川西甲基卡区域伟晶岩分异演化及锂成矿过程:来自白云母矿物学的约束

韩志辉, 熊欣, 李建康, 严清高, 姜鹏飞. 2024. 川西甲基卡区域伟晶岩分异演化及锂成矿过程:来自白云母矿物学的约束. 岩石学报, 40(2): 499-509. doi: 10.18654/1000-0569/2024.02.08
引用本文: 韩志辉, 熊欣, 李建康, 严清高, 姜鹏飞. 2024. 川西甲基卡区域伟晶岩分异演化及锂成矿过程:来自白云母矿物学的约束. 岩石学报, 40(2): 499-509. doi: 10.18654/1000-0569/2024.02.08
HAN ZhiHui, XIONG Xin, LI JianKang, YAN QingGao, JIANG PengFei. 2024. Muscovite as a potential tool for magmatic differentiation and identifying Li mineralization in the Jiajika regional pegmatites, West Sichuan. Acta Petrologica Sinica, 40(2): 499-509. doi: 10.18654/1000-0569/2024.02.08
Citation: HAN ZhiHui, XIONG Xin, LI JianKang, YAN QingGao, JIANG PengFei. 2024. Muscovite as a potential tool for magmatic differentiation and identifying Li mineralization in the Jiajika regional pegmatites, West Sichuan. Acta Petrologica Sinica, 40(2): 499-509. doi: 10.18654/1000-0569/2024.02.08

川西甲基卡区域伟晶岩分异演化及锂成矿过程:来自白云母矿物学的约束

  • 基金项目:

    本文受国家自然科学基金重点项目(42330806)、面上项目(41872096)和国家重点研发计划项目(2019YFC0605200)联合资助

详细信息
    作者简介:

    韩志辉, 男, 1995年生, 博士生, 矿床学专业, E-mail: hanzh95@126.com

    通讯作者: 熊欣, 女, 1989年生, 副研究员, 主要从事稀有金属矿床研究, E-mail: Xiongxin_1989@163.com
  • 中图分类号: P578.959;P588.131;P618.71

Muscovite as a potential tool for magmatic differentiation and identifying Li mineralization in the Jiajika regional pegmatites, West Sichuan

More Information
  • 甲基卡位于松潘-甘孜造山带内, 为我国超大型伟晶岩型锂矿床之一, 具有较大的经济价值。甲基卡伟晶岩在空间上具有良好的分带, 以二云母花岗岩为中心, 向外依次为微斜长石伟晶岩带(Ⅰ带)→微斜长石-钠长石伟晶岩带(Ⅱ带)→钠长石伟晶岩带(Ⅲ带)→锂辉石伟晶岩带(Ⅳ带)→白云母伟晶岩带(Ⅴ带)。为了研究甲基卡区域伟晶岩脉空间演化和稀有金属富集规律, 本文对各分带伟晶岩的白云母进行了主量、微量元素研究。根据矿物内部结构和化学成分, 区域伟晶岩存在两阶段演化: 早阶段在Ⅰ带至Ⅳ带形成均一结构的原生白云母; 晚阶段Ⅴ带形成具有成分分带的白云母, 二者在成分上Li、Rb、Cs含量和K/Rb、K/Cs比值呈现明显差异, 表明演化程度明显加大, 流体组分比例升高, 表明体系由以熔体为主的阶段进入以熔流体为主相对不稳定的阶段。从Ⅰ带至Ⅳ带, 原生白云母的K/Rb、Kb/Cs比值降低有限, 微量元素Li、Rb、Cs、Ta含量总体略微升高, 表明甲基卡区域伟晶岩脉经历了中等程度的结晶分异演化。V带云母的主微量成分呈振荡变化, 该现象主要受熔体不混溶过程的控制。总体上, 原生白云母均有具有高Li、Cs、B含量的特征, 表明初始熔体极具成矿潜力。白云母中K/Rb比值小于等于20或Cs含量大于等于400×10-6可以作为评价Li-Cs-Ta(LCT)伟晶岩发生锂辉石矿化的指标。

  • 加载中
  • 图 1 

    甲基伟晶岩型矿床大地构造位置(a)和矿床地质简图(b)(据Li and Chou, 2016修改)

    Figure 1. 

