2021年5月21日青海玛多MW7.4地震及余震序列应力降时空分布与孕震环境

沈琳, 赵连锋, 谢小碧, 何熹, 姚振兴. 2023. 2021年5月21日青海玛多MW7.4地震及余震序列应力降时空分布与孕震环境. 地球物理学报, 66(10): 4111-4131, doi: 10.6038/cjg2022Q0914
引用本文: 沈琳, 赵连锋, 谢小碧, 何熹, 姚振兴. 2023. 2021年5月21日青海玛多MW7.4地震及余震序列应力降时空分布与孕震环境. 地球物理学报, 66(10): 4111-4131, doi: 10.6038/cjg2022Q0914
SHEN Lin, ZHAO LianFeng, XIE XiaoBi, HE Xi, YAO ZhenXing. 2023. Spatial-temporal evolution of stress drops in the 21 May 2021 MW7.4 Madoi earthquake sequence and its seismgenic environment. Chinese Journal of Geophysics (in Chinese), 66(10): 4111-4131, doi: 10.6038/cjg2022Q0914
Citation: SHEN Lin, ZHAO LianFeng, XIE XiaoBi, HE Xi, YAO ZhenXing. 2023. Spatial-temporal evolution of stress drops in the 21 May 2021 MW7.4 Madoi earthquake sequence and its seismgenic environment. Chinese Journal of Geophysics (in Chinese), 66(10): 4111-4131, doi: 10.6038/cjg2022Q0914

2021年5月21日青海玛多MW7.4地震及余震序列应力降时空分布与孕震环境

  • 基金项目:

    国家自然科学基金(U2139206,42104055,41974061,41974054)和中国地震科学实验场(2019CSES0103)联合资助

详细信息
    作者简介:

    沈琳, 女, 1994年生, 博士研究生, 主要研究方向为地震学.E-mail: shenlin@mail.iggcas.ac.cn

    通讯作者: 赵连锋, 男, 1972年生, 研究员, 主要研究方向为地震学.E-mail: zhaolf@mail.iggcas.ac.cn
  • 中图分类号: P315

Spatial-temporal evolution of stress drops in the 21 May 2021 MW7.4 Madoi earthquake sequence and its seismgenic environment

More Information
  • 2021年5月21日发生在青藏高原巴颜喀拉块体内部的玛多MW7.4地震是继2008年MW7.9汶川地震之后在中国陆区发生的最大地震.由于玛多地震发生在板块内部滑移速率较缓慢的次级断裂上,该地震成为研究巴颜喀拉块体内部地震危险性的典型震例.通过计算2021年玛多地震序列中震级大于2.5的地震应力降,我们调查了该地震序列应力释放的时空演化规律.首先,利用已有的青藏高原及其周边地区宽频带Lg波衰减模型,对玛多地震序列产生的地震Lg波观测数据进行了传播路径衰减校正,获得119个地震事件的Lg波震源谱;然后,通过将理论震源函数与观测数据拟合,获得对Lg波标量地震矩、拐角频率和高频下降率的估计;最后,根据标量地震矩和拐角频率计算了2021年玛多地震序列的应力降.结果表明,2021年5月21日玛多地震主震应力降为22 MPa,余震序列的应力降分布范围为0.08~7.5 MPa、中位数为0.39 MPa,平均值为0.88 MPa.应力降与震级具有较强的正相关关系,说明该地区的地震活动可能并不遵从地震自相似理论.换言之,大小地震具有不同的破裂动力学性质.玛多地震序列应力降变化反映了断层面上的应力释放过程具有强烈的非均质性.主震发生之后余震应力降显著降低,但其间仍夹杂着少数具有较高应力降的事件.这些高应力降事件所在区域与主震后破裂面上的闭锁和应力集中区域相对应.

  • 加载中
  • 图 1 

    玛多地震序列及区域地质构造

    Figure 1. 

    Maps showing the distribution of the Madoi earthquake sequence and regional geology

    图 2 

    青藏高原东部区域地壳Lg波Q值分布、2021年5月22日9时39分M4.6地震事件位置(红色五角星)和地震台站位置(白色三角形)(a)和区域地震图(b)

    Figure 2. 

    Map showing the crustal Lg-wave attenuation in the eastern part of the Tibetan Plateau and the locations of the earthquake with magnitude of 4.6 that occurred at 9:39 on May 22, 2021 (red star) and of stations (white triangles) (a), and regional seismograms (b)

    图 3 

    Lg波数据预处理过程

    Figure 3. 

    Data processing procedure for calculating Lg-wave spectra

    图 4 

    (a) 1.0 Hz Lg波振幅谱反演过程中均方根残差随迭代次数的变化,其中第12次迭代时残差最小为0.68;(b) 反演前、衰减校正后、衰减和台基响应校正后各个频率Lg波振幅均方根残差,作为代表,(c)和(d)分别为0.5和1.0 Hz Lg波振幅反演前、衰减校正后、衰减和台基响应校正后拟合残差的统计直方图,其中标出了残差的平均值和标准差

    Figure 4. 

    (a) The root mean square (RMS) of the Lg spectra amplitude residual versus the iteration during the inversion at 1.0 Hz, in which the smallest residual of 0.68 appears at the 12th iteration. (b) The RMS residuals for 58 frequencies before inversion, after corrected by local attenuation, and after corrected by both attenuation and site response. Histograms of the Lg spectra amplitude misfit before the inversion (dark blue), corrected by the attenuation (pink), and corrected by both the local attenuation and site response (yellow) at 0.5 Hz (c) and 1.0 Hz (d), respectively, where the mean and standard deviation values are labeled

    图 5 

    利用Lg波震源激发函数拟合震源参数计算实例

    Figure 5. 

    Examples of observed Lg-wave source excitation spectra and source parameters obtained by fitting the data

    图 6 

    (a) 标量地震矩M0与拐角频率fc的关系, 其中给出应力降为0.1,1.0,10 MPa的等值线(虚线);(b)地方震级ML与矩震级MW之间的关系,两条曲线分别给出具有不同截距和斜率的线性关系(虚线和红线)

    Figure 6. 

    (a) Seismic moment versus corner frequency for the 2021 Madoi earthquake sequence, in which the dashed lines mark the constant stress drop of 0.1, 1.0, and 10.0 MPa; (b) The local magnitude ML given by CENC versus moment magnitude MW. in which the red and dashed black lines give two linear regressions with different slopes and intersections

    图 7 

    (a) 2021年玛多地震序列应力降的空间分布图;(b)沿A-B的同震破裂滑动量(Wang et al., 2022)深度剖面,其中2021玛多地震破裂带分段位置来自潘家伟等(2021).圆圈大小和内部填色分别表示震级和应力降大小,紫色线段为剖面位置.图中断层缩写与图 1一致

    Figure 7. 

    (a) Map view and (b) depth profile showing event locations for the 2021 Madoi earthquake sequence. The magnitudes and stress drops are coded by sizes and colors of circles. The purple line in (a) represent the location of the vertical profile. The color image in (b) denotes the distribution of coseismic slip (Wang et al., 2022), and the segmentation of surface ruptures was collected from Pan et al. (2021). The fault abbreviations are the same as those used in Fig. 1

    图 8 

    (a) 余震应力降和震级距主震发震时刻的关系,红色虚线标出了应力降中位数;(b) 应力降随震源深度的变化;(c) 应力降和震级的关系,红色实线为线性回归结果

    Figure 8. 

