2021年四川泸县M6.0地震发震机理及地震活动时空演化特征

李欣蔚, 张广伟, 谢卓娟, 李世杰, 吕悦军. 2022. 2021年四川泸县M6.0地震发震机理及地震活动时空演化特征. 地球物理学报, 65(11): 4284-4298, doi: 10.6038/cjg2022Q0045
引用本文: 李欣蔚, 张广伟, 谢卓娟, 李世杰, 吕悦军. 2022. 2021年四川泸县M6.0地震发震机理及地震活动时空演化特征. 地球物理学报, 65(11): 4284-4298, doi: 10.6038/cjg2022Q0045
LI XinWei, ZHANG GuangWei, XIE ZhuoJuan, LI ShiJie, LÜ YueJun. 2022. Seismogenic mechanism of the 2021 M6.0 Luxian earthquake and seismicity spatio-temporal characteristics around the source region. Chinese Journal of Geophysics (in Chinese), 65(11): 4284-4298, doi: 10.6038/cjg2022Q0045
Citation: LI XinWei, ZHANG GuangWei, XIE ZhuoJuan, LI ShiJie, LÜ YueJun. 2022. Seismogenic mechanism of the 2021 M6.0 Luxian earthquake and seismicity spatio-temporal characteristics around the source region. Chinese Journal of Geophysics (in Chinese), 65(11): 4284-4298, doi: 10.6038/cjg2022Q0045

2021年四川泸县M6.0地震发震机理及地震活动时空演化特征

  • 基金项目:

    中央级公益性科研院所基本科研业务专项(ZDJ2020-09)资助

详细信息
    作者简介:

    李欣蔚, 女, 1998年生, 在读硕士研究生, 主要从事地震活动性研究. E-mail: lixinwei_03@163.com

    通讯作者: 吕悦军, 男, 1966年生, 研究员, 主要从事地震安全性评价、地震区划等方面的研究. E-mail: Luyj1@263.net
  • 中图分类号: P315

Seismogenic mechanism of the 2021 M6.0 Luxian earthquake and seismicity spatio-temporal characteristics around the source region

More Information
  • 2021年9月16日四川泸县发生M6.0地震, 该地震发震构造不明, 发震机理尚存在争议.地震精定位和震源机制有助于分析地震活动时空演化与震源破裂特征, 能够有效揭示活动构造机制和地震发生机理, 为评估区域地震危险性提供科学依据.为此, 本文首先采用双差定位法对震中及附近2009年1月至2021年10月发生的地震进行了精定位, 结果显示, 研究区地震震源深度大多集中在10 km范围内, 事件主要沿地表断层呈条带状或丛集分布, 部分震群邻近当地工业井, 周边无明显断层分布.其次, 通过CAP波形反演计算得到M≥3.5地震的震源机制解, 表明研究区震源破裂以逆冲挤压型为主, 部分震源机制解具有不确定性.基于震源机制解反演区域应力场, 进一步探讨了区域应力场与地震事件的力学一致性.研究结果显示, 区域应力场以水平构造挤压作用为主, 部分事件震源机制解与其吻合度较低, 暗示存在局部应力差异.综合地震活动时空演化特征、已知断层展布以及区域应力场等研究结果, 认为华蓥山断裂带南段的地震活动与资源开采活动密切相关, 泸县M6.0地震是在局部应力场扰动下, 下方滑脱层活动触发了上覆隐伏断层的挤压错动而产生.

  • 加载中
  • 图 1 

    (a) 华蓥山断裂带南段及周边地区断裂、台站分布及研究区(黑色方框)地震分布;(b) 研究区断层及工业井分布

    Figure 1. 

    (a)The distribution of faults and stations in the southern section of the Huayingshan fault and its surrounding areas, and the distribution of earthquakes in the study area (the black box); (b) The location of faults and industrial wells in the study area

    图 2 

    2009年1月—2021年10月M-T图(M≥1.0)(a)和应变释放曲线(M≥3.0)(b) (统计区域: 28.75°N—29.75°N,105°E—106°E)

    Figure 2. 

    M-T diagram (M≥1.0) (a) and strain release curve (M≥3.0) (b) between January 2009 and October 2021

    图 3 

    (a) 速度模型;(b) P波和S波观测走时曲线

    Figure 3. 

