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Abstract

The elastic constant is a component of a three-dimensional fourth-rank tensor, hav-
ing 81 components, in all. According to the symmetry of both the stress and strain ten-
sors and the existence of a density energy function, which is quadratic in strain, the
number of independent constants is 21 for general anisotropic media. The number of in-
dependent elastic constants can be reduced still mord if media have higher symmetry.
Transversely isotropic medium, which has only five indepindent constants, is a good ap-
proximation of rocks in the crust and the upper mantle of the earth. In this paper, we are
concerned about transversely isotropic media with an arbitrary direction of symmetrical
axis(i. e., the symmetrical axis may not be parallel to the verticalaxis) . In this case we
need to change coordinates from one system to another. If we know the elastic constants
in one particular coordinate system, for example, whose axes are parallel or perpendicular
to the symmetrical axis of the midia, we can easily obtain these elastic constants in new
coordinate system by using the transformation formula.

In this paper we present an approach for modeling wave-fields excited by not only a
source but also a plane-wave incidence in transversely isotropic media mentioned above
by the pseudo-spectral method. Modeling of planc waves propagating in transversely
isotropic media is one of the most important subjects as well as that of waves emitted
from a localized source in exploration geophsics and seismology. While it is deffcult or
even impossible to determine the phase velocity and the polarization direction of plane
waves in general anisotropic media, in the case of transversely isotropic media we can
achieve this purpose through coordinate transformation. We here develop a scheme that
can be used for plane-wave modeling in travsversely isotropic media.

Key words: Numerical simulation; Seismic wave; Anisotropy; Transversely

isotropy; Pseudo-spectral method

0 Introduction

In the last three decades, seismologists and geophysicists have obtained much seismological
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evidence, which shows that the media of the crust and the upper mantle are inhomogeneous and
anisotropic[1~3]. Recent studies indicate that the inner core also displays transversely isotropic
properties[4~5 1 So anisotropy may be a universal phenomenon in the earth. In the crust and the
upper mantle, anisotropy usually results from the physics properties of crystalline solids or minerals
such as olivine and pyroxene, whose lattice have preferred orientations, or is caused by finely lay-
ered media or by the stress-aligned micro-cracks which are usually filled with watert® %! Trans-
versely isotropic medium is a good approximation of such medial”"®. However, the cause of
anisotropy in the inner core has not been clearly known yet[4~5] . So the knowledge on anisotropic
media, particularly on transversely isotropic media, is very important for us to understand the
properties of seismic waves propagating in the earth and to get the deep structure information car-
ried by these waves. Unfortunately, the wave equations in inhomogeneous anisotropic media are
very complicated because three displacement components are coupled together. It is difficult or im-
possible to obtain analytical solutions of these equations. However, with the development of com-
puter techniques, to some extent, it has become possible to get numerical solutions on high perfor-
mance work stations or on super computers, even for a three dimensional anisotropic modell® 131
Synthetic seismograms and snapshots can help us understand wave propagation and wave field
variation in detail in a given model, thus bringing us potentials to learn real media of the earth.
There are several methods which have already been developed to calculate synthetic seismo-
grams and seismic wave propagation in anisotropic media, such as reflectivity method which is only
for layered laterally homogeneous anisotropic media and asymptom ray theory which only can be
used for the media with weak anisotropy and fail to calculate seismograms accurately for the media
with large velocity variations'™*). Numerical solution methods such as the finite difference method
and finite element method!®] have also been used to calculate seismic waves in heterogeneous me-
dia. However, these methods are limited by their disadvatages. In order to obtain relatively accu-
rate results, we have to discretize mode into, at least, 10 grid points per wavelength if we use sec-
ondorder finite differencing. So, for 3-D model or anisotropic model which has 21 elastic
constants, it is difficult to use finite difference method (FDM) or finite element method (FEM) to
obtain satisfying results, even on a large super computer. Another numerical method, the pseudo-
spectral method(PSM), has already been used widely in seismology to simulate wave field because
of its high efficiency[19~23] .Fornberg {1987) shows that the PSM requires, in each spatial dimen-
sion, as few as a quarter of the number of grid points of fourth-order finite differencing, and one-
sixteenth the number of points of second-order finite differencing and can be expected to run about
150 times faster and use less the 1/2000 of the memory required by the secondorder finite differ-
ence method. The pseudo-spectral method can be regarded as an alternative to the finite difference
method and finite element method!?'~2*!. In this study, we use psudo-spectral method to simulate
seismic wave field in transversely isotropic heterogeneous media with arbitrary directions of sym-

metrical axes.
1 Wave Equations in General Anisotropic Media

The equations of motion for seismic waves in elastic, inhomogeneous anisotropic media can be
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written as