    The tectonic location of Jiajika granite pegmatite deposit (a) and geological map of the Jiajika deposit (b) (modified after Li and Chou, 2016)

    图 2 

    甲基卡区域伟晶岩样品代表性手标本照片

    Figure 2. 

    Photographs of representative samples from the Jiajika regional pegmatites

    图 3 

    甲基卡区域伟晶岩背散射图像

    Figure 3. 

    BSE images of Jiajika regional pegmatites

    图 4 

    甲基卡区域伟晶岩白云母Mg-Li与Fetot+Mn+Ti-Al判别图解(据Tischendorf et al., 1997)

    Figure 4. 

    Plot of Mg-Li vs. Fetot+Mn+Ti-Al for muscovite from the Jiajika regional pegmatites (after Tischendorf et al., 1997)

    图 5 

    甲基卡伟晶岩白云母替代机制图解

    Figure 5. 

    Diagram of the replacement mechanism of muscovite in Jiajika pegmatites

    图 6 

    甲基卡伟晶岩白云母代表性微量元素箱线图

    Figure 6. 

    Box whisker of representative trace elements in muscovites from Jiajika regional pegmatites

    图 7 

    甲基卡区域伟晶岩脉白云母矿物K/Rb-Rb (a)和K/Cs-Cs (b)散点图

    Figure 7. 

    Plots of K/Rb vs. Rb (a) and K/Cs vs. Cs (b) in muscovites of Jiajika regional pegmatites

    图 8 

    甲基卡伟晶岩与其他LCT伟晶岩白云母K/Rb-Cs演化图解

    Figure 8. 

    Muscovite K/Rb vs. Cs fractionation plot from Jiajika and other LCT pegmatites

    表 1 

    甲基卡区域伟晶岩脉类型划分标准和主要矿物组成

    Table 1. 

    Classification criteria and mineral composition of Jiajika pegmatites

    伟晶岩类型 微斜长石型 微斜长石-钠长石型 钠长石型 锂辉石型 白(锂)云母型
    定量指标 微斜长石≥40 微斜长石≥20,钠长石≥20 钠长石≥40 锂辉石≥10 白云母≥10或锂云母>5
    主要矿物(%) 微斜长石 40~60 20~40 < 10 < 10 0~15
    钠长石 < 20 20~40 40~60 25~45 30~50
    石英 20~35 25~35 30~40 25~40 30~40
    白云母 3~7 3~7 3~7 2~10 10~15
    锂辉石 0 < 5 < 5 10~25 < 10
    特征碱性元素 K K、Na Na Na、Li Li、Cs
    下载: 导出CSV

    表 2 

    甲基卡区域伟晶岩中白云母的电子探针分析结果(wt%)

    Table 2. 

    Electron microprobe analysis results of muscovite in pegmatites from Jiajika deposit (wt%)

