幕阜山地区花岗岩-伟晶岩系统中石榴石的组成特征及其对岩浆演化和稀有金属矿化的指示

姜鹏飞, 李鹏, 李建康, 何雪梅, 施光海, 黄小强, 林跃, 尹近. 2023. 幕阜山地区花岗岩-伟晶岩系统中石榴石的组成特征及其对岩浆演化和稀有金属矿化的指示. 岩石学报, 39(7): 2025-2044. doi: 10.18654/1000-0569/2023.07.09
引用本文: 姜鹏飞, 李鹏, 李建康, 何雪梅, 施光海, 黄小强, 林跃, 尹近. 2023. 幕阜山地区花岗岩-伟晶岩系统中石榴石的组成特征及其对岩浆演化和稀有金属矿化的指示. 岩石学报, 39(7): 2025-2044. doi: 10.18654/1000-0569/2023.07.09
JIANG PengFei, LI Peng, LI JianKang, HE XueMei, Shi GuangHai, HUANG XiaoQiang, LIN Yue, YIN Jin. 2023. Compositional characteristics of garnet in granite-pegmatite system in Mufushan area and its implications for magmatic evolution and rare metal mineralization. Acta Petrologica Sinica, 39(7): 2025-2044. doi: 10.18654/1000-0569/2023.07.09
Citation: JIANG PengFei, LI Peng, LI JianKang, HE XueMei, Shi GuangHai, HUANG XiaoQiang, LIN Yue, YIN Jin. 2023. Compositional characteristics of garnet in granite-pegmatite system in Mufushan area and its implications for magmatic evolution and rare metal mineralization. Acta Petrologica Sinica, 39(7): 2025-2044. doi: 10.18654/1000-0569/2023.07.09

幕阜山地区花岗岩-伟晶岩系统中石榴石的组成特征及其对岩浆演化和稀有金属矿化的指示

  • 基金项目:

    本文受国家重点研发计划项目(2019YFC06050202、2019YFC06505203)、国家自然科学基金项目(42002109、41872096)和中国地质调查项目(DD20230034、DD20230289)联合资助

详细信息
    作者简介:

    姜鹏飞, 男, 1996年生, 博士生, 地质学专业, E-mail: JPF19960402@163.com

    通讯作者: 李鹏, 男, 1988年生, 博士, 副研究员, 主要从事稀有金属矿床研究, E-mail: Lipeng031111@163.com
  • 中图分类号: P578.947;P618.7

Compositional characteristics of garnet in granite-pegmatite system in Mufushan area and its implications for magmatic evolution and rare metal mineralization

More Information
  • 幕阜山地区是我国重要的伟晶岩型稀有金属矿集区, 区内大规模的岩浆作用形成了众多稀有金属矿床。为了研究幕阜山地区花岗岩-伟晶岩岩浆分异演化过程, 建立岩浆演化各阶段和稀有金属成矿的矿物学指标, 本文对区内各类型花岗岩和伟晶岩中的石榴石进行了电子探针和LA-ICP-MS原位微区主、微量元素研究。结果表明, 幕阜山地区花岗岩-伟晶岩系统中石榴石均为岩浆成因, 属于铁铝榴石-锰铝榴石固溶体系列。区内花岗岩-伟晶岩岩浆呈连续分异演化的特征, 早期花岗岩浆已开始富集稀有金属元素, 且在岩浆多阶段分异演化过程中, 稀有金属元素逐渐富集, 稀有金属矿化强度逐渐增大, 显示出幕阜山地区具有极好的稀有金属成矿潜力。在岩浆演化过程中, 石榴石逐渐富Mn和HREE。花岗岩阶段中, 受黑云母结晶的影响石榴石Mn含量演化趋势与岩浆演化程度相反; 伟晶岩晚阶段的石榴石HREE含量"断崖式"下降的成分特征, 标志着成矿体系由岩浆阶段向富流体阶段转变。伟晶岩阶段中石榴石Mn含量与岩浆演化呈正相关, 高Mn含量石榴石(MnO>27.1%)是幕阜山地区高分异矿化伟晶岩的标志, 也是伟晶岩Li矿化的有效矿物学标志。此外, 低HREE含量(< 66.3×10-6)且高稀碱总量(大于572×10-6)的石榴石也可作为晚期高分异矿化伟晶岩的标志。

  • 加载中
  • 图 1 

    幕阜山矿集区大地构造位置(a)和幕阜山稀有金属矿集区地质矿产简图(b)(据李鹏等,2017修改)

    Figure 1. 

