多隐层 BP 神经网络模型 在径流预测中的应用

崔东文

(云南省文山州水务局,云南 文山 663000)

摘 要:基于人工神经网络基本原理和方法,构建多隐层 BP 神经网络径流预测模型,以新疆伊犁河雅 马渡站径流预测为例进行分析,并构建常规单隐层 BP 以及 RBF、GRNN 神经网络模型作为对比分析模 型,将各模型预测结果与文献[1]中的预测结果进行比较,结果表明:(1)多隐层 BP 神经网络径流预测模 型泛化能力强,预测精度高,算法稳定,模型精度优于 IEA-BP 网络模型,表明研究建立的多隐层 BP 神经 网络模型用于径流预测是合理可行的,是一种可以应用于水文径流预测预报的新方法。(2)RBF、 GRNN 神经网络径流预测模型预测精度高于常规单隐层 BP 网络模型,且 RBF 与 GRNN 神经网络模型具 有收敛速度快、预测精度高、调整参数少,不易陷入局部极小值等优点,可以更快地预测网络,具有较大 的计算优势。

关键词:多隐层 BP 神经网络;RBF 神经网络;GRNN 神经网络;单隐层 BP 神经网络;径流预测 中图分类号: TV12 **文献标识码:** A **文章编号:** 1000-0852(2013)01-0068-06

1 引言

BP 网络(Back-Propagation Network, BP)具有高度 的非线性映射能力,结构简单,性能良好,是 ANN 最为 常用的神经网络类型之一、在水文过程模拟和预报中 显示出比传统时间序列方法更为有效和便捷,广泛运 用于径流预测^[2-6]。但如何保证较高的预测精度一直是 BP 网络应用的核心问题,为此人们从各个角度去探索 径流预测的新方法^[7]。普遍认为单层 BP 网络原理简单. 收敛速度慢,容易陷入局部极值而得不到全局最优¹¹. 针对这一问题,基于各种智能算法优化 BP 网络权值和 阈值的径流预测模型应运而生,如基于遗传算法[8-10]、 粒子群算法□□、蚁群算法□□、免疫进化算法□□、模拟退火 算法^[13]以及人工鱼群算法^[14]等的 BP 网络径流预测模 型,在径流预测预报中取得了较好预测精度和应用效 果。目前,应用于优化 BP 网络最为常见的智能算法是 遗传算法,其主要用于优化网络结构,及网络权、阈值, 一般优化后的 BP 网络预测精度高于未优化的 BP 网 络,但算法也存在局限性,其一是只能有限提高原有

BP 网络的预测精度;其二是对于结构优化算法,由于 权、阈值随机初始化,相同结构网络每次预测结果均不 相同,算法优化效果有限,目前该算法主要用于优化网 络权、阈值。且由于 BP 网络结构和权阈值的个体编码 长度不同,个体间无法进行交叉操作,因此基于遗传 算法同时优化 BP 网络结构和权阈值的算法可用性不 高^[15]。基于此,本文以一个径流预测实例为基础,构建 多隐层 BP 神经网络径流预测模型,并与常规单隐层 BP、RBF、GRNN 网络模型以及 IEA-BP 网络模型的预 测结果进行对比,结果表明多隐层 BP 网络模型预测 精度高、算法稳定,可为径流预测预报提供了一种新 的方法和途径。

2 多隐层 BP 神经网络模型

由非线性变换单元组成的 BP 神经网络,不仅结构简单,而且具有良好的非线性映射能力,广泛应用于 水文预测预报等领域。根据隐含层数的多少,BP 网络 可以划分为单隐层和多隐层网络,隐层数的选择在神 经网络的应用中是一个复杂的问题,适合的隐层数目

收稿日期:2011-09-06

作者简介:崔东文(1978-),男,云南玉溪人,高级工程师,学士,主要从事水资源水环境研究及水资源保护等工作。E-mail:Ledwgr@163.com

及节点数决定于训练样本的多少、样本噪音的大小以 及所面对问题的复杂程度等多种因素^[16]。理论上,一个 三层的 BP 网络已能映射或逼近任何有理函数,故常 采用含有一个隐层的 BP 网络^[17-18]。研究表明,同单隐 层相比,多隐层 BP 网络泛化能力强,预测精度高。其 隐层层数的选择需从网络精度和训练时间上考虑,对 于较简单的映射关系,在精度满足需求时可选择单隐 层,以求网络速度;对于复杂的映射关系,可选择多隐 层,以期提高网络的预测精度^[15,17-18]。