    (a) Variations of stress drops and local magnitudes versus the time since the mainshock, where the red dashed line indicates the median value of the stress drop (b), the stress drop versus the local magnitude, and (c) the relationship between the stress drops with the magnitude, respectively

    表 附表 1 

    地震参数列表

    Table 附表 1. 

    Appendix Table S1 Earthquake parameters used in this study

    事件参数 接收到的台站数量 震源参数
    日期
    (年-月-日)
    时间
    (时: 分: 秒
    国际标准时间)
    纬度
    (°N)
    经度
    (°E)
    震源深度
    (km)
    震级 地震矩M0
    (N·m)
    拐角频率
    fc(Hz)
    高频下降率
    n
    应力降
    Δσ(kPa)
    2021-05-21 18:04:12 34.6502 98.3848 7.607 7.3 203 3.34±2.03×1019 0.08±0.02 2.46±0.13 21994.7±17896.2
    2021-05-21 18:16:32 34.4477 99.0684 26.272 3.8 64 2.76±0.18×1014 2.26±0.11 3.69±0.15 3499.4±574.3
    2021-05-21 18:30:29 34.419 98.9888 30.901 3.6 127 1.90±0.59×1015 0.79±0.08 2.98±0.10 1045.4±467.0
    2021-05-21 18:30:55 34.6398 98.7004 7.008 2.9 128 1.88±0.52×1015 0.79±0.09 2.96±0.10 1017.3±445.7
    2021-05-21 18:35:08 34.9294 97.8465 18.65 3.5 170 5.24±1.17×1015 0.58±0.06 2.74±0.07 1117.8±437.5
    2021-05-21 18:50:57 34.5127 98.8946 2.111 3.4 186 7.61±0.72×1014 1.10±0.07 3.04±0.10 1111.3±241.7
    2021-05-21 18:55:25 34.5605 98.6915 4.461 3.4 184 4.67±1.55×1014 1.25±0.16 3.38±0.17 1011.7±511.0
    2021-05-21 19:03:06 34.4507 99.051 8.867 4.4 212 4.46±1.25×1015 1.15±0.10 3.94±0.15 7517.1±2823.3
    2021-05-21 19:09:16 34.7395 97.9676 7.548 4.0 187 2.91±0.12×1015 1.05±0.03 3.44±0.06 3672.0±372.2
    2021-05-21 19:16:38 34.4407 99.0923 8.93 3.4 154 1.04±0.06×1015 0.83±0.03 2.87±0.05 662.0±89.7
    2021-05-21 19:22:38 34.6039 98.5234 6.935 3.0 190 4.98±0.44×1014 1.03±0.06 3.01±0.08 605.8±120.5
    2021-05-21 19:28:28 34.4506 99.0877 9.79 3.0 192 2.53±0.41×1014 1.09±0.12 2.90±0.13 357.9±130.9
    2021-05-21 19:29:39 34.587 98.5837 8.579 2.8 107 2.62±1.27×1014 1.38±0.43 2.75±0.51 753.4±794.5
    2021-05-21 19:33:40 34.7461 97.8831 10.893 3.2 176 3.14±0.90×1014 1.05±0.18 2.53±0.16 399.5±236.0
    2021-05-21 19:36:51 34.4541 99.0085 13.885 2.6 185 3.20±0.46×1014 0.92±0.11 2.55±0.10 272.5±102.7
    2021-05-21 19:45:15 34.7374 97.9704 11.68 2.7 176 2.10±0.18×1014 1.16±0.11 3.02±0.15 361.9±107.1
    2021-05-21 19:47:01 34.7331 98.0285 6.274 3.1 197 7.40±0.91×1014 1.10±0.09 3.48±0.16 1090.4±301.0
    2021-05-21 19:49:14 34.7173 97.9715 6.399 4.1 196 4.02±0.41×1015 0.78±0.05 3.22±0.12 2080.7±469.5
    2021-05-21 19:57:17 34.5025 98.9055 1.487 2.5 159 1.46±0.27×1014 1.10±0.14 2.58±0.14 211.3±89.2
    2021-05-21 19:59:51 34.4684 99.1892 8.968 2.5 180 2.75±1.38×1014 0.75±0.23 1.85±0.17 125.9±132.9
    2021-05-21 20:00:47 34.4698 99.196 24.945 2.5 113 2.14±0.42×1014 1.04±0.17 2.75±0.16 267.6±141.9
    2021-05-21 20:04:30 34.5726 98.6367 8.925 3.6 205 1.04±0.05×1015 1.15±0.04 3.28±0.06 1721.6±216.3
    2021-05-21 20:13:13 34.4621 99.08 8.602 3.1 151 4.41±0.30×1014 1.23±0.07 3.11±0.11 896.7±161.2
    2021-05-21 20:23:58 34.4564 99.0732 8.479 3.4 206 7.37±0.53×1014 0.93±0.04 2.94±0.09 648.0±102.9
    2021-05-21 20:24:18 34.7326 97.8183 14.48 3.1 172 8.84±1.34×1014 0.72±0.07 2.59±0.10 362.5±118.6
    2021-05-21 20:24:46 34.697 98.16 7.126 3.0 172 8.89±1.06×1014 0.72±0.06 2.59±0.10 363.8±107.4
    2021-05-21 20:27:45 34.7458 97.8106 12.859 3.2 147 3.98±0.25×1014 1.12±0.06 3.15±0.09 616.3±109.7
    2021-05-21 20:30:08 34.642 98.4654 10.42 2.6 157 2.59±0.27×1014 1.14±0.10 2.91±0.12 423.2±124.5
    2021-05-21 20:36:13 34.6316 98.4761 6.601 3.1 201 4.27±0.85×1014 1.06±0.10 3.32±0.17 563.6±197.4
    2021-05-21 20:39:03 34.6674 98.345 9.539 2.8 118 3.07±0.60×1014 0.96±0.13 2.62±0.13 296.3±130.7
    2021-05-21 20:44:18 34.7723 97.6565 9.301 2.5 184 2.00±0.28×1014 1.09±0.09 2.94±0.11 286.3±79.2
    2021-05-21 20:45:48 34.466 98.9635 11.237 2.7 200 1.92±0.32×1014 1.18±0.13 2.75±0.15 344.6±127.0
    2021-05-21 20:52:33 34.3968 99.1273 8.435 2.9 188 1.96±0.22×1014 1.23±0.11 2.92±0.11 402.8±117.3
    2021-05-21 20:55:33 34.653 98.3503 5.239 2.9 180 5.38±2.98×1014 0.58±0.16 2.21±0.12 112.8±112.2
    2021-05-21 21:09:11 34.4471 99.2819 12.352 3.7 198 8.53±0.43×1014 1.27±0.06 3.09±0.10 1907.3±277.4
    2021-05-21 21:14:00 34.7313 97.9994 6.871 3.1 171 7.17±2.93×1014 0.74±0.14 2.50±0.15 319.3±227.2