PUi:a_%(Cijkﬁkz)*'ﬁ (1)
where Cy are elastic constants and ¢, are strain. tensor which is written as
1,0U, oU,
w= 7 5, + a—xl) (2)
where z; is a Cartesian coordinate corresponding to x, y and z, Uj is the displacement in the x;
direction,and i is a component of a three dimensional fourth-rank tensor, having 81
components, in all. According to the symmetry of both the stress and strain tensors and the exis-
tence of density energy function that is quadratic in strain, we can write
Ci = i = Cijme T Chsij (3)
This symmetry condition means that there are 21 independent elastic constants for arbitrarily
anisotropic media.
Sometimes, we need to change coordinates from one system to another. If we know the elastic
constants in one particular coordinate system, for example, whose axes are parallel or perpendicular
to the symmetrical axis of the media, we can easily obtain these elastic constants in a new coordi-

nate system by using the following transformation formula:

,

Cijer = X Q1L pars (4)
where Cyjay BTE elastic constants in the new coordinate system, and ay are the elements of the trans-

formation matrix from the old coordinate system to the new one.
2 Elastic Constants in Transversely Isotropic Media

From symmetrical conditions Cow = Cim and Cipt = Cyppr it is often convenient to describe
anisotropic media by using 6 X 6 matrix C; instead of the full C, tensor components, Matrix C;
can be defined
Ciir C1122 1133 Cn123 Sz Cn2
Cao11 €2222 €2233 C2223 C€2213 C€2212
C3311 C3322 C3333 C3323 €313 €332
[c,1= (s)
Ca311 Ca322 €2333 €233 C€2313  C2312

Ci3nn C1322 €133 C1323 C1313 C1312

LC1211  C1222 C1233  Ci223 €213 C1212]
This ts a symmetrical matrix because of the symmetry condition Cort = Chsg which means that the
number of independent elastic constants for general anisotropic media is reduced to 21.The num-
ber of independent constants can be reduced still more if the media have higher symmetry. Trans-
versely isotropic medium, which has only five independent constants because of higher symmetry,
is a good approximation of rocks in the crust and the upper mantle of the earth’ "8 . In this
paper, we are mainly concerned about such media.

For transversely isotropic media, if z-axis is parallel to the symmetrical axis of the media, C;

ij
can be weitten as following
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[A A-2N F 0 0 1
F A F 0 0
F F C 0 0
C;l= 6
[ ”] 0 0 0 L 0 (6)
0 0 0 0 L O
LO 0 0 0 0 N/

where= A = ¢\ ;A = 2N = ¢y F = 333 L = cypand N = ¢y
3 Pseudo-spectral Method

Ler U/ (1, m) and p(l, m) represent the displacement components and density at spatial grid
point {I, m),and at the time step n. The spatial derivatives in equation (1) can be calculated by
using the fast Fourier transform (FFT), and the time derivatives are approximated by
differencing . Our method is similar to that of Reshefet al. (1988b) . In this study, we use real FFT
because of its calculation dfficiency and speed!'?!. We can obtain the acceleration by using equation
(4) and the wave field in the next time step is calculated by using following equations.

I G U R P (7)
Ut = Ur s A e UV (8)
where Az is the time step which is selected small enouhg to keep the dispersion down to an accept-
able level. Here, the criterion of Daudt et al. (1989), having following from, is used.
Max(Ax, Ay, Az)
Ve

where VE®™ is the maximum P-velocity in the model, and Max{Ax, Ay, Az)is the largest grid
[25]

Ar < 0.26 (9)

spacing

4 Absorbing Boundary Conditions and Source Function

The weighting function for wave displacement is usually taken the following form!2!;
expl— klx — 6)?] forx<b orx>L,— b;
expl~ £(y—8)2] fory<b ory>L,- b;
expl— k(2 —b)?] forz<b orz>L,- b;

