喜马拉雅吉隆花岗伟晶岩中锂矿物的研究

田恩农, 谢磊, 王汝成, 吴福元. 2024. 喜马拉雅吉隆花岗伟晶岩中锂矿物的研究. 岩石学报, 40(2): 484-498. doi: 10.18654/1000-0569/2024.02.07
引用本文: 田恩农, 谢磊, 王汝成, 吴福元. 2024. 喜马拉雅吉隆花岗伟晶岩中锂矿物的研究. 岩石学报, 40(2): 484-498. doi: 10.18654/1000-0569/2024.02.07
TIAN EnNong, XIE Lei, WANG RuCheng, WU FuYuan. 2024. The study of Li-minerals in granitic pegmatites from Gyirong, Himalaya. Acta Petrologica Sinica, 40(2): 484-498. doi: 10.18654/1000-0569/2024.02.07
Citation: TIAN EnNong, XIE Lei, WANG RuCheng, WU FuYuan. 2024. The study of Li-minerals in granitic pegmatites from Gyirong, Himalaya. Acta Petrologica Sinica, 40(2): 484-498. doi: 10.18654/1000-0569/2024.02.07

喜马拉雅吉隆花岗伟晶岩中锂矿物的研究

  • 基金项目:

    本文受第二次青藏高原综合科学考察研究(2019QZKK0802)、国家自然科学基金项目(42222202、91855209)、中央高校基本科研业务费专项资金(020614380173)和河北省教育厅科学研究项目(BJK2024180)联合资助

详细信息
    作者简介:

    田恩农, 男, 1992年, 博士, 讲师, 矿物学专业, E-mail: tianennong@126.com

    通讯作者: 谢磊, 女, 1982年生, 教授, 主要从事稀有金属矿物学研究, E-mail: xielei@nju.edu.cn
  • 中图分类号: P588.131;P618.71

The study of Li-minerals in granitic pegmatites from Gyirong, Himalaya

More Information
  • 喜马拉雅造山带中部的吉隆岩体出露有大量淡色花岗岩和花岗质伟晶岩, 已有文献报道该岩体英雄沟和扎龙沟淡色花岗岩和伟晶岩中有铁锂云母、锂云母、锂辉石等锂矿物产出。本次研究对吉隆岩体北部扎龙沟的伟晶岩进行了岩相学和矿物学研究, 厘定了锂辉石伟晶岩和锂云母-锂电气石伟晶岩(含细晶岩)两种类型的富锂伟晶岩。研究结果显示, 在锂辉石伟晶岩中主要的富锂矿物除了已知的锂辉石和锂云母, 还发现了透锂长石, 同时锂云母的边部出现的铯锂云母((Cs, K)Li2Al[Si4O10]F2, Cs/(Cs+K)原子比>0.5)中Cs2O含量达16.9%, 该矿物首次在喜马拉雅发现, 推测是由锂云母与后期富Cs流体作用后形成。在锂云母-锂电气石细晶岩中主要的富锂矿物包括锂云母和锂电气石, 锂云母中的Li2O含量为0.9%~6.7%;锂电气石中Li2O含量最高可达2.4%, 且FeO、MgO和CaO含量较低(分别 < 1.1%、 < 0.01%和 < 2.6%), 接近锂电气石端元成分。结合吉隆扎龙沟含锂伟晶岩中大量产出铯沸石和细晶石, 确认这些伟晶岩是典型的LCT(Li-Cs-Ta)型伟晶岩, 矿物组成和成分显示它们具有极高的分异演化程度。

  • 加载中
  • 图 1 

    喜马拉雅淡色花岗岩分布图显示锂成矿信息的岩体及其富含的共生稀有元素(a, 据吴福元等,2015修改)和吉隆地区地质图(b,据王晓先等,2017修改)

    Figure 1. 

    The distribution of Himalayan leucogranites showing plutons related to Li mineralization and the associated rare-metal elements enriched (a, modified after Wu et al., 2015) and geological map of the Gyirong region (b, modified after Wang et al., 2017)

    图 2 

    吉隆地区锂辉石伟晶岩及锂云母-锂电气石细晶岩岩相学特征

    Figure 2. 

    Hand specimen and petrographic characteristics of spodumene-bearing pegmatite and lepidolite-elbaite aplite

    图 3 

    吉隆地区锂辉石伟晶岩中锂辉石的背散射电子图像及阴极发光图像

    Figure 3. 

    Back-scattered electron images and cathodoluminescence images of spodumene in the spodumene pegmatite from Gyirong region

    图 4 

    吉隆锂辉石伟晶岩中的锂辉石成分特征

    Figure 4. 

    Compositions of spodumene from the Gyirong spodumene pegmatites

    图 5 

    吉隆地区锂辉石伟晶岩中的透锂长石背散射电子图像

    Figure 5. 