    2021-05-21 21:28:18 34.4477 99.1082 9.689 2.5 188 1.71±0.23×1014 1.03±0.10 2.70±0.11 203.7±65.6
    2021-05-21 21:32:27 34.6422 98.426 9.375 2.5 173 1.07±0.26×1014 1.27±0.22 2.57±0.19 240.1±139.3
    2021-05-21 21:37:37 34.5845 98.5604 9.025 3.0 205 4.01±0.52×1014 1.03±0.08 3.01±0.12 481.9±134.4
    2021-05-21 21:50:51 34.5643 98.5486 8.17 3.3 204 7.60±0.75×1014 0.79±0.07 2.78±0.11 410.2±112.9
    2021-05-21 21:59:35 34.6154 98.4646 6.403 4.6 199 6.16±0.49×1015 0.52±0.03 2.93±0.08 936.4±204.0
    2021-05-21 22:04:22 34.4997 99.376 7.133 2.8 96 2.94±0.88×1014 0.80±0.15 2.43±0.12 164.7±104.2
    2021-05-21 23:06:49 34.4642 99.573 25.807 2.6 191 1.12±0.22×1014 1.04±0.18 2.18±0.12 136.7±76.2
    2021-05-21 23:32:04 34.7187 98.0657 11.806 3.1 193 4.89±0.54×1014 0.89±0.08 2.61±0.11 378.5±114.1
    2021-05-22 0:00:26 34.7767 97.6557 7.805 3.1 210 4.48±0.00×1014 0.94±0.00 2.61±0.00 414.2±0.0
    2021-05-22 0:26:38 34.4739 99.2058 11.68 2.8 213 1.95±0.47×1014 1.16±0.15 2.48±0.14 332.7±151.1
    2021-05-22 1:04:56 34.6307 98.4701 10.491 2.6 174 1.52±0.30×1014 1.00±0.27 2.15±0.25 169.5±140.1
    2021-05-22 1:05:13 34.7051 98.0444 0.069 2.6 169 1.53±0.40×1014 1.02±0.25 2.17±0.18 179.6±141.9
    2021-05-22 1:06:50 34.7564 97.8131 5.066 2.5 127 4.72±0.88×1014 0.54±0.10 2.07±0.12 83.9±48.4
    2021-05-22 1:48:07 34.7111 98.0755 13.727 2.5 177 3.83±0.39×1014 1.02±0.10 2.62±0.13 447.1±139.4
    2021-05-22 2:11:44 34.4547 99.1894 10.331 3.0 212 2.37±0.23×1014 0.98±0.09 2.46±0.10 245.2±70.7
    2021-05-22 2:29:34 34.8125 97.5066 7.267 5.2 177 1.91±0.19×1016 0.63±0.04 3.47±0.10 5159.0±1148.2
    2021-05-22 2:38:44 34.5011 98.9306 8.428 4.9 204 1.45±0.15×1016 0.57±0.07 3.06±0.17 3002.6±1072.7
    2021-05-22 2:42:17 34.7292 97.9686 10.01 3.4 46 1.74±0.22×1015 0.62±0.06 2.65±0.11 466.0±148.3
    2021-05-22 2:58:14 34.6389 98.4085 4.922 2.7 184 2.87±0.48×1014 0.72±0.12 2.04±0.13 116.3±63.5
    2021-05-22 3:02:15 34.4556 99.2294 8.533 2.9 196 2.15±0.19×1014 1.32±0.11 2.87±0.12 540.8±140.8
    2021-05-22 3:16:11 34.7006 98.0051 10.225 3.6 185 7.78±0.58×1014 0.65±0.06 2.34±0.14 231.0±61.6
    2021-05-22 3:21:17 34.6961 98.0529 12.029 4.8 191 9.13±0.71×1015 0.87±0.05 3.52±0.10 6631.8±1159.8
    2021-05-22 3:36:30 34.4753 98.8892 11.766 2.6 80 1.23±0.58×1014 1.32±0.30 2.45±0.22 314.0±259.1
    2021-05-22 3:55:39 34.6347 98.4324 6.43 2.5 188 1.27±0.14×1014 1.29±0.14 2.30±0.13 302.4±106.8
    2021-05-22 4:47:03 34.7251 98.0368 6.276 2.8 194 2.25±0.44×1014 1.04±0.19 2.07±0.15 278.9±163.1
    2021-05-22 4:59:02 34.7959 97.6031 7.387 3.6 188 4.21±0.60×1014 0.77±0.08 2.48±0.11 209.1±69.8
    2021-05-22 5:09:23 34.6237 98.4799 9.346 2.7 199 1.90±0.35×1014 0.91±0.16 2.10±0.16 158.6±89.3
    2021-05-22 5:21:25 34.614 98.4823 5.453 3.0 201 3.09±0.17×1014 0.78±0.07 2.38±0.12 160.0±43.7
    2021-05-22 7:06:21 34.4949 98.9033 5.492 4.9 210 8.42±0.43×1015 0.86±0.03 3.68±0.06 5899.6±647.7
    2021-05-22 7:29:35 34.4362 99.0224 5.331 3.1 211 4.80±0.36×1014 1.03±0.06 2.78±0.07 570.7±111.2
    2021-05-22 7:39:04 34.6409 98.4169 7.925 3.0 190 2.84±0.37×1014 1.01±0.14 2.28±0.14 323.4±137.6
    2021-05-22 7:42:47 34.4577 99.0099 8.16 2.5 148 1.18±0.18×1014 1.13±0.22 2.43±0.16 189.3±113.9
    2021-05-22 7:54:09 34.6447 98.4016 8.535 3.2 199 5.12±0.17×1014 1.18±0.05 3.08±0.09 924.3±113.2
    2021-05-22 7:54:59 34.7027 98.1573 10.876 2.6 195 5.13±0.18×1014 1.18±0.05 3.08±0.10 919.0±110.6
    2021-05-22 8:50:07 34.6741 98.2753 9.976 3.1 185 4.42±1.16×1014 1.04±0.16 2.86±0.23 551.5±294.4
    2021-05-22 9:20:25 34.724 97.9932 7.285 3.3 196 6.55±0.45×1014 1.11±0.08 2.55±0.10 988.5±215.4
    2021-05-22 9:39:34 34.7906 97.6025 6.716 4.6 187 7.79±0.90×1015 0.38±0.04 2.55±0.12 471.9±168.1
    2021-05-22 9:42:48 34.651 98.4328 9.233 3.1 111 3.76±5.22×1014 1.13±0.24 2.71±0.17 596.0±911.8
    2021-05-22 11:13:26 34.7156 98.0991 10.21 2.9 197 1.84±0.24×1014 1.20±0.14 2.58±0.15 354.3±134.4
    2021-05-22 12:08:01 34.4347 99.0351 8.591 2.8 210 2.38±0.14×1014 0.79±0.08 2.00±0.11 128.0±37.8
    2021-05-22 12:32:41 34.6921 98.1391 9.111 3.5 196 5.28±0.42×1014 1.12±0.07 2.89±0.09 811.5±168.4
    2021-05-22 13:00:05 34.449 99.0837 8.316 3.0 208 1.65±0.20×1014 1.20±0.13 2.53±0.13 316.4±109.5