    (a) Velocity model; (b) Observed travel time curves of the P and S wave

    图 4 

    地震精定位在东西(a)、南北(b)、垂直(c)方向的相对误差分布

    Figure 4. 

    The relative errors in east-west (a), north-south (b), vertical (c) directions

    图 5 

    (a) 精定位前地震震中分布图;(b) 精定位后地震震中分布图

    Figure 5. 

    (a) Distribution of epicenters before relocation; (b) Distribution of epicenters after relocation

    图 6 

    2021年9月16日泸县M6.0地震震源机制解及理论(红色)和实际(黑色)波形对比图

    Figure 6. 

    Focal mechanism solution and comparison between synthetic (red) and observed (black) waveforms of the 16 September 2021 M6.0 Luxian earthquake

    图 7 

    2021年9月16日泸县M6.0地震在不同深度上的震源机制解及其拟合残差

    Figure 7. 

    Focal mechanism solutions and RMS of the 16 September 2021M6.0 Luxian earthquake at different depths

    图 8 

    使用Bootstrap法重抽样得到泸县M6.0地震及部分事件的震源参数(走向,倾角,滑动角)分布直方图

    Figure 8. 

    Distribution histograms of source parameters (strike, dip, rake) related to the M6.0 Luxian earthquake and partial events with the Bootstrap method

    图 9 

    (a) M≥3.5地震的震源机制解;(b) 研究区应力场反演结果;(c) 泸县M6.0地震及事件7、8、9、10、11的应力场反演结果

    Figure 9. 

    (a) Focal mechanism solutions of M≥3.5 earthquakes; (b) The stress filed inversion result in study region; (c) The stress filed inversion result of the Luxian M6.0 earthquake and events 7, 8, 9, 10 and 11

    图 10 

    泸县及周边地区三维速度结构

    Figure 10. 

    Three-dimensional velocity structure in Luxian and its surrounding areas

    图 11 

    精定位后地震平面及深度剖面图

    Figure 11. 

    Map view and vertical cross sections of relocated earthquake sequence

    图 12 

    不同时间段地震平面图及剖面线AA′的深度剖面图

    Figure 12. 

    Relocation earthquakes in map view and along cross-section AA′ at different periods

    图 13 

    M≥3.5地震震源机制解与区域应力场的力学一致性

    Figure 13. 

    Results of mechanical fitting between the stress filed and focal mechanism solutions of M≥3.5 earthquakes

    表 1 

    不同研究得到的泸县M6.0地震的震源机制解

    Table 1. 

    Focal mechanism solutions of the Luxian M6.0 earthquake provided by different researches

    来源 节面Ⅰ 节面Ⅱ 矩心深度/km 矩震级/MW
    走向/(°) 倾角/(°) 滑动角/(°) 走向/(°) 倾角/(°) 滑动角/(°)
    中国地震局地球物理研究所(IGP)1) 293 39 96 105 51 85 6.0 5.30
    美国地质调查局(USGS)2) 279 32 67 125 61 104 11.5 5.44
    易桂喜等(2021) 286 45 103 88 46 77 3.5 5.36
    本研究 298 43 101 103 48 80 4.3 5.39
    注:1) https://www.cea-igp.ac.cn/kydt/278529.html;2) https://earthquake.usgs.gov/earthquakes/eventpage/us7000fbky/moment-tensor.
    下载: 导出CSV

    表 2 

    研究区M≥3.5地震的震源机制解

    Table 2. 

