级以上的地震(以下简称强震),几乎均分布于各盆地之中。 在现代构造应力场的控制下,活动断裂的水平滑动及围限断块的差异性升降运动,构成了山 西隆起区构造运动的两种主要形式。不同的构造部位,形成不同的应力状态。王春华等所做 的汾渭断陷带现代构造应力场的模拟实验表明,应力的集中区附强震的分布基本吻合[1]。 本文将详细分析山西境内一系列强震发生的特点以及孕震构造特点。

二、各个盆地内强震原地重复发生

根据《中国地震目录》(2), 山西境内发生 $M \ge 6$ 级的强震15次(图 1)。

从图 1 可以看出, 6 -- 6.9级地震和 7 -- 8 级地震,相间密集地分布于各个盆 地 中。在 同一盆地内发生的一些强震,不但震级相近,而且大部分震中位置相距较近(表1)。

同一盆地内相近的两次强震的破坏区和极震区均重合30%以上,有的高达100%(见表 1及图3-7)。

一次强震的震源体的空间范围如何确定,目前尚无统一的概念。笔者认为,对浅源地震而 言,一次强震在地表造成的破坏,其极震区的范围,可以认为是震源体在地表的投影,极度

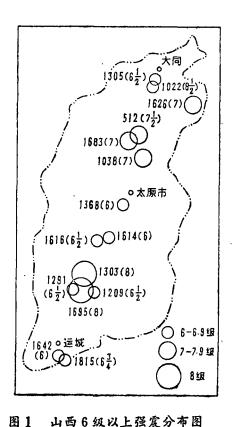


Fig. 1 Distribution of the strong earthquakes (M>6) in Shanxi province.

同一盆地内两次强震破坏区面积重合比例表

表 1

盆地名称	重合的地震	烈度等线重合面积比例		距离	TOLLUM
		破坏区(%)	极震区(%)	起 係	不重合的地震
大同盆地	1022应县6 ¹ /2 1305怀仁6 ¹ /3	95		10公則	无
忻县盆地 -	512代县71/2 1683原平7	60	30	30公川	1626灵邱 7
	1083定聚71/4 1683原平7	60	45	30公則	
太原盆地	1614平遜61/2 1618介休61/2	30		30公!	1368徐沟 8
临汾盆地	1303洪洞 8 1695临汾 8	60	65	40公川	无
平陆盆地	1642平陆 8 1815平陆6 ³ / ₄	100	100	15公川	无

区的长轴长度可认为是发震断裂的长度。如果两次强震的极震区面积重合30%以上,而且他们的震源深度相近,则可认为这两个强震的震源体是重合的。上述六组11个强震,其深度均在12~17公里之间的康氏面以上的花岗岩层中,这是山西一系列盆地内强震发生的优势深度和层位,极震区的面积均重合30%以上,有的高达100%。上述五个盆地中的六组强震,均可认为它们的震源体是重合的,或者说是原地重复发生。需要说明一点,临份盆地内1209年浮山6 支级,1291年临份6 支级地震应属洪洞8级强震的前震系列,故末单独分析。

三、原地重复的两次强震时间间隔较短

山西各个盆地内一系列的强震,均发生于华北地区历次地震活跃期中,与华北较大范围内应力场的加剧以及华北块体整体性运动有关。对每个强震而言,应有一定的积累 应 变 能 的孕震期。关于强震原地重复时间问题,丁国瑜提出强震可能原地重复,只是时间 尺 度 要 大,大于我们使用资料的一两千年。郭增建等从热学角度提出强震的原地重复时间,应包括原来震源体内岩石的降温时间和重新积累应变能的时间^[3]。显然,上 述 的 研 究 结 果,应该是对同一震源体内,同一发震断裂而言的。从山西各个盆地内一系列强震的时序列图分析(图 2),同一盆地内,原地重复的两次强震,除512年代县 7 级和1683年原平7级地震时间间隔较长外,其它几组时间间隔均较短,远小于第一个强震前的和第二个强震后的平静期。假如两个重复的强震体分别是两个独立的应变能积累单元,第一个强震发生后,它的应变能积累单元解体,开始积累第二个强震的应变能,虽然应变能的积累速率可能不同,但是在较短的时间内无论如何也不可能积累成强震。所以,山西各个盆地内,原地重复的两次强度时间间隔较短,可能反映了这样一个事实,两次强震是同时积累应变能的,它们的闭锁结构有着密切的联系,或者说第一个强震发生前的较长时间,早已开始积累第二个强震的应变能了。