    Back-scattered electron images of petalite in the spodumene pegmatite from Gyirong region

    图 6 

    吉隆地区锂辉石伟晶岩和锂云母-锂电气石细晶岩中云母的背散射电子图像

    Figure 6. 

    Back-scattered electron images of micas in the spodumene-bearing pegmatite and lepidolite-elbaite aplite from Gyirong region

    图 7 

    吉隆扎龙沟锂辉石伟晶岩和锂云母-锂电气石细晶岩中云母的分类图

    Figure 7. 

    Classification of the micas within the Tsalung spodumene pegmatites and lepidolite-elbaite aplite from Gyirong region

    图 8 

    吉隆地区锂云母-锂电气石细晶岩中锂电气石的背散射电子图像和电气石成分分类图

    Figure 8. 

    Back-scattered electron images and compositional classification of tourmaline in the lepidolite-elbaite aplite from Gyirong region

    表 1 

    吉隆锂辉石伟晶岩中代表性锂辉石主量元素分析结果(wt%)

    Table 1. 

    Representative chemical compositions (wt%) of the spodumene from the Gyirong spodumene pegmatite

    产状 自形柱状 SQI
    序号 1 2 3 4 5 6 7 8 9 10 11 12
    SiO2 64.39 64.27 64.05 63.73 63.99 64.53 63.47 64.41 64.19 64.14 64.10 63.84
    Al2O3 27.60 27.39 27.64 27.42 27.34 27.60 27.51 27.38 27.63 27.65 27.78 27.65
    MgO - 0.01 0.01 - - - - - 0.01 0.02 - -
    CaO 0.01 0.01 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
    MnO 0.03 - 0.03 0.07 0.10 0.07 0.19 0.10 0.07 0.07 0.18 0.12
    FeO - 0.01 - 0.08 0.06 0.06 0.22 0.06 0.08 0.02 0.07 0.06
    Na2O 0.20 0.20 0.19 0.13 0.16 0.14 0.17 0.11 0.14 0.17 0.14 0.14
    K2O 0.01 0.03 0.01 0.01 - 0.04 - 0.01 - 0.03 0.01 -
    Li2O* 7.91 7.88 7.87 7.85 7.88 7.95 7.81 7.95 7.91 7.88 7.90 7.87
    Total 100.14 99.80 99.80 99.29 99.52 100.37 99.36 100.02 100.04 99.98 100.18 99.68
    根据2个Si原子计算
    Al 1.010 1.005 1.017 1.014 1.007 1.008 1.022 1.002 1.015 1.016 1.022 1.021
    Mg 0.000 0.000 0.000 0.001
    Ca 0.000 0.000
    Mn 0.001 0.001 0.002 0.003 0.002 0.005 0.002 0.002 0.002 0.005 0.003
    Fe 0.000 0.002 0.002 0.002 0.006 0.002 0.002 0.000 0.002 0.002
    Na 0.012 0.012 0.011 0.008 0.010 0.008 0.010 0.007 0.008 0.010 0.009 0.008
    K 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000
    Li* 0.988 0.987 0.988 0.991 0.990 0.990 0.989 0.993 0.992 0.989 0.991 0.991
    注:n.a.:未测;-:低于检测限;*:Li2O含量根据完全化学配比计算获得,Li=1-K-Na
    下载: 导出CSV

    表 2 

    吉隆锂辉石伟晶岩中代表性透锂长石主量元素分析结果(wt%)

    Table 2. 

    Representative chemical compositions (wt%) of the petalite from the Gyirong spodumene pegmatite

    产状 自形粒状 脉状 后成合晶 产状 自形粒状 脉状 后成合晶
    序号 1 2 3 4 5 6 7 8 序号 1 2 3 4 5 6 7 8
    SiO2 77.64 77.43 78.81 78.12 77.30 79.67 77.81 78.52 根据4个Si原子计算
    Al2O3 16.85 16.79 17.27 16.87 16.93 17.30 17.06 16.84 Al 1.023 1.022 1.033 1.018 1.033 1.024 1.034 1.011
    MgO - - - - 0.01 - - 0.01 Mg 0.001 0.001
    CaO 0.01 0.01 - 0.01 0.01 0.01 - - Ca 0.001 0.000 0.000 0.000 0.000
    MnO 0.06 - 0.01 - 0.03 - - - Mn 0.003 0.000 0.001
    FeO - 0.01 0.02 - 0.02 - 0.03 - Fe 0.000 0.001 0.001 0.001
    Na2O 0.03 0.06 0.05 0.02 0.03 - 0.01 - Na 0.003 0.006 0.005 0.002 0.003 0.001
    K2O 0.07 0.03 0.03 0.03 0.04 0.01 0.03 - K 0.005 0.002 0.002 0.002 0.003 0.001 0.002 0.000
    Li2O* 4.79 4.78 4.87 4.83 4.78 4.95 4.82 4.88 Li* 0.992 0.992 0.994 0.996 0.995 0.999 0.997 1.000
    Total 99.46 99.09 101.06 99.89 99.13 101.93 99.76 100.25
    注:n.a.:未测;-:低于检测限;*:Li2O含量根据完全化学配比计算获得,Li=1-K-Na
    下载: 导出CSV

