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ABSTRACT

The paper concerns a flood/drought prediction model involving the continuation of time series
of a predictand and the physical factors influencing the change of predictand. Attempt is made to
construct the model by the neural network scheme for the nonlinear mapping relation based on
multi-input and single output. The model is found of steadily higher predictive accuracy by testing
the output from one and multiple stepwise predictions against observations and comparing the

results to those from a traditional statistical model.
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I. INTRODUCTION

China suffers from monsoon climate-related disasters, especially flood /drought that
occur frequently. Therefore, medium- and long-term predictions of wetness/dryness are
important research subjects for disaster prevention and reduction in agriculture. It is
common practice, however, that rainfall or its departure is used as a predictand in current
research and operation at home and abroad (Zhou and Huang 1990). Attempt is made in
the paper to construct a model with a predictand based on soil humidity as a comprehensive
indicator of water regime of crops aiming at better application to fighting against floods/

droughts and management of water resources.

» This study is supported by the Excellent Talent Foundation of the State Education Commission.
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1. PRINCIPLES OF THE MIXED MODEL

1. Structure of the Model for Predicting Floods/Droughts

At present, statistical techniques remain dominant in operational forecasting of the
wetness/dryness on long- and medium-range basis in meteorology. Two methods in
widespread use are multivariate analysis and time series analysis. The common model
based on regression in multivariate analysis has the form

y= B+ Bz, + Bz, + o + Buz. + &, D
where y is the predictand, x, the previous-period predictor, 8, the regression coefficient,
with i=j=1, 2, =+, m and € white noise. In another kind of time series analysis, the
analysis is made mainly on the predictand itself with reference to “"time domain”. The
common form of the autoregression model AR (P) is given by

¥ =By + By + 0 + ﬂpxt—p + &, (2)
where y, is the predictand’s series, A; the model’s coefficient and ¢, white noise. Model (1)
is based on the idea that the future state comes from changes in previous-period pertinent
factors while model (2) relates the future state to previous condition of the very
predictand. In fact, for generalized series analysis the 1D time series has its future value

dependent on the past through a recurrent relation, namely

Yl = F(Yt—I)Yl—Z,'"’Yt—p)- (3)
Likewise, generalized regression analysis can be expressed as
Y. = F(X1!X27...’Xm)' €Y

Models (1) and (2) are now in widespread use for flood/drought prediction. However,
analysis of medium-/long-term weather process associated with these calamities shows
that since the affecting factors are many and combined in a complicated fashion, no fully
deterministic equation can give quantitative description and prediction, and the model may
not be good enough to depend only on pertinent exogenous factors and determine their
occurrence in advance, which may be parasitic utterly on the previous state. It is hence
believed that flood/ drought prediction may be given by a mixed model involving the
previous regime and external variables which most likely is not necessarily linear. If noise
contained in the new type of model presented is assumed to be inherent in the original
series, then we have a model of generalized matrix form

Y, = ¢(Xi9Yl—l’Yl—29""Yt—p)y (5
where X;, Y., Y., ¢+, Y,_, are all column vectors. Assuming @ to be nonlinear
mapping from input to output, we shall now deal with the problems how to approximate
Eq. (5) and its possibility to forecast these disasters.

2. Model Establishment and Nonlinear Mapping Realization

Jin and Luo (1992) indicated that flood/drought affect crops through the content of
soil humidity (SH). Study of 1D SH series shows that SH at an instant, £, is substantially
influenced by the previous regime at £ — 1, £ — 2, etc. And the physical process is
understandable, meaning that greater SH at ¢t — 1, t — 2, *»*, will produce stronger
evaporation, other conditions being equal, resulting in more water lost, and vice versa.
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Besides, analysis by the SH balance equation reveals that previous rainfall will directly
affect subsequent SH:; change in sunshine strength has effect, too, by altering the
evaporation denoted by the thermal terms. It is clear from the arguments that change in
SH essential to crop growth bears a relation to some meteorological elements as well as the
previous SH. a fact that agrees with our considerations in making the mixed model (5) and
serves as the basis. The next task is to make model (5) have the function of nonlinear
mapping &.