多隐层 BP 神经网络的拓扑结构如图 1 所示[17-19]。

Fig.1 Multi-hidden-layer BP neural network model structure

图 1 为多隐层 BP 神经网络结构图。图中设有输入 $x_1(t), x_2(t), ..., x_n(t), 输出 x_1^L(t), x_2^L(t), ..., x_n^L(t)$ 和若干隐 层组成的多输入和多输出神经网络模型, L 表示网络层 数(不包括输入层)。若 N_l 表示第 l 层神经元数目, $x_i(t)$ 表 示第 t 个模式输入矢量 x(t)的第 i 个分量, $x_i^{(0)}(t)$ 表示第 l 层中第 i 个神经元节点第 t 个模式输入时的输出, $y_i^{(0)}(t)$ 表示第 l 层中第 i 个神经元节点第 t 个模式输入时所接 收到上一层的信息输入总和, $\omega_{ij}^{(0)}(t)$ 表示第 l 层中第 i 个 神经元节点第 t 个模式输入时第 j 个连接权矢量, $d_i^{(0)}(t)$ 表示第 l 层中第 i 个神经元节点第 t 个模式输入时的期 望输出, $\theta_i^{(0)}(t)$ 表示第 l 层中第 i 个神经元节点第 t 个模 式输入时的偏值, $\varepsilon_i^{(0)}(t)$ 表示第 层中第 i 个神经元节点第 t 个模式输入时的误差信号。

$$x_i^0(t) = x_i(t); \qquad 1 \le i \le N \qquad (1)$$

在学习过程中,偏值 $\theta_i^{(l)}(t)$ 作为一个权值来处理,有:

$$\begin{cases} \omega_{0}^{(l)}(t) = 1 \\ \omega_{i0}^{(l+1)}(t) = \theta_{i}^{(l+1)}(t) \end{cases} \quad 1 \le i \le N_{l+1}, \ 1 \le l \le L-1$$
(2)

第 *l* 层中第 *i* 个神经元节点所接收到上一层的信息输 入总和为:

$$y_{i}^{(l)}(t) = \sum_{j=1}^{N_{l-1}} \omega_{ij}^{(l)}(t) x_{j}^{(l-1)}(t) + \theta_{i}^{(l)}(t)$$

$$=\sum_{j=0}^{N_{l-1}} \omega_{ij}^{(l)}(t) x_{j}^{(l-1)}(t) = x^{(l-1)}(t) w_{i}^{l}(t)$$

$$1 \le l \le L, 1 \le i \le N_{l}$$
(3)

式中:
$$w_i^l(t) = \left[\omega_{i0}^{(l)}(t), \omega_{i1}^{(l)}(t), \cdots, \omega_{iN_{r-1}}^{(l)}(t)\right]^T$$
 (4)

$$x_{i}^{l-1}(t) = \left[x_{0}^{(l-1)}(t), x_{1}^{(l-1)}(t), \cdots, x_{N_{l-1}}^{(l-1)}(t)\right]^{t}$$
(5)

第*l*层中第*i*个神经元节点的输出为:

$$x_{i}^{(l)}(t) = f\left[y_{i}^{(l)}(t)\right] = 1 / \left(1 + \exp\left[-\sigma y_{i}^{(l)}(t)\right]$$

$$1 \leq l \leq L, 1 \leq i \leq N$$
(6)

式中: $f(\cdot)$ 为神经元节点转移函数,选择极限值为 [0,1]的 Sigmoid 函数; σ 为斜率参数。

若将 *M* 个训练样本分成 *Q* 个子块,每个子块有 *M_i* 个训练样本,则有:

$$\sum_{j=1}^{Q} M_j = M \tag{7}$$

第*j*个模块数据对应输出层误差能量和为:

 $E^{(J)} = \sum_{i=1}^{M_j} \sum_{i=1}^{N_L} \varepsilon_i^L(t) = \sum_{i=1}^{M_j} \sum_{i=1}^{N_L} \left[\left[d_i^L(t) - x_i^L(t) \right] y_i^{(L)}(t) \right] (8)$

本文经过反复验证,认为采用梯度下降法训练网 络能达到较为理想的预测精度。梯度下降误差反向传 递迭代算法步骤如下:

①给定初始权值 $w_i^{(l)}(0), 1 \leq l \leq L, 1 \leq i \leq N_l$,迭代 终止误差为 ε ,最后迭代误差能量 E_0 ,且 $E_0 \leq \varepsilon$,选择合 适的学习率 η 和动量因子 α ,令 j=1。

②开始迭代, $k=1_{\circ}$

③计算输出层负误差信号矢量(权值修正量)为:

$$e_{i}^{(L)}(k) = \sum_{t=1}^{M_{i}} f[y_{i}^{(L)}(t)] \left[d_{i}^{(L)}(t) - x_{i}^{(L)}(t) \right] x^{(L-1)}(t)$$
(9)

④计算隐层单元的误差修正量为:

$$e_{i}^{(l)}(k) = \sum_{t=1}^{M_{j}} f[y_{i}^{(l)}(t)] \sum_{j=1}^{N_{i,i}} e^{(l+1)}(k) \omega_{ji}^{(l+1)}(t) x^{(l-1)}(t)$$

$$1 \leq l \leq L-1, \ 1 \leq i \leq N_{l}$$
(10)

⑤计算 *l* 层中第 *i* 个神经元节点 *k*+1 时刻对应的 权值矢量迭代值为:

 $w_i^{(l)}(k+1) = w_i^{(l)}(k) + \eta e_i^{(l)}(k) + \alpha [w_i^{(l)}(k) - w_i^{(l)}(k-1)]$ (11) ⑥由式(8)计算 k+1 时刻的误差能量 $E^{(j)}(k+1)$ 值。 ⑦若 $E^{(j)}(k+1) > \varepsilon$,转入③;否则转入⑧。 ⑧若 $E^{(j)}(k+1) < E_0$,转入⑪;否则转入⑨。 ⑨若 j=Q,则转入③;否则 j=j+1,转入②。

⑩训练结束。

表1 新疆伊犁河雅马渡站实测流量及预报因子

Table1 The predictors and observed flow at the Yamaha station on the Yili river

年份		流量实测值			
序号	X_1 /mm	$/ {\rm m}^3 \cdot {\rm s}^{-1}$			
1	114.6	1.10	0.71	85	346
2	132.4	0.97	0.54	73	410
3	103.5	0.96	0.66	67	385
4	179.3	0.88	0.59	89	446
5	92.7	1.15	0.44	154	300
6	115.0	0.74	0.65	252	453
7	163.6	0.85	0.58	220	495
8	139.5	0.70	0.59	217	478
9	76.7	0.95	0.51	162	341
10	42.1	1.08	0.47	110	326
11	77.8	1.19	0.57	91	364
12	100.6	0.82	0.59	83	456
13	55.3	0.96	0.40	69	300
14	152.1	1.04	0.49	77	433
15	81.0	1.08	0.54	96	336
16	29.8	0.83	0.49	120	289
17	248.6	0.79	0.50	147	483
18	64.9	0.59	0.50	167	402
19	95.7	1.02	0.48	160	384
20	89.9	0.96	0.39	105	314
21	121.8	0.83	0.60	140	401
22	78.5	0.89	0.44	94	336
23	90.0	0.95	0.43	89	301

3 实例应用

3.1 数据来源

以新疆伊犁河雅马渡站径流预测为例进行实例分 析(数据来源参见文献[1,10],见表 1)。

- 3.2 径流预测的实现
- 3.2.1 数据处理

由于径流预测因子具有不同的物理意义和不同的 量纲及数量级,因此,在网络训练前要先对于原始数据 进行归一化处理。数据归一化方法很多,本文采用最大 最小法,公式如下:

$$\hat{x} = (x - x_{\min}) / (x_{\max} - x_{\min})$$
(12)

式中: \hat{x} 为经过标准化处理的数据;x为原始数据; x_{max} 和 x_{min} 分别为数据序列中的最大数和最小数。经过标准化处理后,数据处于[0,1]之内,有利