    表 3 

    吉隆锂辉石伟晶岩和锂云母-锂电气石细晶岩中代表性云母族矿物的化学成分(wt%)

    Table 3. 

    Representative chemical compositions (wt%) of the micas within the spodumene pegmatite and lepidolite-elbaite aplite from Gyirong region

    岩性 锂辉石伟晶岩 锂云母-锂电气石细晶岩
    云母类型 白云母 锂云母 白云母 锂云母 铯锂云母 白云母 白云母 锂云母 锂云母
    产状 核部 边部 核部 边部 Lpd边 Lpd边 Lpd边
    序号 1 2 3 4 5 6 7 8 9 10 11
    SiO2 47.30 52.69 46.84 49.98 57.66 52.83 55.65 48.27 48.27 52.20 52.35
    TiO2 0.01 0.01 0.02 - - - - - 0.03 0.06 0.07
    Al2O3 36.94 24.00 38.70 25.98 13.87 14.50 17.20 37.29 36.06 29.17 29.97
    FeO 1.65 2.79 0.71 3.03 0.02 0.02 0.02 0.01 0.05 0.09 0.10
    MnO 0.58 2.46 0.53 2.55 0.05 - 0.10 0.17 0.15 0.51 0.50
    MgO 0.02 - - - 0.04 0.03 0.05 - - 0.01 -
    CaO 0.01 0.02 0.04 0.04 0.06 0.04 0.08 - 0.01 0.03 -
    Na2O 0.45 0.16 0.45 0.19 0.17 0.21 0.09 0.51 0.54 0.31 0.31
    K2O 6.70 6.92 7.72 7.45 3.29 2.77 4.77 8.83 9.03 9.11 8.06
    Rb2O 0.42 0.50 0.28 0.54 0.28 0.13 0.45 0.22 0.35 0.42 0.45
    Cs2O 0.08 0.86 0.11 0.85 12.84 16.94 8.83 0.04 0.10 0.12 0.05
    F 0.47 7.46 - 5.49 8.10 6.02 5.97 0.25 0.61 5.21 6.07
    Cl - - 0.01 0.01 0.07 0.06 0.03 - - 0.01 -
    Li2O* 0.14 5.65 - 3.76 6.30 4.25 4.21 0.06 0.21 3.51 4.30
    H2O* 4.33 1.05 4.60 1.85 0.44 1.10 1.40 4.49 4.27 2.16 1.82
    O=F, Cl 0.20 3.14 - 2.31 3.43 2.55 2.52 0.11 0.26 2.19 2.56
    Total 98.91 101.44 100.00 99.41 99.77 96.35 96.33 100.02 99.43 100.70 101.50
    根据22个O原子计算
    Si 6.231 6.878 6.108 6.726 8.039 7.984 7.869 6.286 6.345 6.758 6.675
    Aliv 1.769 1.122 1.892 1.274 0.000 0.016 0.131 1.714 1.655 1.242 1.325
    Alvi 3.968 2.569 4.058 2.847 2.279 2.567 2.736 4.009 3.933 3.209 3.178
    Ti 0.001 0.001 0.002 0.003 0.006 0.007
    Fe 0.182 0.304 0.078 0.341 0.002 0.003 0.002 0.001 0.005 0.010 0.010
    Mn 0.065 0.272 0.059 0.290 0.006 0.012 0.018 0.017 0.055 0.054
    Mg 0.005 0.008 0.007 0.011 0.001
    Li* 0.076 2.969 2.036 3.535 2.585 2.392 0.033 0.109 1.827 2.206
    Ca 0.002 0.003 0.005 0.005 0.009 0.006 0.012 0.001 0.003
    Na 0.114 0.041 0.113 0.050 0.046 0.062 0.025 0.128 0.138 0.078 0.076
    K 1.126 1.151 1.284 1.278 0.585 0.534 0.860 1.466 1.514 1.505 1.311
    Rb 0.036 0.042 0.024 0.047 0.025 0.013 0.041 0.019 0.030 0.035 0.037
    Cs 0.005 0.048 0.006 0.048 0.763 1.092 0.532 0.002 0.006 0.007 0.003
    OH* 3.806 0.918 3.999 1.662 0.412 1.107 1.323 3.897 3.745 1.867 1.551
    F 0.194 3.081 2.335 3.572 2.877 2.670 0.103 0.255 2.132 2.449
    Cl 0.001 0.003 0.017 0.015 0.007 0.001 0.001
    注:n.a.:代表未测;-:低于检测限;*:Li2O含量根据经验公式获得,Li2O=0.3935×F1.326(wt%)
    下载: 导出CSV

    表 4 

    吉隆锂云母-锂电气石细晶岩中代表性锂电气石的化学成分(wt%)

    Table 4. 