The 1980s saw the achievements in the research into information processing in human
brain based on neurological progress and the science of computers, and considerable
advances have been made in many fields of learninng in application of numerous artificial
neural network (ANN) technology for processing large-scale nonlinear parallel distributed
message (Lee et al. 1992; Yin and Xu 1991). And the feedforward, or BP, network
(Zhang et al. 1993), though having some limitations, is still in wide use, representing a
kind of nonlinear mapping from multiple input to single output or a set of output, and, in
particular, the mapping is realized without the knowledge of the internal structure of the
study system but such a structure can be obtained through the teacher’s learning /training
by simulating the observed sample with the aid of the BP technique, which provides a
theoretically sound basis for preparing the mixed-type model.

1II. FLOOD/DROUGHT PREDICTION WITH VERIFICTAION

1. Learning Algorithms of the Model Establishment for Prediction

The flood/drought prediction model based on Eq. (5) is a 3-layer BP network, one
layer being for input and another for output with the hidden one in between, which utilizes
an algorithm of inverse propagation of error for the learning input matrix (Jin et al. 1996)
as a means of the network training. The mathematic principle is illustrated as follows.

Let E;: be the cost G.e., error) function of the input of a training set with respect to
(A. Cy) at the output layer and we have, for the total model input set, the whole cost

function in the form
E = D E. (6)
k=1
Thus, for the k-th paired input, the weighing input of unit j at the output level takes on
the form

?
netC, = E'w,-jb,-, (7)
i=1

but the actual output of j is given as
4
C, = f(netC)) = f(D> w,b). (®)
i=1

On the other hand, the weighing input of unit i at the hidden level is expressed

formally as
net b, = > vna, 9
h=1

with the real output of the unit is in the form

M=~ -
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b, = f(neth,) = (D vnar). (10)
h=1
For unit j of the output layer, error of general character is defined by
&
4, == d netC,’ an
which can be rewritten as
_ 3.,
d; = aij (netC,), a2
and for 7 at the hidden, we specify its general error occurrence in the form
_ ok, __B_E‘ a6, 4 _@_, N
¢ == Tneth. = 35 3meth, — / (et bI(—FH = f (netb;);d,w;,y (13)

where d; represents the error of the output level, which, as arriving at the hidden through
inverse migration, has the expression of e;.

With the aid of the connection weighings w;, and v, for the input and hidden levels,
we employ gradient descending (i. e., the weighings are a direct measure of negative
gradients) to minimize the cost function.

To compute the variation in the weighing coefficients we make use of the following

)4
a( w;;b;)
Aw;, =_‘aaafh =ad,-[ ; ’ }:ad,b,—, 14
17 a(l),')
__ g% _ 5 . deth
Ay, = 0, B Jet b, v, Be.a,, a5
where @ (0<<a<{1) and B (0<<B<{1) stand for a learning and a momentum factor,

respectively.

In view of the fact that the total cost function E is defined for the input training set of
the model as a whole so that to realize its actual gradient descending across a curved
surface it is necessary to find negative gradient for the weighings, viz.,

IE S aE,
— = (=3, (16
2y = 2 ’
_E _ SN %
o = ;( 2.0 an
in which case the related expressions for the weighing variation are given as
aE - aE,
Aw; =—a = 2 (—a—), 18
’ W, ; dw;; 18
JE - JE
Doy =— B 2= = D(— B,
O B ;( B5D 19
And if E is defined as the square sum of error, namely,
m_ q
E= 1350 - ¢, (20)
k=1 5=1
_ Al 2
Eﬁ—EZ(C,—C,) s 2D
7=1

with f denoting Sigmoid function, leading to

y=f(z) = 1

14+e =’

(22)
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then we obtain
. _ — 1 —ry - 1 . 1
oy =g C D=1 =015~

From Eqgs. (12) and (13) we come to the expressions of error calculation for both
levels, respectively,