于网络训练。

3.2.2 训练样本

为便于比较,本文参考文献[1],将表 1 中前 16 年 的资料作为多隐层 BP 网络模型的训练样本,后 7 年 资料进行预测检验。

3.2.3 网络训练

采用四层(双隐层)和五层(三隐层)BP 神经网络 模型进行径流预测,并将单隐层 BP、RBF、GRNN 神经 网络作为对比预测模型。以表1中各预测因子作为输 入向量,即输入层神经元数为4个;实测流量值作为输 出向量,即输出层的神经元数为1个。对于 BP 网络各 隐层神经元数的选取,目前并没有统一的计算方法,本 文采用目前较为普遍的 Kolmogorv 定理[15,17]确定隐层 单元数,即各隐层神经元数 $M \leq 2n+1(n$ 为输入向量)。 在确定隐层神经元数时,主要做法是:先依据 Kolmogorv 定理得出一个初始神经元数,然后利用逐步增 长或逐步修剪法确定最终神经元数[15,20]。本文采用 MATLAB 软件编写 BP 等神经网络算法程序进行径流 预测,程序采取循环训练算法,最终确定:双隐层 BP 神经网络径流预测模型结构为 4-5-6-1, 隐含层和输 出层传递函数分别采用 tansig、logsig 和 purelin, 训练 函数采用 traingdx,设定期望误差为 0.005, 最大训练轮 回为 50 000 次;三隐层 BP 神经网络径流预测模型结 构为 4-2-4-2-1, 隐含层和输出层传递函数分别采用 tansig、logsig、tansig 和 purelin,训练函数采用 traingdx, 设定期望误差为 0.005, 最大训练轮回为 50 000 次, 经 过训练,网络达到了较好的预测精度。对于 RBF 和 GRNN 神经网络,由于人为调节的参数少,只有一个阈 值,因此网络根据训练算法和样本即可开始学习训练, 当网络训练好后、各个隐节点的数据中心相应的输出 权值将不再改变,此时的神经网络可以进行径流预测。 同样采用循环训练算法,最终确定 RBF 和 GRNN 神经 网络的 SPREAD 分别选取为 0.7 和 0.275 时网络达到 较佳的预测精度。

3.3 径流预测结果及分析

利用上述训练好的多隐层 BP 神经网络模型以及 RBF、GRNN 网络模型对新疆伊犁河雅马渡站进行径 流拟合及预测,并以平均相对误差绝对值 MPE、均方 误差 MSE 以及最大相对误差作为衡量模型精度的评 价指标,其值越小,预测模型描述样本数据则越精确, 结果见表 2 和表 3。 第1期

崔东文:多隐层 BP 神经网络模型在径流预测中的应用

表2 新疆伊犁河雅马渡站流量拟合结果及其比较

Table2 The fit results of the flow at the Yamaha station on the Yili river and their comparison