    2021-05-22 13:09:12 34.4532 99.0736 8.779 3.0 200 2.02±0.16×1014 1.26±0.09 2.86±0.10 444.8±103.0
    2021-05-22 14:01:13 34.6344 98.4691 7.83 3.0 199 4.20±0.76×1014 0.84±0.11 2.64±0.14 273.0±118.3
    2021-05-22 15:24:54 34.8206 97.4999 6.28 3.0 183 6.24±1.19×1014 0.73±0.09 2.73±0.12 269.1±107.7
    2021-05-22 15:46:13 34.4478 99.1083 10.851 3.5 213 8.00±0.35×1014 0.95±0.05 2.84±0.08 747.5±118.4
    2021-05-22 18:11:24 34.7296 97.9957 14.359 2.8 190 7.17±3.77×1013 1.19±0.24 2.55±0.26 131.7±105.0
    2021-05-22 18:19:38 34.6127 98.5197 5.017 3.1 202 3.96±0.81×1014 1.04±0.13 3.01±0.22 487.8±209.5
    2021-05-23 3:06:34 34.4644 99.0005 4.84 2.5 204 9.37±1.93×1013 1.29±0.24 2.38±0.20 223.2±130.6
    2021-05-23 3:46:53 34.4493 99.171 9.293 3.8 215 1.43±0.12×1015 0.62±0.04 2.58±0.08 377.3±83.9
    2021-05-23 4:15:54 34.4622 99.0865 7.215 2.9 194 1.97±0.46×1014 1.09±0.13 2.46±0.12 277.6±120.4
    2021-05-23 7:24:32 34.4356 99.1006 13.395 3.8 214 1.31±0.07×1015 1.20±0.05 3.26±0.09 2518.7±366.8
    2021-05-23 7:55:28 34.7361 97.9743 9.303 2.6 185 8.65±1.46×1013 1.26±0.22 2.30±0.23 188.6±103.8
    2021-05-23 8:35:45 34.5169 98.6009 6.909 2.9 197 3.47±0.66×1014 0.91±0.12 2.41±0.11 290.4±123.5
    2021-05-23 10:52:35 34.8228 97.5271 9.221 2.6 174 1.10±0.16×1014 1.23±0.19 2.33±0.19 228.3±108.4
    2021-05-23 12:56:38 34.4263 99.0416 7.336 2.6 207 9.57±2.06×1013 1.18±0.25 2.35±0.22 174.7±116.2
    2021-05-23 14:51:42 34.7099 98.04 11.067 2.6 191 1.29±0.34×1014 1.01±0.19 2.28±0.16 146.1±92.5
    2021-05-23 15:14:35 34.4829 98.9408 6.782 2.5 205 1.01±0.15×1014 1.14±0.18 2.36±0.14 166.4±80.8
    2021-05-23 18:09:46 34.4039 99.2227 8.875 2.5 207 7.54±1.44×1013 1.19±0.18 2.49±0.16 138.3±69.7
    2021-05-23 20:55:07 34.6974 98.1227 7.968 2.5 193 9.95±2.66×1013 1.16±0.24 2.45±0.22 170.2±115.7
    2021-05-23 23:23:41 34.6894 98.2475 9.547 3.3 200 4.20±0.82×1014 1.23±0.10 3.23±0.14 871.0±266.5
    2021-05-24 5:41:27 34.4536 99.0339 4.899 2.7 210 1.09±0.19×1014 1.26±0.17 2.57±0.16 239.2±105.4
    2021-05-24 7:06:13 34.6754 98.2764 10.104 3.3 183 1.01±0.05×1015 0.94±0.04 3.17±0.08 928.0±129.4
    2021-05-24 8:31:27 34.785 97.5679 6.129 4.2 187 2.22±0.22×1015 0.95±0.06 3.48±0.11 2102.9±438.7
    2021-05-24 14:15:19 34.4503 98.9861 5.232 4.3 213 4.08±0.44×1015 0.94±0.06 3.49±0.09 3679.5±769.5
    2021-05-24 18:15:56 34.7545 97.672 12.75 3.5 189 2.38±0.15×1014 1.20±0.07 2.86±0.11 450.0±85.7
    2021-05-24 18:27:11 34.4126 99.0784 8.627 3.0 210 2.07±0.18×1014 1.22±0.09 2.78±0.13 413.6±95.5
    2021-05-24 23:00:19 34.6982 98.0056 10.096 4.1 195 2.10±0.20×1015 0.97±0.07 3.14±0.13 2139.7±530.5
    2021-05-24 23:16:58 34.6948 98.1654 7.454 2.6 193 1.66±0.28×1014 0.94±0.16 2.09±0.13 150.6±81.4
    2021-05-25 0:33:24 34.7096 98.009 6.955 2.6 175 7.50×1013±
    5.37 ×1015
    1.27±0.54 2.09±0.29 170.8±1242.2
    2021-05-25 4:46:23 34.7658 97.8436 9.622 2.8 174 1.44±0.36×1014 1.25±0.23 2.44±0.17 308.9±184.2
    2021-05-25 6:46:51 34.4625 99.2309 7.973 3.0 214 2.63±0.43×1014 1.29±0.11 2.69±0.13 616.1±185.3
    2021-05-25 9:30:38 34.4574 99.1763 12.908 3.0 213 2.85±4.06×1014 1.10±0.13 2.69±0.12 419.9±618.6
    2021-05-25 19:30:58 34.7101 98.1122 11.964 2.5 194 1.34±0.24×1014 1.05±0.18 2.67±0.19 171.4±93.0
    2021-05-26 5:54:10 34.6451 98.4647 11.03 3.6 198 7.66±0.43×1014 1.44±0.07 3.46±0.14 2505.7±409.5
    2021-05-26 5:54:10 34.6452 98.4631 10.949 3.5 198 7.52±0.34×1014 1.44±0.06 3.46±0.13 2500.3±341.4
    2021-05-26 17:45:25 34.4709 98.9428 12.174 2.9 207 1.45±6.04×1014 1.69±0.25 3.35±0.26 771.9±3240.7
    2021-05-26 22:14:07 34.7237 98.0679 10.51 2.6 176 7.03±1.88×1013 1.42±0.27 2.50±0.23 219.8±138.5
    2021-05-27 7:48:10 34.7222 98.0819 13.158 2.7 193 2.22±0.22×1014 0.99±0.10 2.43±0.09 240.7±78.2
    2021-05-27 11:48:03 34.6384 98.4752 7.603 2.8 198 2.74±0.54×1014 1.12±0.20 2.09±0.17 420.2±243.6
    2021-05-27 13:06:07 34.4453 99.1597 8.843 4.9 215 1.25±0.11×1016 0.73±0.05 3.19±0.09 5417.9±1134.5
    2021-05-27 22:03:19 34.7285 98.0607 10.866 2.6 186 1.26±0.24×1014 0.97±0.17 2.19±0.16 127.9±71.9
    2021-05-28 1:16:39 34.6522 98.3928 7.343 2.8 201 2.80±0.76×1014 0.89±0.19 2.26±0.18 216.6±148.2
    下载: 导出CSV
  •  