    Focal mechanism solutions of M≥3.5 earthquakes

    序号发震时间 震中位置 节面Ⅰ(°) 节面Ⅱ(°) 矩心深度(km) 震级(MW)
    年-月-日 时∶分 Lon(°E) Lat(°N) Strike/Dip/Rake Strike/Dip/Rake
    1 2009-02-16 05∶13 105.01 29.40 152/34/80 344/57/97 3.3 3.85
    2 2009-05-22 01:15 105.01 29.37 151/35/81 342/55/96 3.5 3.88
    3 2009-07-06 05:39 105.53 29.38 42/44/100 208/47/80 2.9 3.77
    4 2009-11-20 00:09 105.60 28.95 230/44/83 60/46/97 2.4 4.02
    5 2010-02-22 21:32 105.46 29.36 30/34/93 206/56/88 3.2 4.17
    6 2011-11-06 05:34 105.07 29.40 360/61/89 181/29/92 2.5 3.99
    7 2012-11-10 22:19 105.22 29.32 322/46/89 143/44/91 2.2 4.01
    8 2012-11-11 06:01 105.23 29.32 319/54/91 137/36/89 2.3 4.18
    9 2012-11-11 08:59 105.24 29.31 140/34/81 331/56/96 2.7 4.23
    10 2012-12-25 06:03 105.23 29.32 142/46/88 325/44/92 3.0 3.61
    11 2013-01-18 18:22 105.21 29.34 328/42/110 122/51/73 1.8 3.71
    12 2013-03-24 16:07 105.14 29.38 348/45/89 169/45/91 2.8 3.75
    13 2021-07-23 20:55 105.50 29.27 19/33/91 198/57/89 3.0 4.14
    14 2021-09-16 04:33 105.34 29.20 298/43/101 103/48/80 4.3 5.39
    下载: 导出CSV

    表 3 

    研究区应力场反演结果

    Table 3. 

    The inversion result of the stress field

    应力轴 方位角/(°) 倾俯角/(°) 形状比R
    σ1 127.58 3.29 0.04
    σ2 217.65 1.18
    σ3 327.36 86.50
    下载: 导出CSV
  •  

    Angelier J. 2002. Inversion of earthquake focal mechanisms to obtain the seismotectonic stress Ⅳ—a new method free of choice among nodal planes. Geophysical Journal International, 150(3): 588-609, doi: 10.1046/j.1365-246X.2002.01713.x.

     

    Chen H C, Meng X B, Niu F L, et al. 2018. Microseismic monitoring of stimulating shale gas reservoir in SW China: 2. Spatial clustering controlled by the preexisting faults and fractures. Journal of Geophysical Research: Solid Earth, 123(2): 1659-1672, doi: 10.1002/2017JB014491.

     

    Deng B. 2013. Meso-Cenozoic Architecture of Basin-mountain system in the Sichuan basin and its gas distribution (in Chinese). Chengdu: Chengdu University of Technology.

     

    Deng Q D. 2007. Map of Active Tectonics in China (1∶4000000) (in Chinese). Beijing: Seismological Press.

     

    Efron B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1): 1-26.

     

    Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1): 54-75.

     

    Fang L H, Wu J P, Su J R, et al. 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake. Chinese Science Bulletin (in Chinese), 63(7): 649-662.

     

    Fang L H, Wu J P, Wang W L, et al. 2014. Relocation of the aftershock sequence of the MS6.5 Ludian earthquake and its seismogenic structure. Seismology and Geology (in Chinese), 36(4): 1173-1185, doi: 10.3969/j.issn.0253-4967.2014.04.019.

     

    Gao Y, Shi Y T, Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake. Chinese Science Bulletin (in Chinese), 63(19): 1934-1948. doi: 10.1360/N972018-00317

     

    He D F, Lu R Q, Huang H Y, et al. 2019. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China. Petroleum Exploration and Development (in Chinese), 46(5): 993-1006.

     

    He H B. 2012. Geometry and kinematics structures of the Huayingshan Mountains: Implications to relationships between Central Sichuan and East Sichuan block (in Chinese). Beijing: China University of Geosciences.

     

    He L P, Wu Q M, Chen X W, et al. 2021. Detailed 3D seismic velocity structure of the Prague, Oklahoma fault zone and the implications for induced seismicity. Geophysical Research Letters, 48(24): e2021GL096137, doi: 10.1029/2021GL096137.

     

    Hu X H, Sheng S Z, Wan Y G, et al. 2020. Study on focal mechanism and post-seismic tectonic stress field of the Changning, Sichuan, earthquake sequence on June 17th 2019. Progress in Geophysics (in Chinese), 35(5): 1675-1681, doi: 10.6038/pg2020DD0378.

     

    Hu X P, Cui X F, Zhang G W, et al. 2021. Analysis on the mechanical causes of the complex seismicity in Changning area, China. Chinese Journal of Geophysics (in Chinese), 64(1): 1-17, doi: 10.6038/cjg2021O0232.