    The tectonic location of Mufushan rare metal ore concentration area (a) and geological and mineral resources map of Mufushan rare metal ore concentrated area (b) (modified after Li et al., 2017)

    图 2 

    湖北通城县麦埚-黄泥洞伟晶岩密集区地质简图(据姜鹏飞等, 2021修改)

    Figure 2. 

    Geological map of Maiguo-Huangnidong pegmatite concentrated area in Tongcheng County, Hubei Province (modified after Jiang et al., 2021)

    图 3 

    湖北通城县麦埚伟晶岩密集区内花岗岩与伟晶岩的过渡接触关系(a)及湖南平江县仁里矿床内二云母花岗岩中的似伟晶岩相(b)

    Figure 3. 

    The transitional contact relationship between granite and pegmatite in Maiguo pegmatite concentrated area, Tongcheng County, Hubei Province (a) and pegmatoid in two-mica granite of Renli deposit, Pingjiang County, Hunan Province (b)

    图 4 

    湖南省平江县长庆伟晶岩密集区地质简图(据许畅等,2019修改)

    Figure 4. 

    Geological map of Changqing pegmatite concentrated area in Pingjiang County, Hunan Province (modified after Xu et al., 2019)

    图 5 

    湖南平江县仁里矿床地质简图(a)及地质剖面图(b)(据李鹏等,2021修改)

    Figure 5. 

    Geologic sketch map (a) and geologic section (b) of Renli deposit in Pingjiang County, Hunan Province (modified after Li et al., 2021)

    图 6 

    幕阜山地区典型伟晶岩矿区中花岗岩和伟晶岩样品的手标本及野外照片

    Figure 6. 

    Hand specimen and field photos of granite and pegmatite samples from typical pegmatite mining area

    图 7 

    幕阜山地区各类型花岗岩和伟晶岩中石榴石的背散射图像

    Figure 7. 

    BSE images of garnets from various types of granites and pegmatites in Mufushan area

    图 8 

    幕阜山地区花岗岩和伟晶岩中石榴石的三角分类图解

    Figure 8. 

    Triangle classification diagram of garnet from granites and pegmatites in Mufushan area

    图 9 

    幕阜山地区花岗岩和伟晶岩中石榴石的Fe-Mn(a)和Ca-Mg(b)含量图解

    Figure 9. 

    Diagrams of Fe vs. Mn (a) and Ca vs. Mg (b) values of garnets from granites and pegmatites in Mufushan area

    图 10 

    幕阜山地区各类型花岗岩和伟晶岩中石榴石Fe-Mn含量变化的特征

    Figure 10. 

    Variation of Fe vs. Mn content in garnets from various types of granites and pegmatites in Mufushan area

    图 11 

    幕阜山地区花岗岩和伟晶岩中石榴石的原始地幔标准化微量元素蛛网图和球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989)

    Figure 11. 

    Primitive mantle-normalized trace element patterns and chondrite-normalized REE patterns of garnets from granites and pegmatites in Mufushan area (normalized values from Sun and McDonough, 1989)

    图 12 

    幕阜山地区花岗岩和伟晶岩中石榴石微量元素含量变化的特征

    Figure 12. 

    Variation of trace element content in garnets from various types granites and pegmatites in Mufushan area

    图 13 

    石榴石的CaO-MnO成分图解(据Javanmard et al., 2018修改)

    Figure 13. 

    CaO-MnO composition diagram of garnets (modified after Javanmard et al., 2018)

    图 14 

    幕阜山地区花岗岩和伟晶岩中石榴石Mn/(Mn+Fe)-Mg图解

    Figure 14. 

    Mn/(Mn+Fe) vs. Mg diagram of garnets from granites and pegmatites in Mufushan area

    图 15 

    幕阜山地区花岗岩和伟晶岩中石榴石的(Gd/Yb)N-Y/Yb(a)和HREE-Y(b)图解

    Figure 15. 

    (Gd/Yb)N vs. Y/Yb (a) and HREE vs. Y(b) diagrams of garnets from granites and pegmatites in Mufushan area

    图 16 

    幕阜山地区花岗岩-伟晶岩岩浆演化模式简图

    Figure 16. 

    Sketch diagram of magmatic evolution of granite-pegmatite in Mufushan area

    图 17 

    不同稀有金属矿化类型伟晶岩中石榴石的FeO-MnO成分图解

    Figure 17. 