    Abercrombie R E. 1995. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research: Solid Earth, 100(B12): 24015-24036. doi: 10.1029/95JB02397

     

    Abercrombie R E. 2014. Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield. Geophysical Research Letters, 41(24): 8784-8791, doi: 10.1002/2014GL062079.

     

    Abercrombie R E. 2015. Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 120(6): 4263-4277, doi: 10.1002/2015JB011984.

     

    Abercrombie R E, Bannister S, Ristau J, et al. 2017. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, 208(1): 306-320, doi: 10.1093/gji/ggw393.

     

    Abercrombie R E. 2021. Resolution and uncertainties in estimates of earthquake stress drop and energy release. Phil. Trans. Roy. Soc. A, 379(2196): 20200131, doi: 10.1098/rsta.2020.0131.

     

    Abercrombie R E, Trugman D T, Shearer P M, et al. 2021. Does earthquake rtress drop increase with depth in the crust?. Journal of Geophysical Research: Solid Earth, 126(10): e2021JB022314, doi: 10.1029/2021JB022314.

     

    Aki K. 1967. Scaling law of seismic spectrum. Journal of Geophysical Research, 72(4): 1217-1231. doi: 10.1029/JZ072i004p01217

     

    Aki K. 1984. Asperities, barriers, characteristic earthquakes and strong motion prediction. Journal of Geophysical Research: Solid Earth, 89(B7): 5867-5872. doi: 10.1029/JB089iB07p05867

     

    Allmann B P, Shearer P M. 2007. Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research: Solid Earth, 112(B4): B04305, doi: 10.1029/2006JB004395.

     

    Allmann B P, Shearer P M. 2009. Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1): B01310, doi: 10.1029/2008JB005821.

     

    Bao X W, Song X D, Li J T. 2015. High-resolution lithospheric structure beneath mainland China from ambient noise and earthquake surface-wave tomography. Earth and Planetary Science Letters, 417: 132-141, doi: 10.1016/j.epsl.2015.02.024.

     

    Bethmann F, Deichmann N, Mai P M. 2011. Scaling relations of local magnitude versus moment magnitude for sequences of similar earthquakes in Switzerland. Bulletin of the Seismological Society of America, 101(2): 515-534, doi: 10.1785/0120100179.

     

    Boatwright J. 1980. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bulletin of the Seismological Society of America, 70(1): 1-27.

     

    Boyd O S, McNamara D E, Hartzell S, et al. 2017. Influence of lithostatic stress on earthquake stress drops in North America. Bulletin of the Seismological Society of America, 107(2): 856-868, doi: 10.1785/0120160219.

     

    Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997

     

    Campillo M, Plantet J L, Bouchon M. 1985. Frequency-dependent attenuation in the crust beneath Central France from Lg waves: Data analysis and numerical modeling. Bulletin of the Seismological Society of America, 75(5): 1395-1411. doi: 10.1785/BSSA0750051395

     

    Cao X L, Chang L J, Lu L Y, et al. 2022. Variations of shear wave splitting in the source region of the MadoiMS7.4 earthquake, Qinghai. Chinese J. Geophys. (in Chinese), 65(5): 1644-1659, doi: 10.6038/cjg2022P0944.

     

    Chen K J, Avouac J P, Geng J H, et al. 2022. The 2021 MW7.4 Madoiearthquake: an archetype bilateral slip-pulse rupture arrested at a splay fault. Geophysical Research Letters, 49(2): e2021GL095243, doi: 10.1029/2021GL095243.

     

    Cocco M, Tinti E, Cirella A. 2016. On the scale dependence of earthquake stress drop. Journal of Seismology, 20(4): 1151-1170, doi: 10.1007/s10950-016-9594-4.

     

    Dahlen F A. 1974. On the ratio of P-wave to S-wave corner frequencies for shallow earthquake sources. Bulletin of the Seismological Society of America, 64(4): 1159-1180. doi: 10.1785/BSSA0640041159

     

    Efron B. 1983. Estimating the error rate of a prediction uule: improvement on cross-validation. Journal of the American Statistical Association, 78(382): 316-331. doi: 10.1080/01621459.1983.10477973

     

    Eshelby J D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. London Ser. A, 241(1226): 376-396. doi: 10.1098/rspa.1957.0133

     

    Fan G W, Lay T. 2002. Characteristics of Lg attenuation in the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 107(B10): 2256, doi: 10.1029/2001JB000804.

     

    Feng Y S, Xiong X, Shan B, et al. 2022. Coulomb stress changes due to the 2021 MS7.4 Maduo Earthquake and expected seismicity rate changes in the surroundings. Science China Earth Sciences, 65(4): 675-686, doi: 10.1007/s11430-021-9882-8.

     

    Folesky J, Kummerow J, Shapiro S A. 2021. Stress drop variations in the region of the 2014 MW8.1 Iquique earthquake, northern Chile. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB020112, doi: 10.1029/2020JB020112.

     

    Furumura T, Hong T K, Kennett B L N. 2014. Lg wave propagation in the area around Japan: observations and simulations. Progress in Earth and Planetary Science, 1(1): 10, doi: 10.1186/2197-4284-1-10.

     

    Gao Z Y, Li Y C, Shan X J, et al. 2021. Earthquake magnitude estimation from high-rate GNSS data: a case study of the 2021 MW7.3 Maduo earthquake. Remote Sensing, 13(21): 4478, doi: 10.3390/rs13214478.

     

    Goebel T H W, Hauksson E, Shearer P M, et al. 2015. Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California. Geophysical Journal International, 202(1): 514-528, doi: 10.1093/gji/ggv160.

     

    Goertz-Allmann B P, Edwards B, Bethmann F, et al. 2011. A new empirical magnitude scaling relation for switzerland. Bulletin of the Seismological Society of America, 101(6): 3088-3095, doi: 10.1785/0120100291.

     

    Guo R M, Yang H F, Li Y, et al. 2021. Complex slip distribution of the 2021 MW7.4 Maduo, China, earthquake: an event occurring on the slowly slipping fault. Seismological Research Letters, 93(2A): 653-665, doi: 10.1785/0220210226.

     

    Haar L C, Mueller C S, Fletcher J B, et al. 1986. Comments on "Some recent Lg phase displacement spectral densities and their implications with respect to prediction of ground motions in Eastern North America" by R. Street. Bulletin of the Seismological Society of America, 76(1): 291-295. doi: 10.1785/BSSA0760010291

     

    Hanks T C, Kanamori H. 1979. A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5): 2348-2350. doi: 10.1029/JB084iB05p02348

     

    Hauksson E. 2015. Average stress drops of southern California earthquakes in the context of crustal geophysics: implications for fault zone healing. Pure and Applied Geophysics, 172(5): 1359-1370, doi: 10.1007/s00024-014-0934-4.

     

    He L J, Feng G C, Wu X X, et al. 2021a. Coseismic and early postseismic slip models of the 2021 MW7.4 Maduo earthquake (western China) estimated by space-based geodetic data. Geophysical Research Letters, 48(24): e2021GL095860, doi: 10.1029/2021GL095860.

     

    He X, Zhao L F, Xie X B, et al. 2018. High-precision relocation and event discrimination for the 3 September 2017 underground nuclear explosion and subsequent seismic events at the North Korean test site. Seismological Research Letters, 89(6): 2042-2048, doi: 10.1785/0220180164.

     

    He X, Zhao L F, Xie X B, et al. 2020. Stress drop assessment of the August 8, 2017, Jiuzhaigou earthquake sequence and its tectonic implications. Earthquake Science, 33(4): 161-176, doi: 10.29382/eqs-2020-0161-01.

     

    He X, Zhao L F, Xie X B, et al. 2021b. Weak crust in southeast Tibetan Plateau revealed by Lg-wave attenuation tomography: implications for crustal material escape. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020748, doi: 10.1029/2020JB020748.

     

    He X, Zhao L F, Xie X B, et al. 2023. Eastward expansion of the Tibetan plateau: Insights from stress drops of the 2021 MS6.4 Yangbi, Yunnan and MS7.4 Maduo, Qinghai earthquake sequences in China. Frontiers in Earth Science, 11: 1081605, doi: 10.3389/feart.2023.1081605.

     

    Hong S Y, Liu M, Liu T, et al. 2022. Fault source model and stress changes of the 2021 MW7.4 Maduo earthquake, China, constrained by InSAR and GPS measurements. Bulletin of the Seismological Society of America, 112(3): 1284-1296, doi: 10.1785/0120210250.