     

    Huang Y, Li Q H, Zhang Y S, et al. 2008. Relocation of earthquakes in Jiangsu and neighboring areas, China and analysis of structural features. Chinese Journal of Geophysics (in Chinese), 51(1): 175-185. doi: 10.3321/j.issn:0001-5733.2008.01.022

     

    Lei X L, Li X Y, Li Q, et al. 2014. Role of immature faults in injection-induced seismicity in oil/gas reservoirs — a case study of the Sichuan Basin, China. Seismology and Geology (in Chinese), 36(3): 625-643, doi: 10.3969/j.issn.0253-4967.2014.03.007.

     

    Lei X L, Su J R, Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities. Science China Earth Sciences, 63(11): 1633-1660, doi: 10.1007/s11430-020-9646-x.

     

    Lei X L, Wang Z W, Su J R. 2019a. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China. Earth and Planetary Physics, 3(6): 510-525, doi: 10.26464/epp2019052.

     

    Lei X L, Wang Z W, Su J R. 2019b. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in South Sichuan basin induced by shale gas hydraulic fracturing. Seismological Research Letters, 90(3): 1099-1110, doi: 10.1785/0220190029.

     

    Li Y Z, Li H Y, Zhang L F, et al. 2020. Microseismic detection and tectonic analysis near Yancheng, Jiangsu Province based on matching and location method. Earthquake Research in China (in Chinese), 36(3): 581-593.

     

    Liang S S, Xu Z G, Sheng S Z, et al. 2020. Focal mechanism solutions and stress field of the 2019 Changning, Sichuan mainshock and its moderate-strong aftershocks(MS≥4.0). Seismology and Geology (in Chinese), 42(3): 547-561.

     

    Liang S S, Xu Z G, Zhang G W, et al. 2021. Geometric complexity of fault system in the source region of the 2021 Yangbi, Yunnan, MS6.4 earthquake. Seismology and Geology (in Chinese), 43(4): 827-846. doi: 10.3969/j.issn.0253-4967.2021.04.006

     

    Liu S G, Deng B, Zhong Y, et al. 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Science Frontiers (in Chinese), 23(1): 11-28.

     

    Long F, Zhang Z W, Qi Y P, et al. 2020. Three dimensional velocity structure and accurate earthquake location in Changning-Gongxian area of southeast Sichuan. Earth and Planetary Physics, 4(2): 163-177, doi: 10.26464/epp2020022.

     

    Luo Y, Zeng X F, Ni S D. 2013. Progress on the determination of focal depth. Progress in Geophysics (in Chinese), 28(5): 2309-2321, doi: 10.6038/pg20130513.

     

    Luo Y, Zhao L, Tian J H. 2020. The focal depths of the 2008 Panzhihua earthquake sequence and the stress field in the source region. Science China Earth Sciences, 63(3): 439-451, doi: 10.1007/s11430-018-9441-6.

     

    Ma X H, Xie J, Yong R, et al. 2020. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China. Petroleum Exploration and Development (in Chinese), 47(5): 841-855.

     

    Michael A J. 1984. Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13): 11517-11526, doi: 10.1029/JB089iB13p11517.

     

    Qin W C, Luo Z F. 1980. A discussion on the seismogeological conditions of the Huayingshan fault zone. Journal of Southwest China Normal University (in Chinese), (1): 45-58.

     

    Sheng Q, Xie X S. 2010. New discovery of late-quaternary right-lateral and reverse displacement in Huayingshan Fault Zone in Gao County, Sichuan Province. Bulletin of the Institute of Crustal Dynamics (in Chinese), 22: 1-10.

     

    Shimazaki K, Nakata T. 1980. Time-predictable recurrence model for large earthquakes. Geophysical Research Letters, 7(4): 279-282, doi: 10.1029/GL007i004p00279.

     

    Sichuan Earthquake Administration (2021-09-20). 2021. Intensity map of the M6.0 Sichuan Luxian earthquake. http://www.scdzj.gov.cn/xwzx/fzjzyw/202109/t20210920_50114.html.

     

    The Earthquake Disaster Prevention Department of the State Seismological Bureau. 1995. Catalogue of Chinese Historical Strong Earthquakes (in Chinese). Beijing: Seismological Press.