) = y(1 — ). (23)

dE
d,=— a—c‘f’ (netc;) = (c; — ¢, ) f(netc)[1 — flnete;)] = ¢;(1 — ¢;)(c* —¢,), (24)

q q
e, = f' (net b,)Zd,w,j = b,(1 — b,)Zd,w,-j. (25)
=1 =1
And from Eqs. (14) and (15) we get, respectively, the equations for weighing’s
change,
Aw;, = ab.'d;'v (26)
A'Uh, = ,Ba,,e,'. (27)

Hence, the procedures for the BP network used come down to the following:

Under the assumption that the input pair of the training sample set are A, and B, (¢=
1, 2, =ym). v, and w;, are given randomly as the initial connection weighings, separately.
for the input-hidden and the hidden-output levels., and & and 7, as the threshold values of
the latter two layers, respectively, we are allowed to deal with the calculation of A, and
B,. as shown below.

(1) Following a learning sample input and the connection weighing matrix, a new
magnitude of the hidden activation is calculated through

b= £ awn + 6, (28)
h=1

where i =1, 2, **«, p, v is a group of small stochastic quantities given initially and the
Sigmoid function (22) used as the activation function,
(2) We have to compute the Sigmoid function for the output-level units

4
¢, = FCO baw, + 7, (29)

i=1
with j=1, 2, -*-,q and initial w;,; denoted by a group of small stochastic quantities.

(3) We can have general errors of the output-level units from Eq. (24) where j=1. 2.
-e+, ¢ and C} is the expected output value of j in this layer.

(4) Errors are found of units at the hidden level with respect to those of each d; with
i=1, 2, *>*, p, based on Eq. (25).

(5) Adjustment is made of the connection weighings of the units from the hidden to
output layers in terms of Eq. (26) with i=1, 2, «=-, p; j=1, 2, =, ¢; ais the learning
factor (0<<a<{l).

(6) Adjustment of the threshold values of the output units

&Y, = ad,. (30)

(7) The use of Eq. (27) allows to make adjustment of the weighings for units from
the input to hidden layers, where h=1, 2, «*», n; i=1, 2, *»», p and B is the momentum
factor (0<<B<1).

(8) Then we adjust the threshold values of the hidden units in virtue of

DG, = Pe;. 3D
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The repetition of the procedures (1) — (8) is carried out through j=1,2, =+, g and %
=1,2,, m till a minimum d, is reached, suggestive of the end of learning. In this way,
a self-adaptation learning system is established for the network, which has now the ability

to remember and conceive the samples that are fed.

2. Scheme for Establishing the Model Learning Matrix

The decade SH is taken as the predictand for Eq. (5) in the context of SH averaged
over 0—50 cm soil for January 1992 to March 1995 (total of 117 decades) from Xuzhou
Agrometeorological Station, Jiangsu with the subsequent data used for test. Continuation
is made of the 1D time series scalar to construct part of the data for preparing model (5).
The observed SH 1D sequence has the form

Y@, Y, Y1), (32
which is then extended into a multi-dimensional series by means of the time lag coefficient
r. We thus get

Y(tl) ’ Y(tz) 9%y Y(t;.) ’

] 9"'&Y n ]
Y, +0,Y@, + 1) .(t +"z') (33)

Y@ + ko), Yt + kr)yoee, Y@, + ko),
the last of which is taken as the column vector on the left-hand side of Eq. (5), the others
as those on its right-hand side. In establishing the model the 1D SH data are extended into
6D series, leading to the fed matrix-form sample size N =112. Further, following the
considerations in Section II, the mid February 1992—mid March 1995 decade mean rainfall
and sunshine duration (N =112, one decade ahead of the SH data) from the station are
taken as another two column vectors on the right-hand side of Eq. (5). Thus we have a
BP-type learning matrix with X,, X,, Y,.s, Y,—,, *=», Y,_, as input and Y, as expected
output.