    Diagram of FeO vs. MnO composition of garnets in pegmatites of different rare metal mineralization types

    图 18 

    幕阜山地区花岗岩和伟晶岩中石榴石Be含量(a)和Li-Be-Nb-Ta总量-稀碱总量(b)图解

    Figure 18. 

    Diagrams of Be content of garnets (a) and Li-Be-Nb-Ta content vs. dilute alkali content of garnets (b) in granites and pegmatites in Mufushan area

    表 1 

    幕阜山地区各类型花岗岩和伟晶岩样品特征及石榴石产状

    Table 1. 

    Characteristics of granite and pegmatite samples and the occurrence characteristics of garnets in different stages of magmatic evolution in Mufushan area

    演化阶段 岩性 采样位置及样品号 岩石样品特征 石榴石产状特征
    黑云母花岗岩 似斑状中粒黑云母二长花岗岩(图 6a) 长庆伟晶岩密集区CQG 灰黑色,斑晶为钾长石(10%)和斜长石(13%);基质为花岗结构,矿物组成有钾长石(28%)、斜长石(12%)、黑云母(10%)、石英(25%)、白云母(2%),副矿物有锆石及少量的石榴石等 石榴石很少,石榴石粒度较为均一,在0.5mm左右,部分石榴石晶形完好的常呈菱形十二面体和四角三八面体的聚形
    二云母花岗岩 中粒二云母花二长岗岩(图 3b) 仁里矿床RLG 灰黑色,主要矿物有钾长石(32%)、斜长石(30%)、石英(25%)、黑云母(7%)、白云母(6%),副矿物有石榴石、磷灰石等 石榴石较少,粒径在0.8mm左右,破裂较为严重,与长石、石英共生,且裂隙内部还充填了后期生成的石英(图 7a)
    白云母花岗岩 中粒白云母二长花岗岩(图 6b) 麦埚伟晶岩密集区HS 浅灰白色,主要矿物有钾长石(38%)、斜长石(27%)、石英(25%)、白云母(10%),副矿物有石榴石、磷灰石、锆石、绿柱石等 石榴石呈暗红色(图 6b),石榴石的数量相较于黑云母和二云母花岗岩明显增多,石榴石粒径在0.8mm左右,零散分布于造岩矿物之间,裂隙发育且裂隙内部充填了部分后期生成的白云母(图 7b)
    微斜长石伟晶岩 中粗粒微斜长石伟晶岩(图 6c) 黄泥洞伟晶岩密集区 三岔埚微斜长石伟晶岩脉SCGG 灰白色,主要矿物有微斜长石(50%)、石英(25%)、白云母(10%)、钠长石(15%),副矿物有石榴石、锆石等 石榴石较为完整,零散的分布于白云母和其他造岩矿物之间,部分空隙被后期生成的石英充填(图 7c)
    微斜长石-钠长石伟晶岩 粗粒微斜长石-钠长石伟晶岩(图 6d) 1号伟晶岩脉含石榴石二长石伟晶岩带HNDS 灰白色,主要矿物有微斜长石(32%)、石英(20%)、白云母(13%)、钠长石(35%),副矿物有石榴石、锆石等 石榴石呈黑红色,颗粒粗大(图 7d),部分呈团块状集合体,部分自形程度较好,呈菱形十二面体(图 6d)
    钠长石伟晶岩 细粒含石榴石钠长石伟晶岩(图 6e) 仁里矿床 5号伟晶岩脉含石榴石钠长石伟晶岩带RL5M 灰白色,主要矿物有钠长石(58%)、石英(20%);少量片状白云母(8%),少量微斜长石(9%)以及石榴石(5%),副矿物有磷灰石、锆石、铌钽铁矿等 石榴石数量相对较多,呈暗红色(图 6e),粒径在0.5mm左右,颗粒相对完整自形程度较好,部分石榴石显示交代残余结构(图 7e)
    钠长石-锂辉石伟晶岩 粗粒钠长石-锂辉石伟晶岩(图 6f) 206号钠长石-锂辉石伟晶岩脉YX 灰白色,主要矿物有钠长石(32%)、石英(25%)、白云母(8%)、锂辉石(35%),锂辉石颗粒较为粗大,呈自形粒柱状或板状,颜色呈黄绿色或肉红色,副矿物有石榴石,铌钽铁矿等 石榴石较少,粒径在0.6mm左右,裂隙较为发育,分布于白云母、长石等造岩矿物之间(图 7f)
    下载: 导出CSV
  •  