     

    Vavryčuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1): 69-77, doi: 10.1093/gji/ggu224.

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368, doi: 10.1785/0120000006.

     

    Wang M M, Hubbard J, Plesch A, et al. 2016. Three-dimensional seismic velocity structure in the Sichuan basin, China. Journal of Geophysical Research: Solid Earth, 121(2): 1007-1022, doi: 10.1002/2015JB012644.

     

    Wang S Y. 1999. The Catalogue of Chinese Modern Earthquakes (in Chinese). Beijing: China Science and Technology Press.

     

    Wang X L, Ma S L, Lei X L, et al. 2011. Monitoring of injection-induced seismicity at Rongchang, Chongqing. Seismology and Geology (in Chinese), 33(1): 151-156.

     

    Wang X S, Lü J, Xie Z J, et al. 2015. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chinese Journal of Geophysics (in Chinese), 58(11): 4149-4162, doi: 10.6038/cjg20151122.

     

    Wang Z J, Wang H C, Dong D, et al. 2018. Review of geophysical results of Huayingshan Fault Zone. Earthquake Research in Sichuan (in Chinese), (3): 6-12.

     

    Wang Z W. 2020. Effect of fluid on seismicity of fault zone—case studies in Sichuan—Yunnan region (in Chinese). Beijing: Institute of Geology, China Earthquake Administration.

     

    Wang Z W, Wang X L, Ma S L, et al. 2018. Detailed temporal-spatial distribution of induced earthquakes by water injection in Rongchang, Chongqing. Seismology and Geology (in Chinese), 40(3): 523-538.

     

    Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002.

     

    Wessel P, Luis J F, Uieda L, et al. 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564, doi: 10.1029/2019GC008515.

     

    Wong W C J, Zi J P, Yang H F, et al. 2021. Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation. Earth and Planetary Physics, 5(6), 485-500, doi: 10.26464/epp2021055.

     

    Xie Z J, Lü Y J, Fang Y, et al. 2017. Relocated seismicity and its relation with active faults in Beijing-Tianjin-Hebei area. Earthquake (in Chinese), 37(3): 72-83.

     

    Yan D P, Zhou M F, Song H L, et al. 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics, 361(3-4): 239-254, doi: 10.1016/S0040-1951(02)00646-7.

     

    Yan J G, Wang L B, Tan Q. 2013. Initial focal depth impact on depth of double difference earthquake relocation. Journal of Geodesy and Geodynamics (in Chinese), 33(S1): 41-44.

     

    Yang S W. 2015. Tectonic characteristics of Paleozoic in southern Sichuan region and its effects on shale gas preservation (in Chinese). Jingzhou: Yangtze University.

     

    Yi G X, Long F, Liang M J, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence. Chinese Journal of Geophysics (in Chinese), 62(9): 3432-3447, doi: 10.6038/cjg2019N0297.

     

    Yi G X, Long F, Liang M J, et al. 2020. Geometry and tectonic deformation of seismogenic structures in the Rongxian-Weiyuan-Zizhong region, Sichuan Basin: insights from focal mechanism solutions. Chinese Journal of Geophysics (in Chinese), 63(9): 3275-3291, doi: 10.6038/cjg2020O0095.

     

    Yi G X, Zhao M, Long F, et al. 2021. Characteristics of the seismic sequence and seismogenic environment of the MS6.0 Sichuan Luxian earthquake on September 16, 2021. Chinese Journal of Geophysics (in Chinese), 64(12): 4449-4461, doi: 10.6038/cjg2021O0533.

     

    Zhang G W, Lei J S, Liang S S, et al. 2014. Relocations and focal mechanism solutions of the 3 August 2014 Ludian, Yunnan MS6.5 earthquake sequence. Chinese Journal of Geophysics (in Chinese), 57(9): 3018-3027, doi: 10.6038/cjg20140926.

     

    Zhang Y Q. 2020. Seismogenic structures of the south Sichuan basin seismic zone and its neotectonic setting. Acta Geologica Sinica (in Chinese), 94(11): 3161-3177.