To meet the conditions of Sigmoid function, the constructed learning matrix after it
has been normalized is put on the input points of the BP network (7 input nodes and 1
output node). After adjusting the model the last two decades (early to mid April 1995) of
the sample size are predicted for SH with the analysis indicating that, with the learning
(momentum) factor taken as 0.7 (0.9), the number of hidden nodes as 9 and convergence
error of 0. 003, the forecasting error is kept steadily small. On this basis, further
experiments are made with these parameter’s values.

3. Analysis of Predictions

To objectively investigate the predictive ability of the established model, 20 decade
SH predictions were made for spring to summer 1995 with the model and parameter
values, comparison to observations followed. Error analysis from one-step prediction (one
decade in advance) in Table 1 shows the effectiveness to be satisfactory. For the 20
forecasts, the maximum (minimum) relative error (RE) is 26. 4% (0. 5%), with the
mean of 8. 03%. If the relative error (prediction/observation) < 10% is taken as a
criterion of successful forecast, the accuracy reaches 70% and for the corresponding
climatic predictions (only the mean is given), the probability of prediction failure amounts
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to 70%. By use of the expression for residual sum of squares

SSE = > (y, — 5)%, (34)
further calculation can be made of 8
' SSE, — SSE,
~SSE, (35
to find out the difference in accuracy between the climatic and model (5) predictions. In
Eq. (35) SSE, and SSE, are the residual sum of squares for 20 climatic forecasts and 20
model (5) predictions. respectively so that

_ 438.50 — 104.74
438. 50

which.indicates that the accuracy of model (5) results is 76. 1% higher than that of its
counterparts.

C =

C, = 76.1%. (36)

Table 1. Verification of ANN-Produced SH Forecasts

one-step two-step three-step

No. Observation  Prediction RE" Prediction RE  Prediction RE
1 19. 74 19. 37 0.019 18. 68 0. 039 16. 04 0. 36
2 18. 63 19. 76 —0. 061 19. 63 —0. 054 19.58 —0.052
3 15. 42 19. 49 —0. 264 19,53 —0. 267 19. 38 —0. 257
4 16. 00 16. 61 —0.038 16. 91 ~—0.057 16. 85 —0.053
5 15. 98 16. 10 —0. 008 16. 26 —0.018 16. 27 —0.018
6 14. 98 14. 89 0. 006 14. 48 0. 034 14. 30 0. 045
7 16. 62 13. 66 0.178 13. 76 0.172 14. 32 0.139
8 16. 64 16. 19 0. 027 15.78 0. 052 15.76 0.053
9 15.70 15. 82 —0.008 15. 69 0. 000 15. 42 0,018
10 19. 84 16. 30 0.179 16. 24 0.181 16. 06 0.190
11 16.02 18.51 —0.155 19. 32 —0, 206 19.12 —0.194
12 20. 82 19. 45 0. 066 18. 43 0.115 17. 33 0.168
13 20. 62 22. 40 —0. 086 22.75 —0.103 22.92 -0.112
14 25.72 19. 68 0. 235 18. 87 0. 266 21. 35 0.170
15 26. 50 27.91 —0.053 27.58 —0. 041 27. 91 —0.053
16 29. 62 27.56 0. 070 27.72 0. 064 24.77 0. 164
17 27. 54 27. 68 —0.005 - 27.56 —0. 001 27.72 —0. 007
18 26. 36 25. 84 0.019 25. 80 0. 021 25. 32 0. 040
19 26. 20 24. 54 0. 063 24.73 0. 056 24.73 0. 056
20 21. 50 24. 29 —0.130 23.13 —0.076 22.73 —0. 057

mean 0. 083 0. 091 0. 094

*  RE means relation error

For the experimental predictions with tests, the 20 decade-to-decade forecasts were
carried out in the identical conditions of the model structure, input, output, number of
hidden nodes and convergence error (which are similar to those for operational
forecasting) resulting in applicability of all the forecasts as suggested in Table 1 as regards
the error variation. To make further examination of the prognostic model. we made
predictions at 2 and 3 decades in advance (or two- and three-stepwise), respectively, for
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the 20 forecasts (see the corresponding parts of Table 1). Error analyses show that their
accuracy is equally desirable and the mean relative error (MRE) is 9.1% (9.4%) for the
two- (three-) stepwise predictions, very close to the one-stepwise result. a fact that offers
basis for preparing better consensus forecasts.