    Badanina EV, Veksler IV, Thomas R, Syritso LF and Trumbull RB. 2004. Magmatic evolution of Li-F, rare-metal granites: A case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chemical Geology, 210(1-4): 113-133 doi: 10.1016/j.chemgeo.2004.06.006

     

    Baldwin JR and von Knorring O. 1983. Compositional range of Mn-garnet in zoned granitic pegmatites. The Canadian Mineralogist, 21(4): 683-688

     

    Černý P, Meintzer RE and Anderson AJ. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23(3): 381-421

     

    Černý P. 1991. Rare-element granitic pegmatites. Part Ⅰ: Anatomy and internal evolution of pegmatitic deposits. Geoscience Canada, 18(2): 49-67

     

    Chen H, Feng M, Kang ZQ, Fu W and Feng ZH. 2020. Characteristics of garnets in pegmatites of Mao'antang, Northeast Guangxi, and their implications for magmatic evolution. Earth Science, 45(6): 2059-2076 (in Chinese with English abstract)

     

    Cuney M, Marignac C and Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766-1794 doi: 10.2113/gsecongeo.87.7.1766

     

    Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH, Saavedra J and Fanning CM. 2007. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos, 95(3-4): 177-207 doi: 10.1016/j.lithos.2006.07.010

     

    Feenstra A and Engi M. 1998. An experimental study of the Fe-Mn exchange between garnet and ilmenite. Contributions to Mineralogy and Petrology, 131(4): 379-392 doi: 10.1007/s004100050399

     

    Fu JG, Li GM, Dong SL, Zhang H, Guo WK, Zhang LK, Liang W, Jiao YJ and Ling C. 2022. Mineral chemistry of garnet and its implication for the magmatic-hydrothermal transition in rare metal leucogranites in the Lalong dome, southern Tibet, China. Sedimentary Geology and Tethyan Geology, 42(2): 288-299 (in Chinese with English abstract)

     

    Gadas P, Novák M, Talla D and Galiová MV. 2013. Compositional evolution of grossular garnet from leucotonalitic pegmatite at Rudanad Moravou, Czech Republic: A complex EMPA, LA-ICP-MS, IR and CL study. Mineralogy and Petrology, 107(2): 311-326 doi: 10.1007/s00710-012-0232-8

     

    Gao LE, Zeng LS, Shi WG, Chen ZY, Hu MY and Sun DY. 2012. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis. Acta Petrologica Sinica, 28(9): 2963-2980 (in Chinese with English abstract)

     

    Gao LE, Zeng LS, Wang L, Hou KJ, Gao JH and Shang Z. 2016. Timing of different crustal partial melting in the Himalayan orogenic belt and its tectonic implications. Acta Geologica Sinica, 90 (11): 3039-3059 (in Chinese with English abstract)

     

    Gaspar M, Knaack C, Meinert LD and Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205 doi: 10.1016/j.gca.2007.09.033

     

    Geiger CA. 2013. Garnet: A key phase in nature, the laboratory, and technology. Elements, 9(6): 447-452 doi: 10.2113/gselements.9.6.447

     

    Grant JA and Weiblen PW. 1971. Retrograde zoning in garnet near the second sillimanite isograd. American Journal of Science, 270(4): 281-296 doi: 10.2475/ajs.270.4.281

     

    Green TH. 1977. Garnet in silicic liquids and its possible use as a P-T indicator. Contributions to Mineralogy and Petrology, 65(1): 59-67 doi: 10.1007/BF00373571

     

    Green TH. 1992. Experimental phase equilibrium studies of garnet-bearing Ⅰ-type volcanics and high-level intrusives from Northland, New Zealand. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 429-438 doi: 10.1017/S0263593300008105

     

    Guo CL, Zeng LS, Gao LE, Su HZ, Ma XH and Yin B. 2017. Highly fractionated grantitic minerals and whole-rock geochemistry prospecting markers in Hetian, Fujian Province. Acta Geologica Sinica, 91(8): 1796-1817 (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2017.08.010

     

    Harangi SZ, Downes H, Kósa L, Szabó CS, Thirlwall MF, Mason PRD and Mattey D. 2001. Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42(10): 1813-1843 doi: 10.1093/petrology/42.10.1813

     

    Harrison TN. 1988. Magmatic garnets in the Cairngorm granite, Scotland. Mineralogical Magazine, 52(368): 659-667 doi: 10.1180/minmag.1988.052.368.10

     