    Representative chemical compositions (wt%) of the elbaite in the Gyirong lepidolite-elbaite aplite

    序号 1 2 3 4 5 6 最大值 最小值 平均值
    SiO2 37.16 37.25 37.68 37.23 37.04 37.14 38.02 36.79 37.29
    TiO2 - - 0.02 - 0.01 0.01 0.03 - 0.01
    Al2O3 40.52 40.45 40.34 40.39 40.63 40.36 41.30 38.92 40.27
    Cr2O3 - - - 0.05 - - 0.06 - 0.01
    FeO 0.19 0.31 0.65 0.26 0.51 0.63 1.12 0.18 0.59
    MgO - - - - 0.01 0.01 0.01 - 0.01
    CaO 2.27 2.18 2.39 2.15 1.75 2.36 2.59 1.68 2.19
    MnO 0.79 1.15 1.47 0.92 1.02 1.51 1.65 0.74 1.25
    Na2O 1.37 1.43 1.34 1.38 1.51 1.45 1.57 0.93 1.43
    K2O 0.01 0.02 - 0.01 - - 0.02 - 0.01
    F 0.67 0.60 0.68 0.69 0.56 0.73 0.80 0.55 0.66
    Cl - 0.01 - - - - 0.01 - -
    H2O* 3.48 3.52 3.52 3.47 3.52 3.47 3.56 3.41 3.49
    B2O3* 11.01 11.03 11.13 11.00 10.99 11.06 11.14 10.90 11.03
    Li2O* 2.30 2.25 2.24 2.26 2.13 2.21 2.36 2.12 2.22
    O=F 0.28 0.25 0.29 0.29 0.24 0.31
    Total 99.49 99.95 101.17 99.53 99.45 100.62
    以31个阴离子(O-,OH-,F-,Cl-)计算
    T: Si 5.867 5.869 5.885 5.880 5.860 5.839
    Al 0.133 0.131 0.115 0.120 0.140 0.161
    B 3.000 3.000 3.000 3.000 3.000 3.000
    Z: Al 6.000 6.000 6.000 6.000 6.000 6.000
    Mg 0.000 0.000
    Cr 0.000
    Y: Al 1.407 1.380 1.311 1.399 1.436 1.317
    Ti 0.002 0.001 0.001
    V 0.000 0.000 0.000 0.000 0.000 0.000
    Cr 0.006
    Mg 0.002 0.002
    Mn 0.106 0.153 0.194 0.123 0.137 0.201
    Fe2+ 0.025 0.041 0.085 0.034 0.067 0.083
    Zn 0.000 0.000 0.000 0.000 0.000 0.000
    Li* 1.463 1.426 1.407 1.438 1.356 1.396
    X: Ca 0.384 0.368 0.400 0.364 0.297 0.398
    Ba 0.000 0.000 0.000 0.000 0.000 0.000
    Na 0.419 0.437 0.406 0.423 0.463 0.442
    K 0.002 0.004 0.002
    Rb 0.000 0.000 0.000 0.000 0.000 0.000
    Cs 0.000 0.000 0.000 0.000 0.000 0.000
    X□ 0.195 0.191 0.194 0.212 0.240 0.161
    OH 3.665 3.698 3.664 3.655 3.720 3.637
    F 0.335 0.299 0.336 0.345 0.280 0.363
    Cl 0.003
    注:-:低于检测限;*:计算值,B2O3*和H2O*含量分别是基于B=3和OH+F+Cl=4计算获得,Li2O*根据Li=15-(T+Z+Y)计算获得
    下载: 导出CSV

    表 5 

    世界上一些主要的锂矿物

    Table 5. 

