当前流体包裹体研究和应用概况

池国祥 周义明 卢焕章. 当前流体包裹体研究和应用概况[J]. 岩石学报, 2003, 19(2): 201-212.
引用本文: 池国祥 周义明 卢焕章. 当前流体包裹体研究和应用概况[J]. 岩石学报, 2003, 19(2): 201-212.
Guoxiang CHI,I-Ming CHOU and Huan-zhang LU. An overview on current fluid-inclusion research and applications.[J]. Acta Petrologica Sinica, 2003, 19(2): 201-212.
Citation: Guoxiang CHI,I-Ming CHOU and Huan-zhang LU. An overview on current fluid-inclusion research and applications.[J]. Acta Petrologica Sinica, 2003, 19(2): 201-212.

当前流体包裹体研究和应用概况

  • 基金项目:

    国家自然科学基金,中国科协和中国科学院出版基金

An overview on current fluid-inclusion research and applications.

  • 本文概要总结近年来流体包裹体研究和应用的发展情况,包括流体包裹体岩相学,PVTX研究,分析技术和应用等四个方面。岩相学方面的主要进展反映在“流体包裹体组合”概念的提出和应用。在PVTX研究方面,人工包裹体和热液金刚石压腔的应用极大地促进了我们对地质流体体系相特征的了解。各种分析技术不断涌现或改进,其中以Laser-Raman对气体成分和LA-ICP—MS对溶质成分的分析尤其有用。流体包裹体的应用领域一直以矿床学研究为主,当前和今后一段时间仍将如此。但是,流体包裹体在地球科学的其它领域,尤其是石油地质以及岩浆和地球内部过程的研究等方面,正得到越来越多的应用。
  • 加载中
  • [1]

    [1]Anderson A J, Clark A H, Ma X-P,Palmer G R, Macarthur J D, Bodnar D J and Roedder E. 1989. Proton-induced X-ray andgamma-ray emission analysis of unopened fluid inclusions. Econ. Geol., 84: 924-939

    [2]

    [2]Anderson T and Neumann E-R. 2001. Fluid inclusions in mantle xenoliths. Lithos, 55:301-320

    [3]

    [3]Angus S, Amstrong B and Reuck K M. 1976. International thermodynamic table of fluidstate-3, carbon dioxide: Pergamon Press, 1-385

    [4]

    [4]Angus S, Amstrong B and Reuck K M. 1978. International thermodynamic table of fluidstate-5, methane: Pergamon Press, 1-251

    [5]

    [5]Angus S, Amstrong B and Reuck K M. 1979. International thermodynamic table of fluidstate-6, nitrogen: Pergamon Press, 1-385

    [6]

    [6]Aplin A C, Larter S R, Bigge M A, Macleod G, Swarbrick R E and Grunberger D. 2000. PVTX history of the North Sea\'s Judy oilfield. J. Geochem. Explor., 69: 641-644

    [7]

    [7]Aplin A C, Macleod G, Larter S R, Pedersen K S, Sorensen H and Booth T. 1999. Combined use of confocal laser scanning microscopy and PVT simulation for estimating thecomposition and physical properties of petroleum in fluid inclusions. Marine Petrol.Geol.,16: 97-110

    [8]

    [8]Bakker R J. 1999. Adaptation of the Bowers and Helgeson (1983) equation of state tothe H2O-CO2-CH4-N2-NaCl system. Chem. Geol., 154: 225-236

    [9]

    [9]Bakker R J and Diamond LW. 2000. Determination of the composition and molar volumeof H2O-CO2 fluid inclusions by microthermometry. Geochim. Cosmochim. Acta, 64: 1753-1764

    [10]

    [10]Bakker R J, Dubessy J and Cathelineau M. 1996. Improvements in clathrate modeling:I. The H2O-CO2 system with various salts. Geochim. Cosmochim. Acta, 60: 1657-1681

    [11]

    [11]Banks D A, Green R, Cliff R A and Yardley B W D. 2000. Chlorine isotopes in fluidinclusions: Determination of the origins of salinity in magmatic fluids. Geochim.Cosmochim. Acta, 64: 1785-1789

    [12]