    样品性质 微斜长石伟晶岩 微斜长石钠长石伟晶岩 钠长石伟晶岩 锂辉石伟晶岩 白(锂) 云母伟晶岩
    测试数量 n=10 n=10 n=15 n=15 n=27
    SiO2 47.04 46.79 46.82 46.52 47.62
    TiO2 0.12 0.06 0.04 0.06 0.01
    Al2O3 35.20 35.54 35.28 36.63 36.55
    FeO 2.18 2.20 2.17 1.14 0.44
    MnO 0.05 0.09 0.12 0.13 0.09
    MgO 0.10 0.07 0.03 0.03 0.03
    CaO 0.03 0.03 0.03 0.03 0.05
    Na2O 0.55 0.38 0.48 0.40 0.51
    K2O 10.13 10.39 10.10 10.07 9.87
    BaO 0.01 0.01 0.01 0.01 0.02
    Rb2O 0.01 0.02 0.10 0.30 0.07
    Cs2O 0.01 0.01 0.03 0.04 0.07
    F 0.33 0.32 0.33 0.20 0.34
    Cl 0.01 0.01 0.01 0.01 0.00
    Li2O* 0.03 0.04 0.04 0.01 0.04
    H2O* 4.36 4.36 4.34 4.43 4.40
    O=F, Cl 0.14 0.14 0.14 0.09 0.14
    Total 100.00 100.19 99.77 99.92 99.96
    Si 6.25 6.21 6.24 6.17 6.26
    AlTot 5.51 5.56 5.54 5.72 5.66
    Ti 0.01 0.01 0.00 0.01 0.00
    Cr 0.00 0.00 0.00 0.00 0.00
    Cr 0.00 0.00 0.00 0.00 0.00
    Fe 0.24 0.24 0.24 0.13 0.05
    Mn 0.01 0.01 0.01 0.01 0.01
    Mg 0.02 0.01 0.01 0.01 0.01
    Li* 0.01 0.02 0.02 0.01 0.02
    Ca 0.00 0.00 0.00 0.00 0.01
    Na 0.14 0.10 0.12 0.10 0.13
    K 1.72 1.76 1.72 1.70 1.66
    Rb 0.00 0.00 0.01 0.03 0.01
    Cs 0.00 0.00 0.00 0.00 0.00
    OH* 3.86 3.86 3.86 3.91 3.86
    F 0.14 0.14 0.14 0.08 0.14
    Cl 0.00 0.00 0.00 0.00 0.00
    注:*为计算值
    下载: 导出CSV

    表 3 

    甲基卡区域伟晶岩中白云母的LA-ICP-MS测试结果(×10-6)

    Table 3. 

    LA-ICP-MS data for muscovites in pegmatites from Jiajika deposit (×10-6)

    样品性质 微斜长石伟晶岩 微斜长石钠长石伟晶岩 钠长石伟晶岩 锂辉石伟晶岩 白(锂)云母伟晶岩
    Li 679.2~931.0 418.7~1524 377.5~1667 649.4~1353 452.7~1228
    Be 18.9~25.9 19.3~29.0 15.6~29.3 21.1~30.8 16.1~21.0
    B 131.8~203.8 129.2~254.0 130.4~306.4 193.2~410.3 145.3~270.7
    Zn 186.8~260.9 269.0~440.1 239.7~504.9 246.2~822.4 152.7~257.7
    Ga 89.0~114.8 113.6~158.8 101.4~137.6 107.1~161.6 84.2~121.0
    Ge 0.8~3.0 1.5~3.3 1.7~3.8 2.5~5.1 2.4~4.0
    Rb 1874~3247 2887~4665 3149~6390 5667~11156 3572~9352
    Sr 0.1~1.0 0.2~1.4 0.2~1.4 0.2~0.7 0.4~1.1
    Y 0.0~0.0 0.0~0.0 0.0~0.0 0.0~0.0 0.1~1.3
    Zr 0.6~1.2 1.0~1.0 0.6~2.2 0.6~1.9 0.6~1.1
    Nb 242.0~420.9 247.3~420.0 128.6~415.5 119.5~274.2 62.0~147.7
    Cd 10.7~17.2 11.5~33.6 17.0~39.0 26.6~71.6 16.0~31.5
    In 1.2~1.8 1.5~3.5 1.9~3.6 2.6~7.2 1.5~3.0
    Sn 334.5~566.7 355.3~1057 577.6~1188 831.8~2302 505.9~866.4
    Cs 71.5~254.8 109.5~346.6 141.1~755.7 335.8~884.3 412.5~1360
    Ba 0.9~45.2 0.4~6.9 1.0~14.4 0.3~1.2 1.5~6.8
    Hf 0.1~0.3 0.1~0.3 0.1~0.9 0.2~0.7 0.1~0.4
    Ta 14.7~109.2 15.5~89.5 16.7~107.6 18.8~75.0 18.8~86.8
    W 16.6~35.0 15.0~45.5 9.4~48.6 6.0~19.3 10.2~31.9
    Tl 6.7~12.8 10.3~17.3 11.6~26.4 24.0~49.1 13.7~61.3
    Pb 3.8~7.0 2.0~4.2 2.8~4.9 1.2~4.2 3.1~5.8
    Ta/Nb 0.0~0.5 0.0~0.3 0.1~0.6 0.1~0.5 0.3~1.2
    Sn/W 10.9~31.1 16.9~57.5 16.9~74.6 53.1~199.9 23.0~84.7
    Nb/Ta 2.2~23.6 3.5~24.6 1.7~19.2 2.1~8.8 0.8~4.0
    K/Rb 26.3~47.1 19.9~29.2 13.3~27.2 7.4~15.0 8.9~24.2
    下载: 导出CSV
  •  