     

    Hua W, Chen Z L, Zheng S H. 2009. A study on segmentation characteristics of aftershock source parameters of Wenchuan M8.0 earthquake in 2008. Chinese J. Geophys. (in Chinese), 52(2): 365-371.

     

    Huang Y H, Ellsworth W L, Beroza G C. 2017. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science Advances, 3(8): e1700772, doi: 10.1126/sciadv.1700772.

     

    Ide S, Beroza G C, Prejean S G, et al. 2003. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research: Solid Earth, 108(B5): 2271, doi: 10.1029/2001JB001617.

     

    Ji C, Archuleta R J, Wang Y F. 2022. Variability of spectral estimates of stress drop reconciled by radiated energy. Bulletin of the Seismological Society of America, 112(4): 1871-1885, doi: 10.1785/0120210321.

     

    Jin Z Y, Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake. Geophysical Research Letters, 48(21): e2021GL095213, doi: 10.1029/2021GL095213.

     

    Kanamori H. 1986. Rupture process of subduction-zone earthquakes. Annual Review of Earth and Planetary Sciences, 14: 293-322. doi: 10.1146/annurev.ea.14.050186.001453

     

    Kaneko Y, Shearer P M. 2014. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197(2): 1002-1015, doi: 10.1093/gji/ggu030.

     

    Kennett B L N. 1989. On the nature of regional seismic phases-I. Phase representations for Pn, Pg, Sn, Lg. Geophysical Journal, 98(3): 447-456. doi: 10.1111/j.1365-246X.1989.tb02281.x

     

    Kirkpatrick S, Gelatt C D, Vecchi M P. 1983. Optimization by simulated annealing. Science, 220(4598): 671-680. doi: 10.1126/science.220.4598.671

     

    Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10): 3849-3889, doi: 10.1002/2014GC005407.

     

    Li Y L, Wang C S, Dai J G, et al. 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review. Earth-Science Reviews, 143: 36-61, doi: 10.1016/j.earscirev.2015.01.001.

     

    Li Z F, Zhou B G. 2015. Analysis on the meaning of the asperity and barrier located on the seismic fault plane. Recent Developments in World Seismology (in Chinese), (5): 22-27, doi: 10.3696/j.issn.0235-4975.2015.05.005.

     

    Liang M J, Zhou R J, Yan L, et al. 2014. The relationships between neotectonic activity of the middle segment of Dari fault and its geomorphological response, Qinghai province, China. Seismology and Geology (in Chinese), 36(1): 28-38, doi: 10.3969/j.issn.0263-4967.2014.01.003.

     

    Liu C Y, Bai L, Hong S Y, et al. 2021. Coseismic deformation of the 2021 MW7.4 Maduo earthquake from joint inversion of InSAR, GPS, and teleseismic data. Earthquake Science, 34(5): 436-446, doi: 10.29382/eqs-2021-0050.

     

    Liu J, Zheng S H, Huang Y L. 2003. The inversion of non-elasticity coefficient, source parameters, site response using genetic algorithms. Acta Seismologica Sinica (in Chinese), 25(2): 211-218.

     

    Liu J H, Hu J, Li Z W, et al. 2022. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Science China Earth Sciences, 65(4): 687-697, doi: 10.1007/s11430-021-9868-9.

     

    Liu X W, Chen Q, Yang Y H, et al. 2022. The 2021 MW7.4 Maduo earthquake: coseismic slip model, triggering effect of historical earthquakes and implications for adjacent fault rupture potential. Journal of Geodynamics, 151: 101920, doi: 10.1016/j.jog.2022.101920.

     

    Ma X, Zhao L F, Xie X B, et al. 2023. Warm versus cold crust in the Tien Shan orogenic belt revealed by seismic Lg attenuation tomography. Geophysical Journal International, 233(3): 2142-2154, doi: 10.1093/gji/ggad055.

     

    Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3): 639-666. doi: 10.1785/BSSA0660030639

     

    Mayeda K, Malagnini L, Walter W R. 2007. A new spectral ratio method using narrow band coda envelopes: Evidence for non-self-similarity in the Hector Mine sequence. Geophysical Research Letters, 34(11): L11303, doi: 10.1029/2007GL030041.

     

    Mildon Z K, Roberts G P, Faure Walker J P, et al. 2019. Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard. Nature Communications, 10: 2744, doi: 10.1038/s41467-019-10520-6.

     

    Munafò I, Malagnini L, Chiaraluce L. 2016. On the relationship between MW and ML for small earthquakes. Bulletin of the Seismological Society of America, 106(5): 2402-2408, doi: 10.1785/0120160130.

     

    Munguía L, Brune J N. 1984. High stress drop events in the Victoria, Baja California earthquake swarm of 1978 March. Geophysical Journal International, 76(3): 725-752. doi: 10.1111/j.1365-246X.1984.tb01919.x

     

    Ni S D, Wang W T, Li L. 2010. The April 14th, 2010 Yushu earthquake, a devastating earthquake with foreshocks. Science China Earth Sciences, 53(6): 791-793, doi: 10.1007/s11430-010-0083-2.

     

    Nuttli O W. 1973. Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78(5): 876-885. doi: 10.1029/JB078i005p00876

     

    Ottemöller L. 2002. Lg wave Q tomography in Central America. Geophysical Journal International, 150(1): 295-302. doi: 10.1046/j.1365-246X.2002.01715.x

     

    Ottemöller L, Shapiro N M, Singh S K, et al. 2002. Lateral variation of Lg wave propagation in southern Mexico. Journal of Geophysical Research: Solid Earth, 107(B1): ESE 3-1 - ESE 3-13, doi: 10.1029/2001JB000206.

     

    Ottemöller L, Havskov J. 2003. Moment magnitude determination for local and regional earthquakes based on source spectra. Bulletin of the Seismological Society of America, 93(1): 203-214, doi: 10.1785/0120010220.

     

    Paige C C, Saunders M A. 1982. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1): 43-71. doi: 10.1145/355984.355989

     

    Pan J W, Bai M K, Li C, et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake. Acta Geologica Sinica (in Chinese), 95(6): 1655-1670.

     

    Pan J W, Li H B, Chevalier M L, et al. 2022. Co-seismic rupture of the 2021, M7.4 Maduo earthquake (northern Tibet): Short-cutting of the Kunlun fault big bend. Earth and Planetary Science Letters, 594: 117703, doi: 10.1016/j.epsl.2022.117703.

     

    Pasyanos M E, Matzel E M, Walter W R, et al. 2009. Broad-band Lg attenuation modelling in the Middle East. Geophysical Journal International, 177(3): 1166-1176, doi: 10.1111/j.1365-246X.2009.04128.x.

     

    Phillips W S, Hartse H E, Taylor S R, et al. 2000.1 Hz Lg Q tomography in Central Asia. Geophysical Research Letters, 27(20): 3425-3428. doi: 10.1029/2000GL011482

     

    Prieto G A, Shearer P M, Vernon F L, et al. 2004. Earthquake source scaling and self-similarity estimation from stacking P and S spectra. Journal of Geophysical Research: Solid Earth, 109(B8): B08310, doi: 10.1029/2004JB003084.

     

    Ren J J, Zhang Z W, Gai H L, et al. 2021. Typical Riedel shear structures of the coseismic surface rupture zone produced by the 2021 MW7.3 Maduo earthquake, Qinghai, China, and the implications for seismic hazards in the block interior. Natural Hazards Research, 1(4): 145-152, doi: 10.1016/j.nhres.2021.10.001.