    Hernández-Filiberto L, Roda-Robles E, Simmons WB and Karen LW. 2021. Garnet as indicator of pegmatite evolution: The case study of pegmatites from the Oxford pegmatite field (Maine, USA). Minerals, 11(8): 802 doi: 10.3390/min11080802

     

    Javanmard SR, Tahmasbi Z, Ding X, Khalaji AA and Hetherington CJ. 2018. Geochemistry of garnet in pegmatites from the Boroujerd intrusive complex, Sanandaj-Sirjan Zone, western Iran: Implications for the origin of pegmatite melts. Mineralogy and Petrology, 112(6): 837-856 doi: 10.1007/s00710-018-0591-x

     

    Ji WB, Lin W, Faure M, Chen Y, Chu Y and Xue ZH. 2017. Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic implications for the Paleo-Pacific subduction. Journal of Asian Earth Sciences, 141: 174-193 doi: 10.1016/j.jseaes.2016.07.005

     

    Jiang PF, Li P, Li JK, He XM and Leng SL. 2021. Zircon U-Pb geochronology and Hf isotopic composition of Be-pegmatites in Maiguo deposit, eastern Mufushan, and their geological implications. Mineral Deposits, 40(4): 723-739 (in Chinese with English abstract)

     

    Kleck WD and Foord EE. 1999. The chemistry, mineralogy and petrology of the George Ashley Block pegmatite body. American Mineralogist, 84(5-6): 695-707 doi: 10.2138/am-1999-5-601

     

    Li JK, Liu XF and Wang DH. 2014. The metallogenetic regularity of lithium deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract)

     

    Li JK, Li P, Wang DH and Li XJ. 2019. A review of niobium and tantalum metallogenic regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese with English abstract) doi: 10.1360/N972018-00933

     

    Li JK, Li P, Yan QG, Liu Q and Xiong X. 2021. History of granitic pegmatite research in China. Acta Geologica Sinica, 95(10): 2996-3016 (in Chinese with English abstract)

     

    Li LG, Wang LX, Tian Y, Ma CQ and Zhou FC. 2019. Petrogenesis and rare-metal mineralization of the Mufushan granitic pegmatite, South China: Insights from in situ mineral analysis. Earth Science, 44(7): 2532-2560 (in Chinese with English abstract)

     

    Li P. 2017. Magmatic activities and metallogenic regularity of rare metals of Mufushan area. Post-Doctor Research Report. Beijing: Chinese Academy of Geological Sciences (in Chinese with English abstract)

     

    Li P, Li JK, Pei RF, Leng SL, Zhang X, Zhou FC and Li SM. 2017. Multistage magmatic evolution and Cretaceous peak metallogenic epochs of Mufushan composite granite mass: Constrains from geochronological evidence. Earth Science, 42(10): 1684-1696 (in Chinese with English abstract)

     

    Li P, Li JK, Liu X, Li C, Huang ZB and Zhou FC. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China. Ore Geology Reviews, 116: 103237 doi: 10.1016/j.oregeorev.2019.103237

     

    Li P, Li JK, Chen ZY, Liu X, Huang ZB and Zhou FC. 2021. Compositional evolution of the muscovite of Renli pegmatite-type rare-metal deposit, Northeast Hunan, China: Implications for its petrogenesis and mineralization potential. Ore Geology Reviews, 138: 104380 doi: 10.1016/j.oregeorev.2021.104380

     

    Li P, Zhang LP, Li JK, Huang ZB, Zhou FC and Jiang PF. 2021. Metallogenic regularity of rare metal deposits in Mufushan area of Central China, and its application in ore prospecting. Mineral Deposits, 40(4): 819-841 (in Chinese with English abstract)

     

    Li SR, Xu H and Shen JF. 2008. Crystallography and Mineralogy. Beijing: Geological Publishing House, 1-346 (in Chinese)

     

    Liu X, Zhou FC, Huang ZB, Li JK, Zhou HX, Xiao GQ, Bao YH, Li P, Tan LM, Shi WK, Su JN, Huang XQ, Chen H, Wang XM, Lin Y and Liu XM. 2018. Discovery of Renli superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang, Hunan Province and its significances. Geotectonica et Metallogenia, 42(2): 235-243 (in Chinese with English abstract)

     

    Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 doi: 10.1007/s11434-010-3052-4

     

    London D. 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist, 71(3-4): 376-395

     

    London D, Evensen JM, Fritz E, Icenhower JP, Morgan GB VI and Wolf MB. 2001. Enrichment and accommodation of manganese in granite-pegmatite systems. 11th Annual Goldschmidt Conference Abstract 3369, Lunar Planetary Institute Contribution 1088. Houston: Lunar Planetary Institute, 3369