    [12]Banks D A, Yardley B W D, Campbell A R and Jarvis K E. 1994. REE compositions ofan aqueous magmatic fluid: A fluid inclusion study from Capitan Pluton, New Mexico, USA.Chem. Geol., 113: 259-272

    [13]

    [13]Barclay S A, Worden R H, Parnell J, Hall D L and Sterner S M. 2000. Assessment offluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions: anexample from the Magnus oil field, North Sea. AAPG Bull., 84: 489-504

    [14]

    [14]Belkin H E, De Vivo B, Torok K and Webster J D. 1998. Pre-eruptive volatilecontent, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas(pre-AD1631). J. Volcanol. Geoth. Res., 82: 79-95

    [15]

    [15]Bischoff J L 1991. Densities of liquids and vapors in boiling NaCl-H2O solutions:a PVTX summary from 300° to 500℃. Am. J. Sci., 291: 309-338

    [16]

    [16]Bischoff J L, Rosenbauer R J and Pitzer K S. 1986. The system NaCl-H2O: relationsof vapor-liquid near the critical temperature of water and of vapor-liquid-halite from 300°to 500℃. Geochim. Cosmochim. Acta, 50: 1437-1444

    [17]

    [17]Bischoff J L and Pitzer K S. 1989. Liquid-vapor relationships for the systemNaCl-H2O: Summary of the P-T-x surface from 300° to 500℃. Am. J. Sci., 289: 217-248

    [18]

    [18]Bodnar R J. 1993. Revised equation and table for determining the freezing pointdepression of H2O-NaCl solutions. Geochim. Cosmochim. Acta, 57: 683-684

    [19]

    [19]Bodnar R J, Burnham C W and Sterner S M. 1985. Synthetic fluid inclusions innatural quartz. III. Determination of phase equilibrium properties in the system H2O-NaClto 1000℃ and 1500 bars. Geochim. Cosmochim. Acta, 49: 1861-1873

    [20]

    [20]Bodnar R J and Sterner S M. 1985. Synthetic fluid inclusions in natural quartz II.Application to PVT studies. Geochim. Cosmochim. Acta, 49: 1866-1859

    [21]

    [21]Bodnar R J, Sterner S M and Hall D L. 1988. Salty: a FORTRAN program to calculatecompositions of fluid inclusions in the system NaCl-KCl-H2O. Computers and Geosciences,15: 19-41

    [22]

    [22]Boiron M-C and Dubessy J. 1994. Determination of fluid inclusion compositions. In:De Vivo B and Frezzotti M L (eds.), Fluid Inclusions in Minerals: Methods andApplications. Short Course of the Working Group (IMA) "Fluid Inclusions inMinerals" (Pontignano-Siena, Sep. 1-4, 1994): 45-72

    [23]

    [23]Bottinga Y and Richet P. 1981. High pressure and temperature equation of state andcalculation of the thermodynamic properties of gaseous carbon dioxide. Am. J. Sci., 281:615-660

    [24]

    [24]Boullier A-M and Robert F. 1992. Paleoseismic events recorded in Archeangold-quartz vein networks, Val d\'Or, Abitibi, Quebec, Canada. J. Struct. Geol., 14:161-179

    [25]

    [25]Bower T S and Helgeson H C. 1983. Calculation of the thermodynamic and geochemicalconsequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologicsystems: Equation of state for H2O-CO2-NaCl at high pressures and temperatures. Geochim.Cosmochim. Acta, 47: 1247-1275

    [26]

    [26]Brodholt J P. 1998. Molecular dynamics simulations of aqueous NaCl solutions athigh pressures and temperatures. Chem. Geol., 151: 11-19

    [27]

    [27]Brown P E. 1989. FLINCOR: A microcomputer program for the reduction andinvestigation of fluid inclusion data. Am. Mineral., 74: 1390-1393

    [28]

    [28]Brown P E. 1998. Fluid inclusion modeling for hydrothermal systems. In: Richards JP and Larson P B (eds). Techniques in hydrothermal ore deposits geology. Rev. Econ. Geol.,10: 151-171

    [29]