序号	双隐层 BP 网络模型		三隐层 BP 网络模型		RBF 网络模型		GRNN 网络模型		IEA-BP 网络模型 (文献 1)		基本 BP 网络模型 (文献 1)	
	流量拟合 值/m ³ •s ⁻¹	相对误 差/%	流量拟合 值/m³・s ⁻¹	相对误 差/%	流量拟合 值/m ³ ・s ⁻¹	相对误 差/%	流量拟合 值/m ³ ·s ⁻¹	相对误 差/%	流量拟合 值/m ³ •s ⁻¹	相对误 差/%	流量拟合 值/m ³ •s ⁻¹	相对误 差/%
1	392.5018	-13.4398	324.9892	6.0725	395.6385	-14.3464	363.0045	-4.9146	422.7721	22.19	359.4705	3.89
2	434.2678	-5.9190	416.5632	-1.6008	366.0182	10.7273	404.1559	1.4254	409.3290	-0.16	363.3178	-11.39
3	389.0642	-1.0556	392.3679	-1.9137	377.2411	2.0153	391.3340	-1.6452	416.7885	8.26	358.8223	-6.80
4	446.9791	-0.2195	446.6761	-0.1516	409.2305	8.2443	429.3839	3.7256	452.6361	1.49	381.1798	-14.53
5	333.1554	-11.0518	307.4446	-2.4815	365.1519	-21.7173	320.1263	-6.7088	315.3275	5.11	380.3270	26.76
6	468.4477	-3.4101	456.3723	-0.7444	491.0758	-8.4053	465.0176	-2.6529	442.2640	-2.37	454.0524	0.23
7	494.5113	0.0987	484.2968	2.1623	477.2885	3.5781	479.8829	3.0540	447.9727	-9.50	444.1339	-10.28
8	449.3061	6.0029	484.5451	-1.3693	480.1902	-0.4582	474.6039	0.7105	447.3607	-6.41	447.9403	-6.29
9	340.5439	0.1338	342.4058	-0.4123	375.1516	-10.0151	341.2316	-0.0679	351.8014	3.17	397.1336	16.46
10	301.6244	7.4772	337.5287	-3.5364	328.0335	-0.6238	329.8540	-1.1822	299.0955	-8.25	362.0122	11.05
11	346.5129	4.8041	333.0384	8.5059	355.8509	2.2388	357.1865	1.8718	341.2769	-6.24	354.2997	-2.66
12	401.6278	11.9237	451.5060	0.9855	370.6395	18.7194	416.0717	8.7562	412.4910	-9.54	371.7008	-18.49
13	305.5916	-1.8639	321.7746	-7.2582	317.6732	-5.8911	316.6740	-5.5580	292.4305	-2.52	356.9256	18.98
14	438.7571	-1.3296	426.1411	1.5840	368.5504	14.8844	403.3414	6.8496	405.3476	-6.39	363.2381	-16.11
15	345.5846	-2.8526	314.5033	6.3978	348.5654	-3.7397	359.2321	-6.9143	346.9997	3.27	360.8336	7.39
16	292.7378	-1.2934	312.0647	-7.9809	331.7004	-14.7752	317.5182	-9.8679	320.8815	11.03	379.3359	31.26
训练样 本 MPE	4.55		3.32		8.77		4.12		6.62		12.66	
训练样 本 <i>MSE</i>	17.1850		11.57	793	33.0226		15.3354		25.1024		46.3411	

表3 新疆伊犁河雅马渡站流量预测结果及其比较 of the flow at the Yamaha station on the Yili rive

	Table3 T	The forecasted	l results	of the flow	v at the	Yamaha	station on	the Yili	river and	their c	omparison		
序号 ⁻	双隐层 BP 网络模型		三隐层 BP 网络模型		RBF 网络模型		GRNN 网络模型		IEA-BP 网络模型 (文献 1)		基本 BP 网络模型 (文献 1)		
	流量拟合 值/m ³ ・s ⁻¹	相对误 差/%	流量拟合 值/m ³ ·s ⁻¹	相对误 差/%	流量拟合 值/m ³ ·s ⁻¹	相对误 差/%	流量拟合 值/m ³ •s ⁻¹	相对误 差/%	流量拟合 值/m³⋅s⁻¹	相对误 差/%	流量拟合 值/m³⋅s⁻¹	相对误 差/%	
17	475.0470	1.6466	533.9814	-10.5552	454.5914	5.8817	455.9538	5.5996	466.7362	-3.37	428.5184	-11.28	
18	347.0716	13.6638	443.6155	-10.3521	399.8811	0.5271	371.7366	7.5282	385.1646	-4.19	425.1680	5.76	
19	348.3315	9.2887	362.7123	5.5437	375.3177	2.2610	336.0693	12.4820	349.9188	-8.88	392.4865	2.47	
20	320.3018	-2.0070	333.3347	-6.1575	338.4720	-7.7936	327.6599	-4.3503	317.3003	1.05	371.4493	18.30	
21	401.2451	-0.0611	439.0126	-9.4795	414.6424	-3.4021	419.5301	-4.6210	429.7508	7.17	402.3272	0.33	
22	313.3943	6.7279	326.4303	2.8481	333.2614	0.8151	335.9258	0.0221	333.8756	-0.63	370.0542	10.13	
23	321.2414	-6.7247	324.0712	-7.6648	335.2512	-11.3791	342.4402	-13.7675	322.0959	10.66	365.9650	21.58	
检验样本 MPE	5.73		7.51		4.58		6.91		5.14		9.98		
整体 MPE	4.91		4	.60	7.50		4.97		5.88		11.32		
检验样本 MSE	21.1348		29	.1247	16.3306		25.5635		17.4931		34.8474		
整体 MSE	18.3872		16	16.9192		27.9424		18.4483		22.7866		42.8430	
最大相对 误差/%	13.6638		-10.5552		-21.7173		-13.7675		22.19		31.26		