     

    London D. 2008. Pegmatites. Mineralogical Association of Canada, Special Publications, 10: 1-347

     

    Lu HZ, Wang ZG and Li YS. 1996. Magma/fluid transition and genesis of pegmatite dike No. 3 at Altay, Xinjiang. Acta Mineralogica Sinica, 16(1): 1-7 (in Chinese with English abstract)

     

    Lü ZH, Zhang H and Zhao JY. 2017. Magmatic-hydrothermal evolution and Li mineralization in pegmatite: Constraints from composition of garnet from Kelumute No. 112 pegmatite, Xinjiang, China. Acta Mineralogica Sinica, 37(3): 247-257 (in Chinese with English abstract)

     

    Maner JL IV, London D and Icenhower JP. 2019. Enrichment of manganese to spessartine saturation in granite-pegmatite systems. American Mineralogist, 104(11): 1625-1637 doi: 10.2138/am-2019-6938

     

    Manning DAC. 1983. Chemical variation in garnets from aplites and pegmatites, Peninsular Thailand. Mineralogical Magazine, 47(344): 353-358 doi: 10.1180/minmag.1983.047.344.10

     

    Miller CF and Stoddard EF. 1981. The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman-Piute Range, California. The Journal of Geology, 89(2): 233-246 doi: 10.1086/628582

     

    Morgan GB VI and London D. 1999. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contributions to Mineralogy and Petrology, 136(4): 310-330 doi: 10.1007/s004100050541

     

    Müller A, Kearsley A, Spratt J and Seltmann R. 2012. Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway. The Canadian Mineralogist, 50(4): 1095-1115 doi: 10.3749/canmin.50.4.1095

     

    Raimbault L, Cuney M, Azencott C, Duthou JL and Joron JL. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90(3): 548-576 doi: 10.2113/gsecongeo.90.3.548

     

    Rao C. 2009. Mineralogy of the Nanping No. 31 granitic pegmatite, Fujian: Record of magmatic-hydrothermal evolution. Ph. D. Dissertation. Nanjing: Nanjing University (in Chinese with English abstract)

     

    René M and Stelling J. 2007. Garnet-bearing granite from the Třebíč pluton, Bohemian Massif (Czech Republic). Mineralogy and Petrology, 91(1): 55-69

     

    Samadi R, Miller NR, Mirnejad H, Harris C, Kawabata H and Shirdashtzadeh N. 2014. Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: A major, trace element and oxygen isotope approach. Lithos, 208-209: 378-392 doi: 10.1016/j.lithos.2014.08.023

     

    Sami M, Ntaflos T, Mohamed HA, Farahat ES, Hauzenberger C, Mahdy NM, Abdelfadil KM and Fathy D. 2020. Origin and petrogenetic implications of spessartine garnet in highly-fractionated granite from the central eastern desert of Egypt. Acta Geologica Sinica, 94(3): 763-776 doi: 10.1111/1755-6724.13883

     

    Selway JB, Breaks FW and Tindle AG. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1-30 doi: 10.2113/gsemg.14.1-4.1

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds. ). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

     

    Stevens G, Villaros A and Moyen JF. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 35(1): 9-12 doi: 10.1130/G22959A.1

     

    Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Förster HJ, Heinrich W and Davidson P. 2006. The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals. Lithos, 91(1-4): 137-149 doi: 10.1016/j.lithos.2006.03.013

     

    Thöni M, Miller C, Zanetti A, Habler G and Goessler W. 2008. Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chemical Geology, 254(3-4): 216-237 doi: 10.1016/j.chemgeo.2008.03.008

     

    Uher P, Janák M, Konečný P and Vrabec M. 2014. Rare-element granitic pegmatite of Miocene age emplaced in UHP rocks from Visole, Pohorje Mountains (Eastern Alps, Slovenia): Accessory minerals, monazite and uraninite chemical dating. Geologica Carpathica, 65(2): 131-146 doi: 10.2478/geoca-2014-0009

     

    Wang P, Pan ZL and Wen LB. 1984. Systematic Mineralogy. Beijing: Geological Publishing House, 1-666 (in Chinese)

     

    Wang RC, Hu H, Zhang AC, Xu SJ and Wang DZ. 2003. Yttrium zoning in garnet from the Xihuashan granitic complex and its petrological implications. Chinese Science Bulletin, 48(15): 1611-1615 doi: 10.1007/BF03183970