    The main Li-minerals in the world

    矿物名称 化学式 Li2O含量(wt%)
    硅酸盐
    锂霞石(Eucryptite) LiAl[SiO4] 9~12
    锂电气石(Elbaite) Na(Al1.5Li1.5)Al6[BO3]3[Si6O18](OH)3OH 4.07
    锂辉石(Spodumene) LiAl[Si2O6] 6~9
    铁锂云母(Zinnwaldite) KLiFeAl[AlSi3O10](F, OH)2 3.42
    锂白云母(Trilithionite) K(Li1.5Al1.5)[AlSi3O10](F, OH)2 5.61
    铯锂云母(Sokolovaite) CsLi2Al[Si4O10]F2 6.17
    多硅锂云母(Polylithionite) KLi2Al[Si4O10](F, OH)2 6.46
    硅铝锂石(Virgilite) LixAlx[Si3-xO6] 4.08
    透锂长石(Petalite) LiAl[Si4O10] 4.73
    磷酸盐
    磷锂铝石(Montebrasite) LiAl[PO4](OH) 10.21
    锂磷铝石(Amblygonite) LiAl[PO4]F 7.40
    磷铁锂矿(Triphylite) LiFe[PO4] 9.47
    磷锰锂矿(Lithiophilite) LiMn[PO4] 9.53
    羟磷锂铁石(Tavorite) LiFe3+[PO4](OH) 8.55
    碳酸盐
    扎布耶石(Zabuyelite) Li2[CO3] 40.44
    氟化物
    格里塞矿(Griceite) LiF 57.60
    氧化物
    铌钽锂矿(Lithiotantite) Li(Nb, Ta)3O8 2.44
    硼酸盐
    贾达尔石(Jadarite) LiNaSi[B3O7(OH)] 7.28
    注:据Grew, 2020; Bowell et al., 2020以及http://www.webmineral.com数据汇总
    下载: 导出CSV
  •  

    Audétat A and Pettke T. 2003. The magmatic-hydrothermal evolution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA). Geochimica et Cosmochimica Acta, 67(1): 97-121 doi: 10.1016/S0016-7037(02)01049-9

     

    Benson TR, Coble MA, Rytuba JJ and Mahood GA. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8: 270 doi: 10.1038/s41467-017-00234-y

     

    Bowell RJ, Lagos L, de los Hoyos CR and Declercq J. 2020. Classification and characteristics of natural lithium resources. Elements, 16(4): 259-264 doi: 10.2138/gselements.16.4.259

     

    Breiter K, Vaňková M, Galiová MV, Korbelová Z and Kanický V. 2017. Lithium and trace-element concentrations in triotahedral micas from granites of different geochemical types measured via laser ablation ICP-MS. Mineralogical Magazine, 81(1): 15-33 doi: 10.1180/minmag.2016.080.137

     

    Černý P, Teertstra DK, Chapman R, Fryer BJ, Longstaffe FJ, Wang XJ, Chackowsky LE and Meintzer RE. 1994. Mineralogy of extreme fractionation in rare-element granitic pegmatites at Red Cross Lake, Manitoba, Canada. Pisa: Abstracts of 16th IMA General Meeting, 67

     

    Černý P, Chapman R, Teertstra DK and Novák M. 2003. Rubidium- and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88(11-12): 1832-1835 doi: 10.2138/am-2003-11-1226

     

    Černý P and Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(3): 2005-2026

     

    Dai ZW, Li GM, Yang ZM, Xie YL, Fu JG, Xiang AP, Huizenga JM, Huang CM, Liang W and Cao HW. 2023. Long-lived magmatic evolution and mineralization resulted in formation of the giant Cuonadong Sn-W-Be polymetallic deposit, southern Tibet. Ore Geology Reviews, 157: 105434 doi: 10.1016/j.oregeorev.2023.105434

     

    Ercit TS, Groat LA and Gault RA. 2003. Granitic pegmatites of the O'Grady batholith, N.W.T., Canada: A case study of the evolution of the elbaite subtype of rare-element granitic pegmatite. The Canadian Mineralogist, 41(1): 117-137 doi: 10.2113/gscanmin.41.1.117

     

    Grew ES. 2020. The minerals of lithium. Elements, 16(4): 235-240 doi: 10.2138/gselements.16.4.235

     

    Guo WK, Li GM, Fu JG, Zhang H, Zhang LK, Wu JY, Dong SL and Yang YL. 2023. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet. Earth Science Frontiers, 30(5): 275-297 (in Chinese with English abstract)

     

    Heim A and Gansser A. 1939. Central Himalaya, geological observations of the Swiss expeditions 1936. Mémoire Société Helvetique Science, 73: 1-245

     

    Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P and Pezzotta F. 2011. Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96: 895-913 doi: 10.2138/am.2011.3636

     

    Heron AM. 1922. Geological results of the Mount Qomolangma expedition. 1921. The Geographical Journal, 59(6): 418-431 doi: 10.2307/1780634

     

    Hu FY, Liu XC, He SX, Wang JM and Wu FY. 2023. Cesium-rubidium mineralization in Himalayan leucogranites. Science China (Earth Sciences), 66(12): 2827-2852 doi: 10.1007/s11430-022-1159-3

     