    Alfonso P, Melgarejo JC, Yusta I and Velasco F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. The Canadian Mineralogist, 41(1): 103-116 doi: 10.2113/gscanmin.41.1.103

     

    Benn D, Martins T and Linnen R. 2022. Fractionation and enrichment patterns in white mica from Li pegmatites of the Wekusko Lake Pegmatite Field, Manitoba, Canada. The Canadian Mineralogist, 60(6): 933-956 doi: 10.3749/canmin.2200003

     

    Benson TR, Coble MA, Rytuba JJ and Mahood GA. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8(1): 270 doi: 10.1038/s41467-017-00234-y

     

    Černý P, Trueman D L, Ziehlke DV, Goad BE and Paul BJ. 1981. The cat Lake-Winnipeg River and the Wekusko Lake pegmatite fields, Manitoba. Manitoba, Canada: Manitoba Department of Energy and Mines, Mineral Resources Division

     

    Černý P. 1989. Contrasting geochemistry of two pegmatite fields in Manitoba: Products of juvenile Aphebian crust and polycyclic Archean evolution. Precambrian Research, 45(1-3): 215-234 doi: 10.1016/0301-9268(89)90041-7

     

    Groat LA, Mulja T, Mauthner MHF, Ercit TS, Raudsepp M, Gault RA and Rollo HA. 2003. Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, Northwest Territories. The Canadian Mineralogist, 41(1): 139-160 doi: 10.2113/gscanmin.41.1.139

     

    Hao XF, Fu XF, Liang B, Yuan LP, Pan M and Tang Y. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits, 34(6): 1199-1208 (in Chinese with English abstract)

     

    Hulsbosch N, Hertogen J, Dewaele S, André L and Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349-374 doi: 10.1016/j.gca.2014.02.006

     

    Jin WK, Che XD, Wang RC, Xu ZQ, Hu H, Zhang RQ, Li GW and Zheng BH. 2023. The deep rare metal metallogenic characteristics of the Jiajika lithium polymetallic deposit in Sichuan Province, China: Revealed by the Jiajika Scientific Drilling. Ore Geology Reviews, 160: 105579 doi: 10.1016/j.oregeorev.2023.105579

     

    Johan Z, Strnad L and Johan V. 2012. Evolution of the Cínovec (Zinnwald) granite cupola, Czech Republic: Composition of feldspars and micas, a clue to the origin of W, Sn mineralization. Canadian Mineralogist, 50(4): 1131-1148 doi: 10.3749/canmin.50.4.1131

     

    Jolliff BL, Papike JJ and Shearer CK. 1992. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochimica et Cosmochimica Acta, 56(5): 1915-1939 doi: 10.1016/0016-7037(92)90320-I

     