71

$$MPE = \frac{1}{N} \sum_{i=1}^{N} \frac{|\underline{\mathbf{x}}| \underline{\mathbf{m}} \underline{\mathbf{n}}(i) - \underline{\mathbf{m}} \underline{\mathbf{m}} \underline{\mathbf{n}}(i)|}{\underline{\mathbf{x}} \underline{\mathbf{m}} \underline{\mathbf{n}}(i)} \times 100\% \quad (12)$$

$$MSE = \frac{1}{N} \bigvee \sum_{i=1}^{N} (() () (i))^{2}$$
 (13)

分析表 2、表 3 可以得出以下结论:

(1)从整体 MPE 和 MSE 上看,模型精度高低顺 序依次是:三隐层 BP 网络模型、双隐层 BP 网络模 型、GRNN网络模型、IEA-BP网络模型、RBF网络模 型、基本 BP 网络模型:从拟合精度上看,高低顺序依 次是:三隐层 BP 网络模型、GRNN 网络模型、双隐层 BP网络模型、IEA-BP网络模型、RBF网络模型、基 本 BP 网络模型:从预测精度上看,高低顺序依次是: RBF 网络模型、IEA-BP 网络模型、双隐层 BP 网络模 型、GRNN网络模型、三隐层 BP网络模型、基本 BP 网络模型:从最大相对误差上看,由小到大顺序依次 是: 三隐层 BP 网络模型、双隐层 BP 网络模型、 GRNN 网络模型、RBF 网络模型、IEA-BP 网络模型、 基本 BP 网络模型。可见,三隐层、双隐层 BP 网络模 型具有较高的预测精度,整体 MPE 和 MSE 均优于 IEA-BP 网络模型和基本 BP 网络模型,表明多隐层 BP 神经网络模型具有较高的预测精度,是提高预测 精度的有效方法。

(2)基本 BP 网络模型拟合、预测精度均为最差, RBF 网络模型检验样本预测精度最高,GRNN 网络模 型训练样本精度较高(仅次于三隐层 BP),表明 RBF、 GRNN 网络模型在径流预测中同样具有较高的预测精 度,加之 RBF 与 GRNN 神经网络模型具有收敛速度 快、调整参数少,不易陷入局部极小值等优点,可以更 快地预测网络,具有较大的计算优势。

(3)同双隐层 BP 网络模型相比,三隐层 BP 网络模 型整体和拟合精度均为最高,且相对误差最小(最大相 对误差仅为-10.5552%),表明随着隐层数的增加,有助 于提高网络泛化能力和预测精度,但是训练时间较长。

(4)多隐层 BP 神经网络模型预测精度较高,难点 是如何确定最佳网络结构和各类参数,本文多隐层 BP 网络所确定的结构和参数理论上仅仅是较佳,而 非最佳。

4 结语

(1)本文尝试构建了多隐层 BP 神经网络径流预测 模型,以新疆伊犁河雅马渡站径流预测为例进行实例 分析和比较,预测结果令人满意,表明多隐层 BP 神经 网络模型具有算法稳定、预测精度高等优点,是提高预 测精度的有效方法。

(2)由于"欠拟合"和"过拟合"均会降低网络的泛 化能力,因此多隐层 BP 网络隐层节点数和期望误差 的确定需同时从"欠拟合"和"过拟合"上综合考虑,若 节点过少或期望误差过大,BP 网络不能建立复杂的映 射关系,网络"欠拟合",预测偏大较大;若节点过多或 期望误差过小,网络不但学习时间增加,而且网络将信 号连同噪声一起进行拟合,出现"过拟合"现象,预测方 差较大。

(3)由于多隐层 BP 网络结构复杂,在隐层层数、 隐层节点数、传递函数、训练函数以及期望误差等的选 取上有较大的随意性,目前主要凭经验选取,这正是制 约多隐层 BP 神经网络广泛应用的症结所在。 参考文献:

- [1] 郭淳,李祚泳,党媛. 基于免疫进化算法的 BP 网络模型在径流预测中的应用[J]. 水资源保护,2009,25(5):1-4.(GUO Chun,LI Zuoyong, DANG Yuan. Based on immune evolutionary algorithm BP network model in runoff prediction [J]. Water Conservation,2009,25(5):1-4. (in Chinese))
- [2] 谷晓平,王长耀,王汶,等. 应用于水文预报的优化 BP 神经网络研究[J]. 生态环境,2004,13(4):524-527.(GU Xiaoping,WANG Changyao, WANG Wen,et al. Used in hydrological forecasting optimization BP neural network research [J]. Ecological Environment,2004,13(4):524-527. (in Chinese))
- [3] 庞博,郭生练,熊立华,等.改进的人工神经网络水文预报模型及应用[J].武汉大学学报(工学版),2007,40(1):33-36. (PANG Bo, GUO Shenglian,XIONG Lihua, et al. Improved hydrological forecasting artificial neural network model and its application[J]. Journal of Wuhan University (Engineering Science),2007,40(1):33-36. (in Chinese))
- [4] 蓝永超,康尔泗,徐中民,等. BP 神经网络在径流长期预测中的应用[J]. 中国沙漠,2001,21(1):97-100. (LAN Yongchao,KANG Ersi, XU Zhongmin, et al. BP neural network in the run-off long-term prediction[J]. Chinese Desert,2001,21(1):97-100. (in Chinese))
- [5] 尹晔,梁川.改进的 BP 网络模型及其在日径流预测中的应用[J]. 云南水力发电,2005,21(3):15-17. (YIN Hua,LIANG Chuan. Improved BP network model and its application in daily runoff prediction[J]. Yunnan Hydropower,2005,21(3):15-17. (in Chinese))
- [6] 邓霞,董晓华,薄会娟.基于 BP 网络的河道径流预报方法与应用[J].人民长江,2010,41(2):56-59. (DENG Xia, DONG Xiaohua, BO Huijuan. Based on BP network river runoff forecasting methods and applications [J]. Yangtze River, 2010,41(2):56-59. (in Chinese))
- [7] 许世刚,索丽生,陈守伦.智能计算在水利水电工程中的应用研究 进展[J]. 水利水电科技进展,2002,22(1):62-65. (XU Shigang,SUO Lisheng,CHEN Shoulun. Intelligent computing in water Resources and

hydropower engineering rResearch[J]. Water Resources and Hydropower Technology Progress, 2002, 22(1):62–65. (in Chinese))

- [8] 龚传利,康玲,姜铁兵. 基于遗传 BP 算法的日径流预测[J]. 西北水 电,2003(4):1-3.(GONG Chuanli,KANG Ling,JIANG Tiebing. GA-BP algorithm based on daily runoff prediction[J]. Northwest Hydropower, 2003(4):1-3. (in Chinese))
- [9] 李敏强,徐博艺,寇纪冲.遗传算法与神经网络的结合[J].系统工程 理论与实践,1999(2):65-69. (LI Minqiang, XU Boyi, KOU Jichong. Combination of genetic algorithms with neural network[J]. Systems Engineering Theory and Practice, 1999(2):65-69. (in Chinese))
- [10] 陈守煜, 王大刚. 基于遗传算法的模糊优选 BP 网络模型及其应用[J]. 水利学报,2003,34(5):116-121. (CHEN Shouyu,WANG Dagang. Fuzzy optimization based on genetic algorithm BP neural network model and its application[J]. Journal of Hydraulic Engineering, 2003,34(5):116-121. (in Chinese))
- [11] 杨道辉,马光文,刘起方. 基于粒子群优化算法的 BP 网络模型在 径流预测中的应用[J]. 水力发电学报,2006,25(2):65-68. (YANG Daohui, MA Guangwen, LIU Qifang. Particle swarm optimization algorithm based on BP network model in runoff prediction[J]. Hydroelectric Engineering,2006,25(2):65-68. (in Chinese))
- [12] 李宏伟,宋松柏. 蚁群算法在水文频率曲线参数计算中的应用[J].
 人民黄河,2009,31(4):38-40. (LI Hongwei,SONG Songbo. Ant colony algorithm for the calculation of hydrological parameters of the frequency curve of the application[J]. Yellow River, 2009,31(4):38-40. (in Chinese))
- [13] 邱林,段春青,陈晓楠,等.基于模拟退火算法的 BP 网络在水文 水资源中应用 [J]. 华北水利水电学院学报,2005,(1):1-3. (QIU Lin, DUAN Chunqing,CHEN Xiaonan, et al. Based on simulated annealing algorithm of BP network application in hydrology and water resources [J]. North China Water Conservancy and Hydropower College