    Hu XM, Garzanti E, Wang JG, Huang WT, An W and Webb A. 2016. The timing of India-Asia collision onset-facts, theories, controversies. Earth-Science Reviews, 160: 264-299 doi: 10.1016/j.earscirev.2016.07.014

     

    Li GM, Zhang LK, Jiao YJ, Xia XB, Dong SL, Fu JG, Liang W, Zhang Z, Wu JY, Dong L and Huang Y. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003-1008 (in Chinese with English abstract)

     

    Li GM, Fu JG, Guo WK, Zhang H, Zhang LK, Dong SL, Li YX, Wu JY, Jiao YJ, Jin CH and Huang CM. 2022. Discovery of the Gabo granitic pegmatite-type lithium deposit in the Kulagangri Dome, eastern Himalayan metallogenic belt, and its prospecting implication. Acta Petrologica et Mineralogica, 41(6): 1109-1119 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6524.2022.06.006

     

    Li J and Huang XL. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English abstract)

     

    Li JK, Chou IM, Yuan S and Burruss RC. 2013. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell. Geofluids, 13(4): 467-474 doi: 10.1111/gfl.12048

     

    Li JK, Liu XF and Wang DH. 2014. The metallogenetic regularity of lithium deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract)

     

    Liu C, Wang RC, Wu FY, Xie L, Liu XC, Li XK, Yang L and Li XJ. 2020. Spodumene pegmatites from the Pusila pluton in the Higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 358-359: 105421 doi: 10.1016/j.lithos.2020.105421

     

    Liu C, Wang RC, Wu FY, Xie L and Liu XC. 2021. Lithium mineralization in Qomolangma: First report of elbaite-lepidolite subtype pegmatite in the Himalaya leucogranite belt. Acta Petrologica Sinica, 37(11): 3287-3294 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.03

     

    Liu C. 2023. Rare-metal mineralization and metallogenic mechanism of the leucogranites in the Qomolangma region. Ph. D. Dissertation. Nanjing: Nanjing University (in Chinese with English abstract)

     

    Liu C, Wang RC, Linnen RL, Wu FY, Xie L and Liu XC. 2023. Continuous Be mineralization from two-mica granite to pegmatite: Critical element enrichment process in a Himalayan leucogranite pluton. American Mineralogist, 108: 31-41 doi: 10.2138/am-2022-8353

     

    Liu XC, Wu FY, Wang RC, Liu ZC, Wang JM, Liu C, Hu FY, Yang L and He SX. 2021. Discovery of spodumene-bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare-metal mineralization in the Himalayan orogen. Acta Petrologica Sinica, 37(11): 3295-3304 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.04

     

    London D. 1984. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: A petrogenetic grid for lithiumx-rich pegmatites. American Mineralogist, 69(11-12): 995-1004

     

    London D. 2005. Geochemistry of alkalis and alkali earths in ore-forming granites, pegmatites and rhyolites. In: Linnen R and Samson I (eds. ). Rare Element Geochemistry of Ore Deposits, Vol. 17. Geological Association of Canada, Short Course Handbook, 17-43

     

    London D. 2017. Reading pegmatites: Part 3: What lithium minerals say. Rocks & Minerals, 92(2): 144-157

     

    Maneta V, Baker DR and Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170(1): 4 doi: 10.1007/s00410-015-1158-z

     

    Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han JT, Liebke U, Oliver G, Parrish R and Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115(B12): B12416

     

    Pautov LA, Agakhanov AA and Bekenova GK. 2006. Sokolovaite CsLi2AlSi4O10F2: A new minerals species of the mica group. New Data on Minerals, 41: 5-13

     

    Potter EG, Taylor RP, Jones PC, Lalonde AE, Pearse GHK and Rowe R. 2009. Sokolovaite and evolved lithian micas from the Eastern Moblan granitic pegmatite, Opatica subprovince, Quebec, Canada. The Canadian Mineralogist, 47: 337-349 doi: 10.3749/canmin.47.2.337

     

    Qin KZ, Zhou QF, Zhao JX, He CT, Liu XC, Shi RZ and Liu YC. 2021. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes. Acta Geologica Sinica, 95(10): 3146-3162 (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.10.014

     

    Roda E, Keller P, Pesquera A and Fontan F. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineralogical Magazine, 71(1): 41-62 doi: 10.1180/minmag.2007.071.1.41

     

    Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. Amsterdam: Elsevier, 3: 1-64

     

    Selway JB, Černý P, Hawthorne FC and Novák M. 2000. The Tanco pegmatite at Bernic Lake, Manitoba. XIV. Internal tourmaline. The Canadian Mineralogist, 38(4): 877-891 doi: 10.2113/gscanmin.38.4.877

     

    Stilling A, Černý P and Vanstone PJ. 2006. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist, 44(3): 599-623 doi: 10.2113/gscanmin.44.3.599