     

    Ren J J, Xu X W, Zhang G W, et al. 2022. Coseismic surface ruptures, slip distribution, and 3D seismogenic fault for the 2021 MW7.3 Maduo earthquake, central Tibetan Plateau, and its tectonic implications. Tectonophysics, 827: 229275, doi: 10.1016/j.tecto.2022.229275.

     

    Ringdal F, Marshall P D, Alewine R W. 1992. Seismic yield determination of Soviet underground nuclear explosions at the Shagan river test site. Geophysical Journal International, 109(1): 65-77. doi: 10.1111/j.1365-246X.1992.tb00079.x

     

    Sarkar S, Jaiswal N, Singh C, et al. 2021. Source spectral studies using Lg wave in western Tibet. Journal of Seismology, 25(2): 625-638, doi: 10.1007/s10950-020-09971-y.

     

    Sato T, Hirasawa T. 1973. Body wave spectra from propagating shear cracks. Journal of Physics of the Earth, 21(4): 415-431. doi: 10.4294/jpe1952.21.415

     

    Schlittenhardt J. 2001. Teleseismic Lg of Semipalatinsk and Novaya Zemlya nuclear explosions recorded by the GRF (Gräfenberg) array: Comparison with regional Lg (BRV) and their potential for accurate yield estimation. Pure and Applied Geophysics, 158(11): 2253-2274, doi: 10.1007/PL00001148.

     

    Shaw B E, Richards-Dinger K, Dieterich J H. 2015. Deterministic model of earthquake clustering shows reduced stress drops for nearby aftershocks. Geophysical Research Letters, 42(21): 9231-9238, doi: 10.1002/2015GL066082.

     

    Shearer P M, Prieto G A, Hauksson E. 2006. Comprehensive analysis of earthquake source spectra in southern California. Journal of Geophysical Research: Solid Earth, 111(B6): B06303, doi: 10.1029/2005JB003979.

     

    Shearer P M, Abercrombie R E, Trugman D T, et al. 2019. Comparing EGF methods for estimating corner frequency and stress drop from P wave spectra. Journal of Geophysical Research: Solid Earth, 124(4): 3966-3986 doi: 10.1029/2018JB016957.

     

    Shearer P M, Abercrombie R E, Trugman D T. 2022. Improved stress drop estimates for M1.5 to 4 earthquakes in southern California from 1996 to 2019. Journal of Geophysical Research: Solid Earth, 127(7): e2022JB024243, doi: 10.1029/2022JB024243.

     

    Shen L, Zhao L F, Xie X B, et al. 2023. Stress drops calculated from seismic Lg-waves and their applications for investigating the typical earthquake sequences in the eastern margin of the Tibetan Plateau. Reviews of Geophysiscs and Planetary Physics (in Chinese), 54(5): 512-531, doi: 10.19975/j.dqyxx.2022-038.

     

    Street R. 1984. Some recent Lg phase displacement spectral densities and their implications with respect to the prediction of ground motions in Eastern North America. Bulletin of the Seismological Society of America, 74(2): 757-762. doi: 10.1785/BSSA0740020757

     

    Street R L, Herrmann R B, Nuttli O W. 1975. Spectral characteristics of the Lg wave generated by central United States earthquakes. Geophysical Journal International, 41(1): 51-63. doi: 10.1111/j.1365-246X.1975.tb05484.x

     

    Sumy D F, Neighbors C J, Cochran E S, et al. 2017. Low stress drops observed for aftershocks of the 2011 MW5.7 Prague, Oklahoma, earthquake. Journal of Geophysical Research: Solid Earth, 122(5): 3813-3834, doi: 10.1002/2016jb013153.

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677, doi: 10.1126/science.105978.

     

    Tocheport A, Rivera L, van der Woerd J. 2006. A study of the 14 November 2001 Kokoxili earthquake: history and geometry of the rupture from teleseismic data and field observations. Bulletin of the Seismological Society of America, 96(5): 1729-1741, doi: 10.1785/0120050200.

     

    Trugman D T, Shearer P M. 2017. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4): 2890-2910, doi: 10.1002/2017jb013971.

     

    Trugman D T. 2020. Stress-drop and source scaling of the 2019 Ridgecrest, California, earthquake sequence. Bulletin of the Seismological Society of America, 110(4): 1859-1871 doi: 10.1785/0120200009.

     

    Wang D J, Wang D Z, Zhao B, et al. 2022.2021 Qinghai MadoiMW7.4 earthquake coseismic deformation field and fault-slip distribution using GNSS observations. Chinese J. Geophys. (in Chinese), 65(2): 537-551, doi: 10.6038/cjg2022P0568.

     

    Wang S, Song C, Li S S, et al. 2022. Resolving co- and early post-seismic slip variations of the 2021 MW7.4 Madoiearthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data. Earth Planet. Phys. , 6(1): 108-122, doi: 10.26464/epp2022007.

     

    Wang W L, Fang L H, Wu J P, et al. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Science China Earth Sciences, 64(8): 1371-1380, doi: 10.1007/s11430-021-9803-3.

     

    Wang W M, He J K, Wang X, et al. 2022. Rupture process models of the Yangbi and Maduo earthquakes that struck the eastern Tibetan Plateau in May 2021. Science Bulletin, 67(5): 466-469, doi: 10.1016/j.scib.2021.11.009.

     

    Wu W W, Wu P, Wei Y L, et al. 2017. Regional characteristics of stress state of main seismic active faults in mid-northern part of Sichuan-Yunnan block. Chinese J. Geophys. (in Chinese), 60(5): 1735-1745, doi: 10.6038/cjg20170511.

     

    Wu W W, Long F, Liang M J, et al. 2020. Spatial and temporal variations in earthquake stress drops between the 2008 Wenchuan and 2013 Lushan earthquakes. Acta Geologica Sinica-English Edition, 94(5): 1635-1650, doi: 10.1111/1755-6724.14582.

     

    Wu Z L, Chen Y T, Mozaffari P. 1999. Scaling of stress drop and high-frequency fall-off of source spectra. Acta Seismol. Sinica (in Chinese), 21(5): 460-468.

     

    Xie J, Mitchell B J. 1990. Attenuation of multiphase surface waves in the Basin and Range province, part I: Lg and Lg coda. Geophysical Journal International, 102(1): 121-137. doi: 10.1111/j.1365-246X.1990.tb00535.x

     

    Xie X B, Zhao L F. 2018. The seismic characterization of North Korea underground nuclear tests. Chinese J. Geophys. (in Chinese), 61(3): 889-904, doi: 10.6038/cjg2018L0677.

     

    Xu Z G, Liang S S, Zhang G W, et al. 2021. Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021. Chinese J. Geophys. (in Chinese), 64(8): 2657-2670, doi: 10.6038/cjg2021P0390.

     

    Yang Z Q, Zhao D P, Dong Y P, et al. 2022. Crustal flow and fluids affected the 2021 M7.4 Maduo earthquake in Northeast Tibet. Journal of Asian Earth Sciences, 225: 105050, doi: 10.1016/j.jseaes.2021.105050.

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth & Planetary Sciences, 28: 211-280.

     

    Yue H, Shen Z K, Zhao Z Y, et al. 2022. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 119(23): e2116445119, doi: 10.1073/pnas.2116445119.