     

    Whitworth MP. 1992. Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland. Mineralogical Magazine, 56(382): 75-83 doi: 10.1180/minmag.1992.056.382.10

     

    Xu C, Li JK, Shi GH, Li P, Liu X and Zhang LP. 2019. Zircon U-Pb age and Hf isotopic composition of porphyaceous biotite granite in southern margin of Mufushan and their geological implications. Mineral Deposits, 38(5): 1053-1068 (in Chinese with English abstract)

     

    Xiong YQ, Jiang SY, Wen CH and Yu HY. 2020. Granite-pegmatite connection and mineralization age of the giant Renli Ta-Nb deposit in South China: Constraints from U-Th-Pb geochronology of coltan, monazite, and zircon. Lithos, 358-359: 105422 doi: 10.1016/j.lithos.2020.105422

     

    Yan QG, Li JK, Li C, Chen ZY and Xiong X. 2022. The geochemical characteristics and their geological significance of apatite from the Zhawulong-Caolong granitic pegmatite-hosted rare metal deposit in Sichuan and Qinghai provinces, West China. Acta Petrologica Sinica, 38(2): 341-355 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.02.03

     

    Yang JH, Peng JT, Hu RZ, Bi XW, Zhao JH, Fu YZ and Shen NP. 2013. Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China. Lithos, 177: 79-90 doi: 10.1016/j.lithos.2013.06.008

     

    Yu JH, Zhao L and Zhou X. 2004. Mineralogical characteristics and origin of garnet-bearing Ⅰ-type granitoids in southeastern Fujian Province. Geological Journal of China Universities, 10(3): 364-377 (in Chinese with English abstract)

     

    Zeng LS, Zhao LH, Gao LE, Hou KJ and Wang Q. 2019. Magmatic garnet from Mid-Miocene co-genetic high Sr/Y granite and leucogranite from the Himalayan orogenic belt, southern Tibet. Acta Petrologica Sinica, 35(6): 1599-1626 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.06.01

     

    Zhang HF and Gao S. 2012. Geochemistry. Beijing: Geological Publishing House, 1-410 (in Chinese)

     

    Zhang LP, Li P, Huang ZB, Liu X, Li JK, Huang XQ, Su JN, Zhou FC, Zeng L, Chen H and Jiang PF. 2021. Geochemical characteristics and metallogenic age of the No. 206 spodumene pegmatite vein in Renli rare metal ore field, Hunan Province. Mineral Deposits, 40(6) 1267-1284 (in Chinese with English abstract)

     

    Zhang RB. 1985. Discovery of petalite in Hubei Lithium Pegmatite. Chinese Science Bulletin, 30(11): 852-854 (in Chinese) doi: 10.1360/csb1985-30-11-852

     

    Zhao SR. 2011. Crystallography and Mineralogy. 2nd Edition. Beijing: Higher Education Press, 1-248 (in Chinese)

     

    Zhou FC, Liu X, Li JK, Huang ZB, Xiao GQ, Li P, Zhou HX, Shi WK, Tan LM, Su JN, Chen H and Wang XM. 2019. Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan Province, China. Geotectonica et Metallogenia, 43(1): 77-91 (in Chinese with English abstract)

     

    Zhu JC, Wu CN, Liu CS, Li FC, Huang XL and Zhou DS. 2000. Magmatic-hydrothermal evolution and genesis of Koktokay No. 3 rare metal pegmatite dyke, Altai, China. Geological Journal of China Universities, 6(1): 40-52 (in Chinese with English abstract)

     

    陈欢, 冯梦, 康志强, 付伟, 冯佐海. 2020. 桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义. 地球科学, 45(6): 2059-2076 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006020.htm

     

    付建刚, 李光明, 董随亮, 张海, 郭伟康, 张林奎, 梁维, 焦彦杰, 凌晨. 2022. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆-热液过程的指示. 沉积与特提斯地质, 42(2): 288-299 https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202202009.htm

     

    高利娥, 曾令森, 石卫刚, 陈振宇, 胡明月, 孙东阳. 2012. 喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义. 岩石学报, 28(9): 2963-2980 http://www.ysxb.ac.cn/article/id/aps_20120923

     

    高利娥, 曾令森, 王莉, 侯可军, 高家昊, 尚振. 2016. 喜马拉雅碰撞造山带不同类型部分熔融作用的时限及其构造动力学意义. 地质学报, 90 (11): 3039-3059 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201611006.htm

     