1 elsewhere,

W(I!_’}"Z) = (10)

where £ is the absorption coefficient that is taken as 0.015 in this paper, & the width of tapered
zone, and L,, L, L, are the model size in the z, y, and z direction, respectively.
The source function we used is a band-limited Ricker wavelet as follows
Flz,y,z) = [1 =202z — o) lexpl— 2 (2 — £0)*] -

expl[— alz — zo)* + (y — y)?* + (2 — 20)2]} (11)
where zg, yo» 2o is central position of the source,a determines the concentration of the source
frnction, zy is the original time of the source function and f is the dominant frequency. This
function can be directly used as a component of force (for instance, f, ) of a potential function of a
pressure source or a shear source, from which we can calculate three components of the force, over

a small region of the grid!?®1.
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5 Formulations for Plane Waves in Transversely Isotropidc Media

When earthquakes occur very far from the receiver, the seismic waves can often be regarded
as plane waves. Thus, to simulate plane waves propagating in transversely isotropic media is also
very important in seismology. In general, it is deffcult or even impossible to determine the phase
velocity and the polarization direction of plane waves in anisotropic media. But in the case of trans-
versely isotropic media, we can achieve this purpose through coordinate transform. Here, we devel-
op a method that can be used for plane wave modeling in transversely isotropic media.

If #(#,t) denotes the motion of a particle located at coordinates 7 at time ¢, the plane waves
propagating in the direction 7 at phase velocity v can be written as:

g7, t) = afla-7- wv) (12)
where f(z) is an arbitrary function, @ defines the amplitude and the polarization direction of the
waves and 7 is a unit vector perpendicular to the phase surface.

If z-axis coincidences with the symmetrical axis of transversely isotropic media, while x-axis

and y-axis can be set arbitrarily, velocities and polarization vectors for three types of waves can be

written as'2’)
_ eXA _ __eX#
NEex Al (- a) (13)
V% = c¢gt c3 (14)
S Tl + s ler = ) + 46162715? (15)
42 26‘1713
vi = co+%[cl+cz—\/(cl—cz)2+4clczn§] (16)
. _ . CLTC (¢ = ¢2)* + dcicand
do = 7 2eins e (17)
v = co+%[cl+cz+\/(c1 — ¢2)% + dcicani] (18)

where @ is a unit vector which denotes the direction of symmetrical axis of the media, cgsc1sc2
and ¢3 are constants, having following forms

co= g1+ gan3

c1 = &3

) (19)
g2t gani

il

c2
c3 = gs(1 - n})
where 73 is the directional cosine of the wave phase normal vector to z-axis in the old system, and
g1 = Aun Az T Az
82 = 2Aam3 t Ayss ~ Aun
83 = Aum T A ; (20)

84 = Aun T Az~ 221133 ~ 44o33

g5 = Anas t Azs T A2 — Aun
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where g = CI.JH/ o - In geophysics and seismology, we take a coordinate system whose x-axis
points to the north, y-axis to the east and z-axis down. The axis of the coordinate system is often
not in the direction of the symmetrical axis of media. So in the seismic simulation, we have to ro-
tate coordinate system. First, let coordinate system rotates an angle ¢ around y-axis, then an angle
¢ around z-axis. The transformation matrix can be written as
cos(@)cos(¢)  — cos(@)sin(¢)  sing
A= sin( ¢) cos( ¢) 0 (21)
- sin{(@)cos(¢)  sin(@)sin(¢)  cos( )
In the new system, we assume that the phase normal has the following form
i = [sin(8) 0 cos(4)]1T (22)
By using (22), we can get phase normal corresponding to the old system as
ny cos{ @) cos( ¢)sin(g) + sin( @) cos(§)
= ATH = |n2|= |sin(¢)sin(8) (23)
n3 ~ sin{ @) cos(¢)sin( ) + cos(¢p)cos(4)
We can obtain the velocity of three types of plane waves by substituting (23) into (14}, (16) and

(18) . In the old system, the symmetrical axis is parallel to the z-axis, which means

e=1[0 0 1]7 (24)
Substituting {23) and (24) into (13), (15),and (17) and using the following equation
@ =Ad (25)

we can obtain the polarization vectors for three types of waves in the new coordinate system.
6 Models and Calculation Results

In this paper, we calculated two 2-D

Model 1 Model 2
models with the x-z section plane (Fig.1). The X X
positive directions of x-axis and z-axis point Eractured Material 1| ¥ Fractured Material 1
right and down, respectively. These models are eotropie Murorml 2 Treeed Mo
composed of one layer and a half space and dis- S35, 180) SQ28, 180)
cretized into 256 X 256 grids. The media in
these models can be taken as isotropic or trans- ] Y

versely isotropic materials with different SYym-  Fig.l Two models used for 2.5-D modeling of elastic

metrical axes. The free sufface condition is sim- waves in the study. The elastic constants of media

ply taken intoaccount by adding a number of ze- are shown in Table 1 and 2. The models are

discretized into 256 X 256 grids, and the spacing

ros to the stress components above the free sur- ) )
interval is taken as AX = AZ =0.025 km

face. It is believed that there extensively exist in the case of source which is situated at the grid

water feled microcracks in the crust and the up- (128,180), and 0.10 km in the case of plane waves
per mantle, which can be aligned under the ac- which propagate vertically to the free surface.