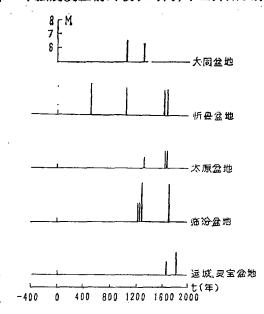


图 2 山西各盆地 6 级以上强震时间序列图 Eig. 2 Temporal and spatial distribution of the strong earthquakes (Ms≥6) in Shanix basins

四、原地重复的两次强震烈度等震线走向呈正交或斜交

图 3 一 7 表明[2]、1), 11次强震的烈度等震线走向分为两组, 一组 是 北 北 东一北 东

¹⁾武烈、贾宝卿、许艮贵、冀贵成、山西境内七次强震及有关几个问题的讨论,1984.

东,和所在的盆地走向一致;另一组是北北西一北西西,和所在的盆地走向正交或斜交。原地重复的两次强震的等震线走向均呈正交或斜交。这种情况,绝非一种偶然现象。极震区沿着一定的走向跨越不同的地质、地貌单元,显然是受控于发震构造的。

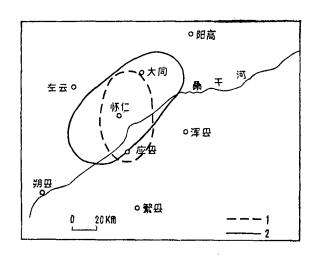


图 3 应县、怀仁地震破坏区 1.1022年大同一应县 8 1/2级地震2.1305年大同一怀仁61/2级地震 Fig. 2 Destructive area of the Yingxian, Huairen earthquake.

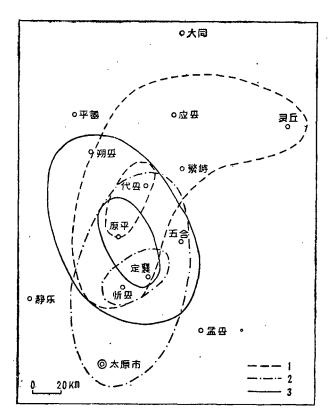


图 4 代县、定襄、原平地震烈度等震线图 1.512年代县71/2级地歷2.1038年定襄71/2级地歷3.1683年原平7级地歷

Fig. 4 Isoseismal map of the Daixian, Dingxiang, Yuanping earthquake.

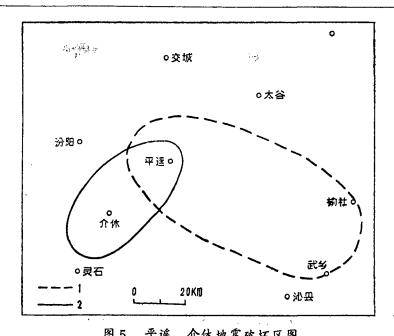


图 5 平遥、介休地震破坏区图 1.1614年平遇6¹/2级地震 2.1618年介休 6 ¹/2级地震 Fig. 5 Destructive area of the Pingyao, Jiexiu earthquake.



图 6 洪洞、临汾地震烈度等震线图
1.1303年洪洞地震2.1695年临汾地震
Fig. 6 Isoseimal map of the Hongtong, Linfen earthquake.

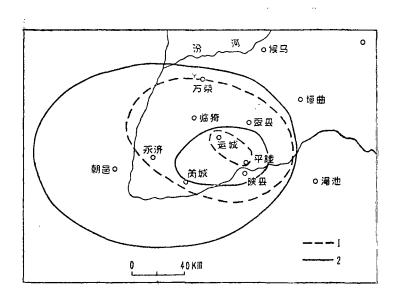


图 7 平陆两次地震的烈度等震线图 1.1642年平陆 8 3/4级地震

Fig. 7 Isoseismal map of the Pinglu earthquakes.

进一步研究分析重复的两次强震烈度等震线特点,除大同盆地的一对重复强震不明显外,其它几对均显示了第一个强震烈度等震线成长条形,长轴和短轴之比为3:1~5:2,而第二个强震烈度等震线成椭圆形,长轴和短轴之比为2:1~3:2。相同震级的情况下,第一个强震的破坏区范围远大于第二个强震的破坏区范围,这可能和孕震构造类型有关。