     

    Tischendorf G, Gottesmann B, Foerster HJ and Trumbull RB. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809-834

     

    Visonà D and Zantedeschi C. 1994. Spodumene, petalite and cassiterite, new occurrence in Himalayan leucogranite pegmatites: Petro-logical implications. Pisa: Abstracts of 16th IMA General Meeting, 429

     

    Wang JM, Hou KS, Yang L, Liu XC, Wang RC, Li GM, Fu JG, Hu FY, Tian YL and Wu FY. 2023. Mineralogy, petrology and P-T conditions of the spodumene pegmatites and surrounding meta-sediments in Lhozhag, eastern Himalaya. Lithos, 456-457: 107295 doi: 10.1016/j.lithos.2023.107295

     

    Wang RC, Hu H, Zhang AC, Huang XL and Ni P. 2004. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz lepidolite granite, southern China. The Canadian Mineralogist, 42(3): 883-896 doi: 10.2113/gscanmin.42.3.883

     

    Wang RC, Hu H, Zhang AC, Fontan F, de Parseval P and Jiang SY. 2007. Cs-dominant polylithionite in the Koktokay #3 pegmatite, Altai, NW China: In situ micro-characterization and implication for the storage of radioactive cesium. Contributions to Mineralogy and Petrology, 153(3): 355-367 doi: 10.1007/s00410-006-0151-y

     

    Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 doi: 10.1007/s11430-017-9075-8

     

    Wang RC, Xie L, Zhu ZY and Hu H. 2019. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69-75 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.01.04

     

    Wang XQ, Liu HL, Wang W, Zhou J, Zhang BM and Xu SF. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects. Acta Geoscientica Sinica, 41(6): 797-806 (in Chinese with English abstract)

     

    Wang XX, Zhang JJ, Santosh M, Liu J, Yan SY and Guo L. 2012. Andean-type orogeny in the Himalayas of South Tibet: Implications for Early Paleozoic tectonics along the Indian margin of Gondwana. Lithos, 154: 248-262 doi: 10.1016/j.lithos.2012.07.011

     

    Wang XX, Zhang JJ and Yang XY. 2017. Geochemical characteristics of the leucogranites from Gyirong, South Tibet: Formation mechanism and tectonic implications. Geotectonica et Metallogenia, 41(2): 354-368 (in Chinese with English abstract)

     

    Webster JD, Holloway JR and Hervig RL. 1989. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt. Economic Geology, 84(1): 116-134 doi: 10.2113/gsecongeo.84.1.116

     

    Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)

     

    Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 doi: 10.1016/j.lithos.2019.105319

     

    Wu FY, Wang RC, Liu XC and Xie L. 2021. New breakthroughs in the studies of Himalayan rare-metal mineralization. Acta Petrologica Sinica, 37(11): 3261-3276 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.01

     

    Xie L, Tao XY, Wang RC, Wu FY, Liu C, Liu XC, Li XK and Zhang RQ. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355: 105286 doi: 10.1016/j.lithos.2019.105286

     

    Xie L, Wang RC, Tian EN, Tao XY, Zhou W, Liu XC and Wu FY. 2024. The rare-metal mineralogical study on the Kuqu Li-Be-rich granitic pegmatite from the eastern Himalaya. Acta Petrologica Sinica, 40(2): 404-432 (in Chinese with English abstract) doi: 10.18654/1000-0569/2024.02.03

     

    Yang XY, Zhang JJ, Qi Gw, Wang DC, Guo L, Li PY and Liu J. 2009. Structure and deformation around the Gyirong basin, North Himalaya, and onset of the South Tibetan Detachment System. Science in China (Series D), 52(8): 1046-1058 doi: 10.1007/s11430-009-0111-2

     

    Yang ZY, Wang RC, Che XD, Xie L and Hu H. 2022. Paragenesis of Li minerals in the Nanyangshan rare-metal pegmatite, North China: Toward a generalized sequence of Li crystallization in Li-Cs-Ta-type granitic pegmatites. American Mineralogist, 107(12): 2155-2166 doi: 10.2138/am-2022-8285

     

    Yin R, Han L, Huang XL, Li J, Li WX and Chen LL. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104(7): 949-965 doi: 10.2138/am-2019-6796

     

    Zhang AC, Wang RC, Jiang SY, Hu H and Zhang H. 2008. Chemical and textural features of tourmaline from the spodumene-subtype Koktokay No. 3 pegmatite, Altai, northwestern China: A record of magmatic to hydrothermal evolution. The Canadian Mineralogist, 46(1): 41-58 doi: 10.3749/canmin.46.1.41

     

    Zhang H. 2001. The geochemical behaviors and mechanisms of incompatible trace elements in the magmatic-hydrothermal transition system: A case study of Altay No. 3 pegmatite, Xinjiang. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract)