    Kaeter D, Barros R, Menuge JF and Chew DM. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from Southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite. Geochimica et Cosmochimica Acta, 240: 98-130 doi: 10.1016/j.gca.2018.08.024

     

    Li J, Huang XL, He PL, Li WX, Yu Y and Chen LL. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793-810 doi: 10.1016/j.oregeorev.2014.09.028

     

    Li JK, Wang DH, Zhang DH and Fu XF. 2007. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China. Beijing: Atomic Energy Press, 1-182 (in Chinese with English abstract)

     

    Li JK, Wang DH and Chen YC. 2013. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in western Sichuan Province: Evidence from isotope dating. Acta Geologica Sinica, 87(1): 91-101 doi: 10.1111/1755-6724.12033

     

    Li JK and Chou IM. 2016. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China. Journal of Geochemical Exploration, 171: 29-36 doi: 10.1016/j.gexplo.2015.10.012

     

    Li JK and Chou IM. 2017. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika lithium deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell. Geofluids, 2017: 9252913

     

    Li JK, Li P, Yan QG, Liu Q and Xiong X. 2021. History of granitic pegmatite research in China. Acta Geologica Sinica, 95(10): 2996-3016 (in Chinese with English abstract)

     

    Li JK, Li P, Yan QG, Wang DH, Ren GL and Ding X. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis. Science China (Earth Sciences), 66(8): 1702-1724 doi: 10.1007/s11430-022-1084-x

     

    Li P, Li JK, Chen ZY, Liu X, Huang ZB and Zhou FC. 2021. Compositional evolution of the muscovite of Renli pegmatite-type rare-metal deposit, Northeast Hunan, China: Implications for its petrogenesis and mineralization potential. Ore Geology Reviews, 138: 104380 doi: 10.1016/j.oregeorev.2021.104380

     

    Liu YS, Hu ZC, Zou KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 doi: 10.1007/s11434-010-3052-4

     

    Liu Z, Chen ZY and Wang CH. 2023. Mineralogical characteristics and metallogenic mechanism of Shiziling Li-Ta deposit in Northwest Jiangxi. Acta Petrologica Sinica, 39(7): 2045-2062 (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.07.10

     

    London D. 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187: 74-104 doi: 10.1016/j.lithos.2013.10.025

     

    Maneta V, Baker DR and Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170(1), doi.org/10.1007/s00410-015-1158-z doi: 10.1007/s00410-015-1158-z

     

    Maneta V and Baker DR. 2019. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada. Journal of Geochemical Exploration, 205: 106336 doi: 10.1016/j.gexplo.2019.106336

     

    Roda-Robles E, Pesquera A, Gil-Crespo P and Torres-Ruiz J. 2012. From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain). Lithos, 153: 192-207 doi: 10.1016/j.lithos.2012.04.027

     

    Smeds SA. 1992. Trace elements in potassium-feldspar and muscovite as a guide in the prospecting for lithium- and tin-bearing pegmatites in Sweden. Journal of Geochemical Exploration, 42(2-3): 351-369 doi: 10.1016/0375-6742(92)90032-4

     

    Stern WB. 1966. Zur Mineralchemie von Glimmern aus Tessiner Pegmatiten. Schweiz Mineralogische Petrologische Mitteilungen, 46: 137-188

     

    Tindle AG and Webb PC. 1990. Estimation of lithium contents in trioctahedral micas using microprobe data, application to micas from granitic rocks. European Journal of Mineralogy, 2: 595-610 doi: 10.1127/ejm/2/5/0595

     

    Tischendorf G, Gottesmann B, Förster HJ and Trumbull RB. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409): 809-834 doi: 10.1180/minmag.1997.061.409.05

     

    Tischendorf G, Forster HJ and Gottesmann B. 1999. The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63(1): 57-74 doi: 10.1180/002646199548312

     

    van Lichtervelde M, Grégoire M, Linnen RL, Béziat D and Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791-806 doi: 10.1007/s00410-007-0271-z