    [29]Brown P E and Hagemann S G. 1994. MacFlincor: A computer program for fluidinclusion data reduction and manipulation. In: De Vivo B and Frezzotti M L (eds.), FluidInclusions in Minerals: Methods and Applications. Short Course of the Working Group (IMA)"Fluid Inclusions in Minerals" (Pontignano-Siena, Sep. 1-4, 1994): 231-250

    [30]

    [30]Brown P E and Lamb W M. 1986. Mixing of H2O-CO2 in fluid inclusions: Geobarometryand Archean gold deposits. Geochim. Cosmochim. Acta, 50: 847-852

    [31]

    [31]Brown P E and Lamb W M. 1989. P-V-T properties of fluids in the systemH2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies.Geochim. Cosmochim. Acta, 53: 1209-1221

    [32]

    [32]Burke E A. 2001. Raman microspectrometry of fluid inclusions. Lithos, 55: 139-158

    [33]

    [33]Burruss R C. 1981. Analysis of phase equilibria in C-O-H-S fluid inclusions. In:Hollister L S and Crawford M L (eds). Fluid Inclusions: Applications to Petrology.Mineral. Assoc. Can., Short Course Handbook, 6: 39-74

    [34]

    [34]Campbell A R and Robinson-Cook S. 1987. Infrared fluid inclusion microthermometryon coexisting wolframite and quartz. Econ. Geol., 82: 1640-1645

    [35]

    [35]Chi G, Bertrand R and Lavoie D. 2000. Regional-scale variation of characteristicsof hydrocarbon fluid inclusions and thermal conditions along the Paleozoic Laurentiancontinental margin in eastern Quebec, Canada. Bull. Can. Petrol. Geol., 48: 193-211

    [36]

    [36]Chou I-M. 1987. Phase relations in the system NaCl-KCl-H2O. III. Solubilities ofhalite in vapor-saturated liquids above 445℃ and redetermination of phase equilibriumproperties in the system NaCl-H2O to 1000℃ and 1500 bars. Geochim. Cosmochim. Acta, 51:1965-1975

    [37]

    [37]Chou I-M, Blank J G, Goncharov A F, Mao H K and Hemley R J. 1998. In situobservations of a high-pressure phase of H2O ice. Science, 281: 809-812

    [38]

    [38]Chou I-M, Sharma A, Burruss R C, Hemley R J, Goncharov A F, Stern L A and Kirby SH. 2001. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPapressure range. J. Phys. Chem., A 105: 4664-4668

    [39]

    [39]Chou I-M, Shen A H and Basset W A. 1994. Applications of the hydrothermaldiamond-anvil cell in fluid-inclusion research. In: De Vivo B and Frezzotti M L (eds.),Fluid Inclusions in Minerals: Methods and Applications. Short Course of the Working Group(IMA) "Fluid Inclusions in Minerals" (Pontignano-Siena, Sep. 1-4, 1994): 215-230

    [40]

    [40]Christensen J N, Halliday A N, Leigh K E, Randell R N and Kesler S E. 1995. Directdating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-typeZn-Pb deposit. Geochim. Cosmochim. Acta, 59: 5191-5197

    [41]

    [41]Crawford M L. 1981. Phase equilibrium in aqueous fluid inclusions. In: Hollister LS and Crawford M L (eds). Fluid Inclusions: Applications to Petrology. Mineral. Assoc.Can., Short Course Handbook, 6: 75-100

    [42]

    [42]Darling R S. 1991. An extended equation to calculate NaCl contents from finalclathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: Implications for P-Tisochore location. Geochim. Cosmochim. Acta, 55: 3869-3871

    [43]

    [43]Deloule E, Paillat O, Pichavant M and Scaillet B. 1995. Ion microprobedetermination of water in silicate glasses: methods and applications. Chem. Geol., 125:19-28

    [44]

    [44]Der Channer D M, Bray C J and Spooner E T C. 1999. Integrated cation-anionvolatile fluid inclusion analysis by gas and ion chromatography; methodology and examples.Chem. Geol., 154: 59-82

    [45]

    [45]De Vivo B and Frezzotti M L (eds.). 1994. Fluid inclusions in minerals: Methodsand applications. Short Course of the Working Group (IMA) "Fluid Inclusions inMinerals" (Pontignano-Siena, Sep. 1-4, 1994): 1-376

    [46]

    [46]Diamond L W. 1992. Stability of CO2 clathrate hydrate + CO2 liquid + CO2 vapor +aqueous KCl-NaCl solutions: Experimental determination and application to salinityestimates of fluid inclusions. Geochim. Cosmochim. Acta, 56: 273-280

    [47]

    [47]Diamond L W. 1994. Salinity of multivolatile fluid inclusions determined fromclathrate hydrate stability. Geochim. Cosmochim. Acta, 58: 19-41.