Journal, 2005(1):1-3. (in Chinese))

- [14] 师彪,李郁侠,于新花,等. 自适应人工鱼群 BP 神经网络算法在 径流预测中的应用[J].自然资源学报,2009,24(11):2006-2013.
 (SHI Biao,LI Yuxia,YU Xinhua, et al. Adaptive algorithm of BP neural network artificial fish in runoff prediction [J]. Journal of Natural Resources, 2009,24(11):2006-2013. (in Chinese))
- [15] MATLAB 中文论坛. MATLAB 神经网络 30 个案例分析[M]. 北京:北京航空航天大学出版社,2010.4.(MATLAB Chinese Forum.
 MATLAB Neural Network Analysis of 30 Cases[M]. Beijing;Beijing Aerospace University Press,2010.4. (in Chinese))
- [16] 范佳妮,王振雷,钱锋.BP人工神经网络隐层结构设计的研究进展[J].控制工程,2005,12(S0):105-109.(FAN Jiani,WANG Zhenlei,QIAN Feng. Hidden-layer artificial neural network structure design research[J]. Control Engineering, 2005,12(S0):105-109. (in Chinese))
- [17] 张德丰. MATLAB 神经网络应用设计[M]. 北京:机械工业出版社,
 2009.1.(ZHANG Defeng. MATLAB Neural Network Design[M]. Beijing: Mechanical Industry Press, 2009.1. (in Chinese))
- [18] 丛爽. 面向 MATLAB 工具箱的神经网络理论与应用[M]. 合肥:中 国科学技术大学出版社,2009.(CONG Shuang.Toolbox for MATLAB Neural Network Theory and Application [M]. Hefei:China University of Science and Technology Press,2009. (in Chinese))
- [19] 苑希民,李鸿雁,刘树坤,等. 神经网络和遗传算法在水科学领域 的应用[M]. 北京:中国水利水电出版社,2002. (YUAN Ximin,LI Hongyan,LIU Shukun,et al. Neural Networks and Genetic Algorithms in Water Science Application [M]. Beijing:China WaterPower Press, 2002. (in Chinese))
- [20] 卓金武. Matlab 在数学建模中的应用[M]. 北京:北京航空航天大 学出版社,2011.(ZHUO Jinwu. Matlab in Mathematical Modeling Application[M]. Beijing:Beijing University of Aeronautics and Astronautics Press,2011. (in Chinese))

Application of Hidden Multilayer BP Neural Network Model in Runoff Prediction

CUI Dongwen

(Water Conservancy Bureau of Wenshan Prefecture, Wenshan 663000, China)

Abstract: Based on the basic principles of artificial neural networks and methods, a runoff forecasting model of hidden multilayer BP neural network was built, with runoff prediction at the Yamaha station on the Ili River as the study case. Otherwise, the conventional models based on single hidden layer BP, RBF and GRNN neural networks were structured for a comparative analysis. The results showed that ① the runoff prediction model of hidden multilayer BP neural network has a strong generalization ability, prediction accuracy is high, and algorithm is stable. The model accuracy is better than the IEA-BP neural network model, which means as a new method to be used in runoff prediction, it is reasonable and feasible. ② The prediction accuracy of RBF, GRNN neural network models is higher than the conventional single hidden layer BP network model because of advantages of fast convergence, high prediction accuracy, fewer parameters to be adjusted, and easy to fall into local minimum.

Key words: hidden multilayer BP neural network; RBF neural network; GRNN neural network; single hidden layer BP neural network; runoff prediction