五、原地重复的两次强震孕震构造分析

众所周知,一个强震的烈度等震线形状,在局部地段可能由于种种因素而变化较大,但是长轴方向则严格受控于发震构造走向。华北地区现代地壳处于一致性较好的统一应力场中,主压应力轴为北东东向,主张应力轴为北北西向,应力轴倾角都不大,一些强震均是地壳介质在该应力场作用下,沿着北北东、北西西两个最大剪切应变方向发生水平错动的结果^[4]。山西的一系列强震烈度等震线所展示的两组走向特点,基本上和上述情况吻合。需要提出的平陆6号级和灵邱7级地震的发震构造走向转为北东东,这可能和山西隆起区南北两头巨大的横向构造的牵制有关。

前面谈过,控制盆地边界的和在盆地内隐伏的北北东、北东、北东东门断裂以及和盆地走向正交或斜交的北西向断裂,是山西隆起区轴部主要活动断裂,是正在强勃发展中的年青活断层^[5]。从断块的升降运动分析,断裂一侧的山区强烈上升,切割剧烈,而另一侧则向盆地渐变过渡,形成垂向运动差异强烈的地区,这两点是一系列强震分布在盆地内的主要原因。在区域应力场的作用下,两组最大剪切应变方向的断裂相交,或者相顶而不交,形成积累强大应变能的闭锁区,並具有共轭剪切错动的性质,这是山西各个盆地内蕴育强震的一个主要的闭锁结构形式,也是强震原地重复发生的构造原因。当发震的那组断裂错动时,由于

相交的另一组断裂尚处于闭锁状态,所以显示了单断走滑型的特点。另一组处于闭锁状态的断裂,产生了一定的位错,使其闭锁状态更加强化和加剧,当然也含着第一个地震的能量转换成分,当它最后断裂发震时,由于它的某一段(交叉部位)已被前一个地震所错动,同时前一个地震的发震断裂尚未处于新的闭锁状态,所以显示了双断或多断迭错型的特点[6]。

孕育一个强震,条件是各方面的,笔者认为,山西各个盆地中相对区域应力场方向,两组最大剪切应变方向的活动断裂相交(或相顶)的闭锁结构是主要的条件。但是山西境内的各个盆地内6~6.9级和7~8级地震为什么相间密集分布,7~8级地震全部发生于忻县、临汾盆地中呢?要回答这个问题,需要深入了解这两个盆地在华北块体整体性运动时应力集中的状态,盆地内深部构造的特点等。笔者认为主要是临汾、忻县两盆地闭锁条件优越。众所周知,山西隆起区轴部的各个盆地,是在北东东向挤压,北北西向引张力作用下形成的。在逐渐拉开的过程中,盆地一侧逐渐下沉。显然,拉开得越大,盆地越宽,盆地边界的断裂延深越大,盆地下沉得越深。各盆地相比,临汾、忻县两盆地最窄,只有15~20公里,新生代以来的沉积厚度分别只有1700米和800米,而大同、太原、运城等盆地则较宽,一般为30~40公里,新生代以来的沉积厚度分别为2300米、3200米和5300米。以此分析,临汾、忻县两盆地的边界断裂及盆地内的其它组断裂延深不及其他盆地大。一系列的强震深度均在12~17公里之间,在这个深度上,临汾、忻县两盆地边界断裂和盆地内的其它组活动断裂可能未沟通,从而形成能积累强大应变能的优越闭锁条件。

山西各个盆地内强震孕育、发生有一定的特点,深入研究它,对今后危险地段的预测、 发震构造走向的预测将是有益的。

(本文1984年6月18日收到)

参 考 文 献

- 〔1〕王春华等,汾渭断陷带形成机制及其地震活动性的实验研究,中国活动断裂,地震出出版社,1982.
- 〔2〕顾功叙,中国地震目录,科学出版社,1983.
- 〔3〕郭增建等,震源物理,地震出版社,1979.
- 〔4〕李钦祖等, 唐山地震的震源机制, 地震地质, Vo1、2, №4, 1980.
- 〔5〕丁国瑜,中国内陆活动断裂基本特征的探讨,中国活动断裂,地震出版社,1982.

THE CHARACTERS OF THE REPETITION OF THE STRONG EARTHQUAKES IN THE SAME LOCATION OF SHANXI SUBSIDENCE BASIN

Wu Lie
(Seismolgical Bureau of Shanxi Province, China)

Abstract

Shanxi subsidence basin is an important area in North China, where strong earthquakes (M=6.0) always visit. This paper deals with the location of epicenters of the earthquakes, the isoseismal lines, the temporal sequences and the tectonic strike of all the strong earthquakes (M=6.0) in this area.

The following preliminary results can be done in this paper:

In the same subsidence basin, there are earthqakes of M=6.0 which occur repeatedly in the same spot with approximate magnitude, short interval, oblique or normal strike and the different kinds of seismogenic structure.