. R R . Th i 3 t al x-axis. The s trical
tion of stress field!”). These aligned micro- ¢ receivesys are pul along x-axis. T he symmetnes

axis of water felled fractured material in both two

cracks, which can result in the shear wave split- models s perpendicular to z-axis and with

ting in the actual recordings, are a common an angle of 45° 1o x-axis.



220 M ode B W OF R M2l

cause of anisotropy in the crust’®) . The elastic constants of transvesely isotropic media used in the
models are calculated from the corresponding isotropic media containing aligned micro fractures or
cracks by using Huderson’s (1981) second-order approximation theory. Two kinds of materials
with water filled fractures are used in the study and we take the same elastic constant values as
Lou (1995) . The fracture density (CD) of 0.10, (CD = Na®/ V, N being the number of cracks
of radius a in volume V) ,is used for the calculation of elastic constants of the fractured media.
Table 1 shows the parameters of isotropic media, and Tahle 2 presents the elastic constants of frgc-
tured media whose symmetricalaxis is parallel to the z-axis. Fig.2 shows the velocity variation of
three types of waves, longitudinal waves P, transverse waves S1 and S2. 51 and S2 have different
velotities in the same direction. This is the reason of shear wave splitting in the transversely
istropic media. In isotropic media, these three types of waves become purely longitudinal and pure-
ly transverse waves, corresponding to P-waves, SH-waves and SV-waves,

Fig. 3 shows the snapshots exited by X/kim
SH-type source at grid (128, 180) in model -
1, whose material in the upper layer is water

4 6

Zlkm

2/ km

felled fractured materia 1 with symmetrical
axis perpendicular to z-axis and with an angle
of 45" to x-axis and the lower half space is

the isotropic material 2, is filled in the lower
half space, at the time of 0. 4s, whenthe
waves just reach the interface, and 0. 8s. In

Z/km
Zlkm

the lower layer, only [J, component is not ze-
ro. After waves progagate into the upper lay-

er, the displacements of all three components

are not equale to zero. We can see clearly the 0 e
(a) {u G
‘ R i & A i
ol 5 §
J s, . R .
» s - o (MO . ... | o AR ...
z N Fig.3 The three-component displacement snapshots exited by
i % 4 a SH-type source st the grid (128, 180)in the model 1
) ‘//.>< : of 256 % 256 grids at tme of 0. 4 s, when the shear waves
41 5 A F just reach the inter surface, and 0.8 s. The positive
direction of x-axis points right and that of z-axis down.
&, The material in the upper layer is water filled fractured
< material 1 with symmetrical axis perpendicular
Y e ar T T to z-axis and with an angle of 457to x-axis,
Angle Angle The isotropic material 2 s filled in the lower hall space,
Fig.2 The curves of phase velocity varintuon with in which only U, s not equal to zero, When waves
respect to the angle between the phase normal propagate into the upper layer, shear waves split apart,
of waves and the symmetrical axis of the The wesk converted P-waves also can be seen on U, and
media, for water felled fractured material 1 (1] U, components, The absorbing condition is put at the

and for water filled fractured material 2(b) . Bekesi aRd at ki otk sl sk e Tnade).
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splitting shear waves in th U, component and weak converted P-waves in the U_-component. The
waves in the lower half space are purely shear waves' Fig.4 is the three displacement
seismograms recorded at the top of the model for this example. The two shear waves completely
separate in the U, and U, components. There are weak P-waves arriving before the two shear
waves on the U, component. We can also see the artificial reflections from absorbing boundaries.
The maximum time delay between fast and slow splitting shear waves is about 0.25 s,

Table 1 Isotropic parameters Table 2 Elastic constants for transversely

. V. V. e isotropic media

Material fkmes™?) /lkmes })  /lgrem™?) Fractured materill  A/GPa C/GPa F/GPa  L/GPa N/GPa
Material 1~ 4.00 2.20 2.50 Fractured material 1 37.290 35.500 10.480 9.130 11.830
Matenial 2 5.80 3.20 2.60 Fractured material 2 86.444 77.037 24,091 23.911 30.056

X/km

U, — Component
Ziem

£/ km

Z/m

Fig. 5 The three-component displacement suapshats exited
by a SH-type source at the grid (128, 180)in
the model 2 of 256 % 256 grids at time of 0.4 s and
0. 8s. The positive direction of x-axis points right

Fig. 4 The three-component displacement selsmograms
resulted from a SH-type source s grid( 128,
1B0)and recorded at the top of model 1.