     

    Zhang Z W, Cheng W Z, Liang M J, et al. 2012. Study on earthquakes induced by water injection in Zigong-Longchang area, Sichuan. Chinese Journal of Geophysics (in Chinese), 55(5): 1635-1645, doi: 10.6038/j.issn.0001-5733.2012.05.021.

     

    Zhang Z W, Liang C T, Long F, et al. 2022. Spatiotemporal Variations of Focal Mechanism Solutions and Stress Field of the 2019 Changning MS 6.0 Earthquake Sequence. Frontiers in Earth Science, 9: 797907, doi: 10.3389/feart.2021.797907.

     

    Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1): 91-104.

     

    Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.

     

    Zhou R J, Tang R C, Qian H, et al. 1997. An application of seismotectonic analogy to the Huayingshan fault zone in east Sichuan. Journal of Seismological Research (in Chinese), 20(3): 316-322.

     

    Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5): 1634-1641, doi: 10.1785/BSSA0860051634.

     

    Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3): 619-627, doi: 10.1046/j.1365-246X.2002.01610.x.

     

    邓宾. 2013. 四川盆地中-新生代盆-山结构与油气分布. 成都: 成都理工大学.

     

    邓起东. 2007. 中国活动构造图(1: 400万). 北京: 地震出版社.

     

    房立华, 吴建平, 王未来等. 2014. 云南鲁甸MS6.5地震余震重定位及其发震构造. 地震地质, 36(4): 1173-1185, doi: 10.3969/j.issn.0253-4967.2014.04.019.

     

    房立华, 吴建平, 苏金蓉等. 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位. 科学通报, 63(7): 649-662. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201807007.htm

     

    高原, 石玉涛, 陈安国. 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响. 科学通报, 63(19): 1934-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201819010.htm

     

    国家地震局震害防御司. 1995. 中国历史强震目录. 北京: 地震出版社.

     

    何登发, 鲁人齐, 黄涵宇等. 2019. 长宁页岩气开发区地震的构造地质背景. 石油勘探与开发, 46(5): 993-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905021.htm

     

    贺鸿冰. 2012. 华蓥山构造带的构造几何学与运动学及其对川东与川中地块作用关系的启示. 北京: 中国地质大学.

     

    胡晓辉, 盛书中, 万永革等. 2020. 2019年6月17日四川长宁地震序列震源机制与震源区震后构造应力场研究. 地球物理学进展, 35(5): 1675-1681, doi: 10.6038/pg2020DD0378.

     

    胡幸平, 崔效锋, 张广伟等. 2021. 长宁地区复杂地震活动的力学成因分析. 地球物理学报, 64(1): 1-17, doi: 10.6038/cjg2021O0232. http://www.geophy.cn/article/doi/10.6038/cjg2021O0232

     

    黄耘, 李清河, 张元生等. 2008. 江苏及邻区地震重新定位和构造特征分析. 地球物理学报, 51(1): 175-185. http://www.geophy.cn/article/id/cjg_191

     

    雷兴林, 李霞颖, 李琦等. 2014. 沉积岩储藏系统小断层在油气田注水诱发地震中的作用——以四川盆地为例. 地震地质, 36(3): 625-643, doi: 10.3969/j.issn.0253-4967.2014.03.007.

     

    李炎臻, 李红谊, 张力方等. 2020. 基于模板匹配定位法的江苏盐城附近微震检测和构造分析. 中国地震, 36(3): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202003020.htm

     

    梁姗姗, 徐志国, 盛书中等. 2020. 2019年四川长宁6.0级地震主震及中强余震(M≥4.0)的震源机制及其应力场. 地震地质, 42(3): 547-561. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202003001.htm

     

    梁姗姗, 徐志国, 张广伟等. 2021. 2021年云南漾濞MS6.4地震震源区断层系统的几何复杂性. 地震地质, 43(4): 827-846. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202104006.htm

     

    刘树根, 邓宾, 钟勇等. 2016. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm

     

    罗艳, 曾祥方, 倪四道. 2013. 震源深度测定方法研究进展. 地球物理学进展, 28(5): 2309-2321, doi: 10.6038/pg20130513.