    郭春丽, 曾令森, 高利娥, 苏红中, 马星华, 尹冰. 2017. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究. 地质学报, 91(8): 1796-1817 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201708010.htm

     

    姜鹏飞, 李鹏, 李建康, 何雪梅, 冷双梁. 2021. 幕阜山东部麦埚铍矿床伟晶岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 40(4): 723-739 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202104005.htm

     

    李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201506003.htm

     

    李建康, 李鹏, 王登红, 李兴杰. 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm

     

    李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势. 地质学报, 95(10): 2996-3016 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202110005.htm

     

    李乐广, 王连训, 田洋, 马昌前, 周芳春. 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2560 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201907024.htm

     

    李鹏. 2017. 幕阜山地区岩浆活动及稀有金属成矿规律. 博士后工作报告. 北京: 中国地质科学院矿产资源研究所

     

    李鹏, 李建康, 裴荣富, 冷双梁, 张旭, 周芳春, 李胜苗. 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710004.htm

     

    李鹏, 张立平, 李建康, 黄志飚, 周芳春, 姜鹏飞. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用. 矿床地质, 40(4): 819-841 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202104011.htm

     

    刘翔, 周芳春, 黄志飚, 李建康, 周厚祥, 肖国强, 包云河, 李鹏, 谭黎明, 石威科, 苏俊男, 黄小强, 陈虎, 汪宣民, 林跃, 刘晓敏. 2018. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义. 大地构造与成矿学, 42(2): 235-243 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802004.htm

     

    李胜荣, 许虹, 申俊峰. 2008. 结晶学与矿物学. 北京: 地质出版社, 1-346

     

    卢焕章, 王中刚, 李院生. 1996. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因. 矿物学报, 16(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199601000.htm

     

    吕正航, 张辉, 赵景宇. 2017. 新疆柯鲁木特伟晶岩脉中石榴子石组成对岩浆-热液过程及Li矿化的制约. 矿物学报, 37(3): 247-257 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703001.htm

     

    饶灿. 2009. 福建南平31号花岗伟晶岩的矿物学研究与岩浆-热液演化示踪. 博士学位论文. 南京: 南京大学

     

    王濮, 潘兆橹, 翁玲宝. 1984. 系统矿物学. 北京: 地质出版社, 1-666

     

    许畅, 李建康, 施光海, 李鹏, 刘翔, 张立平. 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905007.htm

     

    严清高, 李建康, 李超, 陈振宇, 熊欣. 2022. 川西扎乌龙-青海草陇花岗伟晶岩型稀有金属矿床磷灰石地球化学特征及地质意义. 岩石学报, 38(2): 341-355 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.02.03

     

    于津海, 赵蕾, 周旋. 2004. 闽东南含石榴子石Ⅰ型花岗岩的矿物学特征及成因. 高校地质学报, 10(3): 364-377 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403006.htm

     

    曾令森, 赵令浩, 高利娥, 侯可军, 王倩. 2019. 喜马拉雅造山带中新世岩浆型石榴子石的矿物化学特征: 从高Sr/Y花岗岩到淡色花岗岩. 岩石学报, 35(6): 1599-1626 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2019.06.01

     

    张宏飞, 高山. 2012. 地球化学. 北京: 地质出版社, 1-410

     

    张立平, 李鹏, 黄志飚, 刘翔, 李建康, 黄小强, 苏俊男, 周芳春, 曾乐, 陈虎, 姜鹏飞. 2021. 湖南仁里稀有金属矿田206号锂辉石伟晶岩脉地球化学特征及成矿时代. 矿床地质, 40(6) 1267-1284 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106008.htm

     

    张如柏. 1985. 湖北锂伟晶岩中发现透锂长石. 科学通报, 30(11): 852-854 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198511015.htm

     

    赵珊茸. 2011. 结晶学及矿物学. 第2版. 北京: 高等教育出版社, 1-248

     

    周芳春, 刘翔, 李建康, 黄志飚, 肖国强, 李鹏, 周厚祥, 石威科, 谭黎明, 苏俊男, 陈虎, 汪宣民. 2019. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型. 大地构造与成矿学, 43(1): 77-91 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901007.htm

     

    朱金初, 吴长年, 刘昌实, 李福春, 黄小龙, 周东山. 2000. 新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因. 高校地质学报, 6(1): 40-5 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200001005.htm

  • 230709姜鹏飞-附表1-2
  • 加载中

(18)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-11-02
修回日期:  2023-02-16
刊出日期:  2023-07-01

目录