     

    Vieira R, Roda-Robles E, Pesquera A and Lima A. 2011. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). American Mineralogist, 96(4): 637-645 doi: 10.2138/am.2011.3584

     

    Wang DH, Dai HZ, Liu SB, Li JK, Wang CH, Lou DB, Yang YQ and Li P. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract)

     

    Wang Z, Li JK, Chen ZY, Yan QG, Xiong X, Li P and Deng JY. 2022. Evolution and Li mineralization of the No. 134 pegmatite in the Jiajika rare-metal deposit, western Sichuan, China: Constrains from critical minerals. Minerals, 12(1): 45

     

    Xiong X, Ding X, Li JK, Li P, Deng JY and Zhang JM. 2022. Metallogenic process of the Jiajika Li-Be deposit in West Sichuan: Constraints from fluid inclusions of No. 308 pegmatite. Acta Petrologica Sinica, 38(2): 323-340 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.02.02

     

    Xu ZQ, Fu XF, Wang RC, Li GW, Zheng YL, Zhao ZB and Lian DY. 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355: 105281 doi: 10.1016/j.lithos.2019.105281

     

    Zhang HJ, Tian SH, Wang DH, Li XF, Liu T, Zhang YJ, Fu XF, Hao XF, Hou KJ, Zhao Y and Qin Y. 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China. Ore Geology Reviews, 134: 104139 doi: 10.1016/j.oregeorev.2021.104139

     

    Zhao H, Chen B, Huang C, Bao C, Yang Q and Cao R. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177: 4 doi: 10.1007/s00410-021-01869-3

     

    Zhao WW, Zhou MF, Zhao Z and Zhao XF. 2023. Evolution of pegmatite recorded by zoned garnet from the No. 9 dike in the Jiajika Li polymetallic deposit, eastern Tibetan Plateau. Ore Geology Reviews, 158: 105484 doi: 10.1016/j.oregeorev.2023.105484

     

    Zhou QF, Qin KZ, Tang DM, Ding JG and Guo ZL. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai. Acta Petrologica Sinica, 29(9): 3004-3022 (in Chinese with English abstract)

     

    Zhu JY, Zhu WB, Xu ZQ, Zhang RQ, Che XD and Zheng BH. 2023. The geochronology of pegmatites in the Jiajika lithium deposit, western Sichuan, China: Implications for multi-stage magmatic-hydrothermal events in the Songpan-Ganze rare metal metallogenic belt. Ore Geology Reviews, 159: 105582 doi: 10.1016/j.oregeorev.2023.105582

     

    郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199-1208

     

    李建康, 王登红, 张德会, 付小方. 2007. 川西伟晶岩型矿床的形成机制及大陆动力学背景. 北京: 原子能出版社, 1-182

     

    李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势. 地质学报, 95(10): 2996-3016

     

    李建康, 李鹏, 严清高, 王登红, 任广利, 丁欣. 2023. 松潘-甘孜-西昆仑花岗伟晶岩型稀有金属成矿带成矿规律. 中国科学(地球科学), 53(8): 1718-1740

     

    刘泽, 陈振宇, 王成辉. 2023. 赣西北狮子岭花岗岩型锂-钽矿床的矿物学特征及成矿机制. 岩石学报, 39(7): 2045-2062 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2023.07.10

     

    王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743-764

     

    熊欣, 丁欣, 李建康, 李鹏, 邓静仪, 张珈铭. 2022. 川西甲基卡花岗伟晶岩的锂铍成矿作用过程——来自308号脉流体包裹体的约束. 岩石学报, 38(2): 323-340 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.02.02

     

    周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004-3022 http://www.ysxb.ac.cn/article/id/aps_20130904

  • 240208韩志辉-附表1-2
  • 加载中

(8)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-09-01
修回日期:  2023-12-16
刊出日期:  2024-02-01

目录