    [48]

    [48]Diamond L W. 2001. Review of the systematics of CO2-H2O fluid inclusions. Lithos,55: 69-99

    [49]

    [49]Duan Z H, Moller N and Weare J H. 1992a. An equation of state for the CH4-CO2-H2Osystem: I. Pure systems from 0 to 1000℃ and 0 to 1000 bar. Geochim. Cosmochim. Acta, 56:2605-2617

    [50]

    [50]Duan Z H, Moller N and Weare J H. 1992b. An equation of state for the CH4-CO2-H2Osystem: II. Mixtures from 50 to 1000℃ and 0 to 1000 bar. Geochim. Cosmochim. Acta, 56:2619-2631

    [51]

    [51]Duan Z, Moller N, Greenberg J and Weare J H. 1992c. The prediction of methanesolubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600bar. Geochim. Cosmochim. Acta, 56:1451-1460

    [52]

    [52]Duan Z, Moller N and Weare J H. 1995. Equation of state for the NaCl-H2O-CO2system: prediction of phase equilibria and volumetric properties. Geochim. Cosmochim.Acta, 59: 2869-2882

    [53]

    [53]Duan Z H, Moller N and Weare J H. 2000. Accurate prediction of the thermodynamicproperties of fluids in the system H2O-CO2-CH4-N2 up to 2000 K and 100 kbar from acorresponding states/one fluid equation of state. Geochim. Cosmochim. Acta, 64: 1069-1075

    [54]

    [54]Dubessy J. 1994. Single component systems: phase diagrams and their application tofluid inclusions. In: De Vivo B and Frezzotti M L (eds.), Fluid Inclusions in Minerals:Methods and Applications. Short Course of the Working Group (IMA) "Fluid Inclusionsin Minerals" (Pontignano-Siena, Sep. 1-4, 1994): 95-115

    [55]

    [55]Dubessy J, Buschaert S, Lamb W, Pironon J and Thiery R. 2001. Methane-bearingaqueous fluid inclusions: raman analysis, thermodynamic modeling and application topetroleum basins. Chem. Geol., 173: 193-205

    [56]

    [56]Dubessy J and Thiery R. 1994. Equations of state for modeling phase transitions inthe system CO2-CH4-N2: applied to microthermometry of fluid inclusions. In: De Vivo B andFrezzotti M L (eds.), Fluid Inclusions in Minerals: Methods and Applications. Short Courseof the Working Group (IMA) "Fluid Inclusions in Minerals" (Pontignano-Siena,Sep. 1-4, 1994): 159-190

    [57]

    [57]Dubessy J, Thiery R and Canals M. 1992. Modeling of phase equilibrium involvingmixed gas clathrates: application to the determination of molar volume of the vapor phaseand salinity of the aqueous solution in fluid inclusions. Eur. J. Mineral., 4: 873-884

    [58]

    [58]Dubois M and Marignac C. 1997. The H2O-NaCl-MgCl2 ternary phase diagram withspecial application to fluid inclusion studies. Econ. Geol., 92: 114-119

    [59]

    [59]Fabre C, Boiron M C, Dubessy J and Moissette A. 1999. Determination of ions inindividual fluid inclusions by laser ablation optical emission spectroscopy: developmentand applications to natural fluid inclusions. J. Anal. Atom. Spectr.,14: 913-922

    [60]

    [60]Frantz J D, Popp R K and Hoering T C. 1992. The compositional limits of fluidimmiscibility in the system H2O-NaCl-CO2 as determined with the use of synthetic fluidinclusions in conjunction with mass spectrometry. Chem. Geol. 98: 237-255

  • 加载中
计量
  • 文章访问数:  13072
  • PDF下载数:  12669
  • 施引文献:  0
出版历程
刊出日期:  2003-05-31

目录