     

    Zhang ZL, Sun X, Li GD, Zhang JD, Liu HZ, Zhuan SP and Wei WT. 2006. New explanation of detachment structures in the Burang and Gyironggou regions, southern Xizang. Sedimentary Geology and Tethyan Geology, 26(2): 1-6 (in Chinese with English abstract)

     

    Zhao JX, He CT, Qin KZ, Shi RZ, Liu XC, Hu FY, Yu KL and Sun ZH. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet. Acta Petrologica Sinica, 37(11): 3325-3347 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.06

     

    Zhou QF, Qin KZ, He CT, Wu HY, Liu YC, Niu XL, Mo LC, Liu XC and Zhao JX. 2021. Li-Be-Nb-Ta mineralogy of the Kuqu leucogranite and pegmatite in the eastern Himalaya, Tibet, and its implication. Acta Petrologica Sinica, 37(11): 3305-3324 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.05

     

    Zhou W, Xie L, Wang RC, Wu FY, Tian EN, Liu C and Liu XC. 2022. The study on the micas in the Gyirong leucogranite-pegmatite from Himalaya: Implications for the lithium enrichment. Acta Petrologica Sinica, 38(7): 2153-2173 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.07.20

     

    郭伟康, 李光明, 付建刚, 张海, 张林奎, 吴建阳, 董随亮, 杨玉林. 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义. 地学前缘, 30(5): 275-297

     

    李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008

     

    李光明, 付建刚, 郭伟康, 张海, 张林奎, 董随亮, 李应栩, 吴建阳, 焦彦杰, 金灿海, 黄春梅. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义. 岩石矿物学杂志, 41(6): 1109-1119 doi: 10.3969/j.issn.1000-6524.2022.06.006

     

    李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283

     

    李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311-4322 http://www.ysxb.ac.cn/article/id/aps_20131217

     

    刘晨, 王汝成, 吴福元, 谢磊, 刘小驰. 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩. 岩石学报, 37(11): 3287-3294 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.03

     

    刘晨. 2023. 珠峰地区淡色花岗岩稀有金属成矿特征与成矿机制. 博士学位论文. 南京: 南京大学

     

    刘小驰, 吴福元, 王汝成, 刘志超, 王佳敏, 刘晨, 胡方泱, 杨雷, 何少雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示. 岩石学报, 37(11): 3295-3304 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.04

     

    秦克章, 周起凤, 赵俊兴, 何畅通, 刘小驰, 施睿哲, 刘宇超. 2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂. 地质学报, 95(10): 3146-3162

     

    王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物. 岩石学报, 35(1): 69-75 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2019.01.04

     

    王晓先, 张进江, 杨雄英. 2017. 藏南吉隆淡色花岗岩地球化学特征、成因机制及其构造动力学意义. 大地构造与成矿学, 41: 354-368

     

    王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797-806

     

    吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36 http://www.ysxb.ac.cn/article/id/aps_20150101

     

    吴福元, 王汝成, 刘小驰, 谢磊. 2021. 喜马拉雅稀有金属成矿作用研究的新突破. 岩石学报, 37(11): 3261-3276 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.01

     

    谢磊, 王汝成, 田恩农, 陶湘媛, 周威, 刘小驰, 吴福元. 2024. 喜马拉雅东部库曲锂铍花岗质伟晶岩的稀有金属矿物学研究. 岩石学报, 40(2): 404-432 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2024.02.03

     

    张辉. 2001. 岩浆-热液过渡阶段体系中不相容元素地球化学行为及其机制——以新疆阿尔泰3号伟晶岩脉研究为例. 博士学位论文. 贵阳: 中国科学院地球化学研究所

     

    张振利, 孙肖, 李广栋, 张计东, 刘洪章, 专少鹏, 魏文通. 2006. 西藏普兰、吉隆沟一带藏南拆离构造新认识. 沉积与特提斯地质, 26(2): 1-6

     

    赵俊兴, 何畅通, 秦克章, 施睿哲, 刘小驰, 胡方泱, 余可龙, 孙政浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征. 岩石学报, 37(11): 3325-3347 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.06

     

    周起凤, 秦克章, 何畅通, 吴华英, 刘宇超, 牛向龙, 莫凌超, 刘小驰, 赵俊兴. 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.05

     

    周威, 谢磊, 王汝成, 吴福元, 田恩农, 刘晨, 刘小驰. 2022. 喜马拉雅吉隆淡色花岗岩-伟晶岩中云母的矿物学研究: 对锂富集过程的指示. 岩石学报, 38(7): 2153-2173 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.07.20

  • 加载中

(8)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-10-22
修回日期:  2023-12-29
刊出日期:  2024-02-01

目录