     

    罗艳, 赵里, 田建慧. 2020. 2008年8月30日攀枝花MS6.1地震序列深度及震源区应力特征. 中国科学: 地球科学, 50(3): 404-417. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202003007.htm

     

    马新华, 谢军, 雍锐等. 2020. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素. 石油勘探与开发, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

     

    秦万成, 罗正富. 1980. 华蓥山断裂带地震地质条件的探讨. 西南师范学院学报, (1): 45-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK198001006.htm

     

    盛强, 谢新生. 2010. 四川华蓥山断裂带晚第四纪逆走滑特征及地震意义. 地壳构造与地壳应力文集, 22: 1-10.

     

    四川省地震局(2021-09-20). 2021. 四川泸县6.0级地震烈度图发布. http://www.scdzj.gov.cn/xwzx/fzjzyw/202109/t20210920_50114.html.

     

    汪素云. 1999. 中国近代地震目录. 北京: 中国科学技术出版社.

     

    王小龙, 马胜利, 雷兴林等. 2011. 重庆荣昌地区注水诱发地震加密观测. 地震地质, 33(1): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101017.htm

     

    王晓山, 吕坚, 谢祖军等. 2015. 南北地震带震源机制解与构造应力场特征. 地球物理学报, 58(11): 4149-4162, doi: 10.6038/cjg20151122. http://www.geophy.cn/article/doi/10.6038/cjg20151122

     

    王赞军, 王宏超, 董娣等. 2018. 华蓥山断裂带的物探成果综述. 四川地震, (3): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ201803002.htm

     

    王志伟, 王小龙, 马胜利等. 2018. 重庆荣昌地区注水诱发地震的时空分布特征. 地震地质, 40(3): 523-538. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201803002.htm

     

    王志伟. 2020. 流体对断层带地震活动性的影响——川滇地区若干实例研究. 北京: 中国地震局地质研究所.

     

    谢卓娟, 吕悦军, 方怡等. 2017. 京津冀地区地震重新定位及其与活动断裂的关系. 地震, 37(3): 72-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201703008.htm

     

    闫俊岗, 王利兵, 谭青. 2013. 初始震源深度对双差地震定位深度的影响分析. 大地测量与地球动力学, 33(S1): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB2013S1011.htm

     

    杨淑雯. 2015. 川南地区古生界构造特征及其对页岩气保存条件的影响. 荆州: 长江大学.

     

    易桂喜, 龙锋, 梁明剑等. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析. 地球物理学报, 62(9): 3432-3447, doi: 10.6038/cjg2019N0297. http://www.geophy.cn/article/doi/10.6038/cjg2019N0297

     

    易桂喜, 龙锋, 梁明剑等. 2020. 四川盆地荣县—威远—资中地区发震构造几何结构与构造变形特征: 基于震源机制解的认识和启示. 地球物理学报, 63(9): 3275-3291, doi: 10.6038/cjg2020O0095. http://www.geophy.cn/article/doi/10.6038/cjg2020O0095

     

    易桂喜, 赵敏, 龙锋等. 2021. 2021年9月16日四川泸县MS6.0地震序列特征及孕震构造环境. 地球物理学报, 64(12): 4449-4461, doi: 10.6038/cjg2021O0533. http://www.geophy.cn/article/doi/10.6038/cjg2021O0533

     

    张广伟, 雷建设, 梁姗姗等. 2014. 2014年8月3日云南鲁甸MS6.5级地震序列重定位与震源机制研究. 地球物理学报, 57(9): 3018-3027, doi: 10.6038/cjg20140926. http://www.geophy.cn/article/doi/10.6038/cjg20140926

     

    张岳桥. 2020. 四川盆地南部地震区发震构造及其新构造背景. 地质学报, 94(11): 3161-3177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202011001.htm

     

    张致伟, 程万正, 梁明剑等. 2012. 四川自贡—隆昌地区注水诱发地震研究. 地球物理学报, 55(5): 1635-1645, doi: 10.6038/j.issn.0001-5733.2012.05.021. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.05.021

     

    郑秀芬, 欧阳飚, 张东宁等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2009.05.031

     

    周荣军, 唐荣昌, 钱洪等. 1997. 地震构造类比法的应用——以川东地区华蓥山断裂带为例. 地震研究, 20(3): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ703.010.htm

  • 加载中

(13)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-01-17
修回日期:  2022-06-30
上线日期:  2022-11-10

目录