     

    Zhan Y, Liang M J, Sun X Y, et al. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi(Qinghai) MS7.4 earthquake. Chinese J. Geophys. (in Chinese), 64(7): 2232-2252, doi: 10.6038/cjg2021O0521.

     

    Zhang G W, Lei J S, Sun C Q. 2014. Relocation of the 12 February 2014 Yutian, Xinjiang, Mainshock (MS7.3) and its aftershock sequence. Chinese J. Geophys. (in Chinese), 57(3): 1012-1020, doi: 10.6038/cjg20140330.

     

    Zhang G W, Li Y J, Hu X P. 2022a. Nucleation mechanism of the 2021 MW7.4 Maduo earthquake, NE Tibetan Plateau: Insights from seismic tomography and numerical modeling. Tectonophysics, 839: 229528, doi: 10.1016/j.tecto.2022.229528.

     

    Zhang L, Zhao L F, Xie X B, et al. 2022b. Lateral variations in crustal Lg attenuation in and around the Hangay Dome, Mongolia. International Journal of Earth Sciences, 111(2): 591-606, doi: 10.1007/s00531-021-02131-8.

     

    Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Series S), 2003, 46 (Suppl. ): 13-24.

     

    Zhang X, Feng W P, Du H L, et al. 2022c. Supershear rupture during the 2021 MW7.4 Maduo, China, earthquake. Geophysical Research Letters, 49(6): e2022GL097984, doi: 10.1029/2022GL097984.

     

    Zhao C P, Chen Z L, Hua W, et al. 2011. Study on source parameters of small to moderate earthquakes in the main seismic active regions, China mainland. Chinese J. Geophys. (in Chinese), 54(6): 1478-1489, doi: 10.3969/j.issn.0001-5733.2011.06.007.

     

    Zhao L F, Xie X B, Wang W M, et al. 2008. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test. Bulletin of the Seismological Society of America, 98(6): 2571-2589, doi: 10.1785/0120080128.

     

    Zhao L F, Xie X B, He J K, et al. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography. Earth and Planetary Science Letters, 383: 113-122, doi: 10.1016/j.epsl.2013.09.038.

     

    Zhao L F, Mousavi S M. 2018. Lateral variation of crustal Lg attenuation in Eastern North America. Sci. Rep. , 8: 7285, doi: 10.1038/s41598-018-25649-5.

     

    Zhao L F, Xie X B, He X, et al. 2022. Seismic Lg-wave attenuation tomography: method, algorithm, data processing flow and application. Reviews of Geophysiscs and Planetary Physics (in Chinese), 53(6): 721-744, doi: 10.19975/j.dqyxx.2022-024.

     

    Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.

     

    Zhu L Y, Ji L Y, Liu C J. 2021. Interseismic slip rate and locking along the Maqin-Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, based on Sentinel-1 images. Journal of Asian Earth Sciences, 211: 104703, doi: 10.1016/j.jseaes.2021.104703.

     

    曹学来, 常利军, 鲁来玉等. 2022.2021年青海玛多MS7.4地震震源区横波分裂变化特征. 地球物理学报, 65(5): 1644-1659, doi: 10.6038/cjg2022P0944.

     

    冯雅杉, 熊熊, 单斌等. 2022.2021年玛多MS7.4地震导致的周边地区库仑应力加载及地震活动性变化. 中国科学: 地球科学, 52(6): 1100-1112, doi: 10.1360/SSTe-2021-0201.

     

    华卫, 陈章立, 郑斯华. 2009.2008年汶川8.0级地震序列震源参数分段特征的研究. 地球物理学报, 52(2): 365-371. http://www.geophy.cn/article/id/cjg_915

     

    李正芳, 周本刚. 2015. 地震断层面上凹凸体和障碍体含义的解析. 国际地震动态, (5): 22-27, doi: 10.3696/j.issn.0235-4975.2015.05.005.

     

    梁明剑, 周荣军, 闫亮等. 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨. 地震地质, 36(1): 28-38, doi: 10.3969/j.issn.0253-4967.2014.01.003.

     

    刘杰, 郑斯华, 黄玉龙. 2003. 利用遗传算法反演非弹性衰减系数、震源参数和场地响应. 地震学报, 25(2): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200302012.htm

     

    刘计洪, 胡俊, 李志伟等. 2022. 融合哨兵1号和ALOS-2数据的2021年青海玛多地震高精度三维同震形变场研究. 中国科学: 地球科学, 52(5): 882-892, doi: 10.1360/N072021-0172.

     

    倪四道, 王伟涛, 李丽. 2010.2010年4月14日玉树地震: 一个有前震的破坏性地震. 中国科学: 地球科学, 40(5): 535-537, doi: 10.1360/zd2010-40-5-535.

     

    潘家伟, 白明坤, 李超等. 2021.2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655-1670, doi: 10.19762/j.cnki.dizhixuebao.2021166.

     

    沈琳, 赵连锋, 谢小碧等. 2023. 利用Lg波计算地震应力降的方法及在青藏高原东缘典型震例中的应用. 地球与行星物理论评, 54(5): 512-531, doi: 10.19975/j.dqyxx.2022-038.

     

    王迪晋, 王东振, 赵斌等. 2022.2021年青海玛多MW7.4地震GNSS同震形变场及其断层滑动分布. 地球物理学报, 65(2): 537-551, doi: 10.6038/cjg2022P0568.

     

    王未来, 房立华, 吴建平等. 2021.2021年青海玛多MS7.4地震序列精定位研究. 中国科学: 地球科学, 51(7): 1193-1202, doi: 10.1360/SSTe-2021-0149.

     

    吴微微, 吴朋, 魏娅玲等. 2017. 川滇活动块体中-北部主要活动断裂带现今应力状态的分区特征. 地球物理学报, 60(5): 1735-1745, doi: 10.6038/cjg20170511.

     

    吴忠良, 陈运泰, Mozaffari P. 1999. 应力降的标度性质与震源谱高频衰减常数. 地震学报, 21(5): 462-468. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199905001.htm

     

    谢小碧, 赵连锋. 2018. 朝鲜地下核试验的地震学观测. 地球物理学报, 61(3): 889-904. http://www.geophy.cn/article/doi/10.6038/cjg2018L0677

     

    徐志国, 梁姗姗, 张广伟等. 2021.2021年5月22日青海玛多MS7.4地震发震构造分析. 地球物理学报, 64(8): 2657-2670, doi: 10.6038/cjg2021P0390.

     

    詹艳, 梁明剑, 孙翔宇等. 2022.2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式. 地球物理学报, 64(7): 2232-2252, doi: 10.6038/cjg2021O0521.

     

    张广伟, 雷建设, 孙长青. 2014.2014年2月12日新疆于田MS7.3级地震主震及余震序列重定位研究. 地球物理学报, 57(3): 1012-1020, doi: 10.6038/cjg20140330.

     

    张培震, 邓起东, 张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学: D辑, 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm

     

    赵翠萍, 陈章立, 华卫等. 2011. 中国大陆主要地震活动区中小地震震源参数研究. 地球物理学报, 54(6): 1478-1489, doi: 10.3969/j.issn.0001-5733.2011.06.007.

     

    赵连锋, 谢小碧, 何熹等. 2022. 地震Lg波衰减成像方法、算法、数据处理流程及应用. 地球与行星物理论评, 53(6): 721-744, doi: 10.19975/j.dqyxx.2022-024.

     

    郑秀芬, 欧阳飚, 张东宁等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-11-15
修回日期:  2023-06-10
上线日期:  2023-10-10

目录