The two split shear waves can be clearly

seen on the [/, and the [J, compoents.

There are weak converted P-waves arriving
before the shear waves on the U, and U,
components The maximum time delay between
the fast and slow shear waves is about 0,25 s.

The artificial reflections from the absorbing

boundaries can also be seen. In the caleulation,

AX = AZ = 0.025 km

and that of z-axis down. The materials in the upper
Inyer and in the lower half space are water filled
fractured material 1 and 2 with &5 symmetrical axis
perpendicular to z-nxis and having an angle of 45°

to x-axis, Both in the lower half space and in the
upper layer, the three components are coupled together
and the split shear waves can be seen. The wenk P-
waves are generated in the lower hall space even

for a SH-type source. The absorbing condition and
spacing interval is the same as in model 1.
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Like Fig. 3, Fig. 5 shows the snapshots exited also by SH-type force at grid (128, 180)in the
model 2. The materials in the upper layer and lower half space are fractured material 1 and 2. The
directions of symmetrical axes of both materials are perpendicular to the z-axis and with an angle
of 45° to the x-axis. The three-component seismograms recorded at the top of the model are shown
in Fig. 6. Compared with Fig. 3, Fig.S displays relatively complicated wave [ield. There also exist
weak P-waves in the lower half space even for a simple SH-type source. In these two models, the
space interval of grids is 25 meters, and the absorbing condition is put on the both sides and the
bottom. If we rotate the U, and the U, components in Fig.4 and Fig.6 into the directions
perpendicular and parallel to the symmetrical axis of the media, we can find that the direct fast
shear waves only appear on the components whose polarization is perpendicular to the symmetrical
axis.

Fig.7 shows the three displacement components (U, U, and U_) of Gaussian plane waves
Sy, which propagate vertically upward in the model 2 mentioned above. The spacing interval of

100 meters is used in this callculation. Receivers are also at the top of the mecdel. Absorbing

i

L, — Component

tin s

Fig.6 The three-component displacement seismograms Fig. 7 The three-component displavement seismograms
resulted from a SH-type source at grid (128, 180) resulted from a Gaussion type plane waves Sy,
and recarded at the top of model 2. The ww split which propagate vertienlly i the madel 2
shear waves can be clearly seen on the LS, snd mentioned in the Fig. 5, The reecivers are pul at the
the [/, components, There are weak direct and free surfoee. The absarbing condiion s anly
converted Poswnves arriving before the shear impesed ot the bottom af the madel. The
waves on the {J, and L/, components. The Z-components equal zero, which means that the
maximum time delay between the fast and slow polarization direction af plane shear waves
shear waves ix larger than that in Fig. 3. 8 is perpendicular to the zaxis. Actually, it is
The artificial reflections from the absorbing perpendicular to the symmetrical axis and the
boundaries can also be seen. Other parameters direction of wave propagation. The spacing interval,

are the same as those in model 1. AX = AZ = 0,10 km, is taken in the calculations.
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condition is only put at the bottom of the model. We can see that both U, and U, do not equal
zero,whereas U, equals zero, which means that the polarization direction of plane S; waves is
perpendicular to the z-axis. Actually, in this case, the polarization of S, is perpendicular to both the

symmetrical axis and the direction of wave propagation.
7 Conclusion and Discussion

We have developed a pseudo-spectral method to simulate wave propagation in transversely
isotropic heterogeneous media. This method can be used to calculate wave field not only exited by
a source but also caused by plane wave incidence in heterogeneous transversely isotropic media
with arbitrary directions of symmetricalaxes. The results of simulation show that this method is
able to calculate synthetic seismograms and wave-fields in the media with free surface and with
different materials such as isotropic or transversely isotropic media (water filled fractured media) .
This method is a very useful tool to help seismologists and geophysicists understand and interpret

the wave propagation in complicated media such as inhomogeneous anisotropic media.
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