In addition, since the presented model of mixed type is an attempt and so is the
realization of nonlinear mapping from input to output with the aid of the BP network. to
examine if the calculation scheme is superior to the traditional one becomes an important
aspect in verifying the quality of the developed model. For this reason, for the input
matrix of the BP network, the expected output is taken as a predictand and the other 7
columns as predictors to establish a prognostic model regressively, the first equation is
then obtained

¥ = 0.123 — 0. 04132, — 0.0111x, — 0. 0373x; — 0. 0996z,

— 0. 1479x5 — 0.1237x, — 0. 6871x;, (37
with N = 112 and the complex correlation coefficient of 0.8284. On this basis the
prediction is made for the next decade (W=113). To objectively compare, forecasts and
tests were conducted in a similar way to that in Michaels and Gerzoff (1984). That is,
after a forecast is made for the subsequent decade by the newly-formed prognostic
equation, observations for this decade are put into the sample set to build up another
subsequent decade and so on, altogether 20 equations are constructed, these are used for
the period in spring—summer 1995, with the accuracy shown in Table 2. Error analyses
indicate the steady variation in the complex correlation coefficient (R) of these

Table 2. Test of Regression-Derived SH Forecasts

No. Observation Prediction RE* ccH n
1 19.74 20.12 —0.019 0. 8284 110
2 18. 62 20.17 —0.083 0. 8287 111
3 15. 42 19.19 —0. 245 0. 8288 112
4 16. 00 16.74 —0. 046 0. 8279 113
5 15. 98 16. 67 —0.043 0. 8310 114
6 14.98 16. 33 —0. 090 0. 8339 115
7 16. 62 15.95 0. 041 0.8374 116
8 16. 64 17.16 —0.031 0. 8394 117
9 15.70 17. 22 —0. 097 0. 8413 118
10 19. 84 16. 85 0.151 0. 8434 119
11 16. 02 19.53 —0.219 0. 8408 120
12 20. 82 17.15 0.176 0. 8397 121
13 20. 62 20. 54 0. 004 0. 8358 122
14 25.72 20. 49 0. 203 0. 8358 123
15 26. 50 24. 61 0.071 0. 8303 124
16 29. 62 25.79 0.129 0. 8320 125
17 27.54 28.78 —0. 045 0. 8346 - 126
18 26. 36 28. 09 —0. 065 0. 8377 127
19 26. 20 26. 26 —0. 002 0. 8391 128
20 21.50 25.16 —0.170 0. 8411 129
mean 0. 097

* .

RE =relation error; CC=correlation coefficient
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prognostic equations because of a long sample length for the regression formulae. Test of
the regressions shows higher significance level. Inspection of Tables 1 and 2 as regards the
corresponding errors reveals the considerable advantage of ANN-yielded accuracy over the
regression-given accuracy (relative error of 8. 3% versus 9. 7%). Also, it is found that for
all the experimental forecasts the accuracy for the predicted maxima and minima is a lot
higher. Thus, our experiment provides a new way to raise accuracy, a hard nut to crack
for traditional statistical forecasting.

Table 3. Verification of Issued SH Forecasts for the Sowing and Growth Stages of Winter Wheat

Prediction for the sowing (October 1995)

ANN Regression
Time span Observation Prediction RE" Prediction RE"
1st dec. 25. 14 24. 14 0. 040 21.83 0.131
2nd dec. 24.22 25.10 —0.036 28. 39 - 0.034
mean 0.038 0. 825

Prediction for the growth (January—May. 1996)

ANN Regression

Time span Observation Prediction RE" Prediction RE*
1st dec. Jan. 20.78 18.67 —0.1015 19. 84 —0.0452
2nd dec. Jan. 19.16 19.16 0. 0000 20. 49 0. 0695
3rd dec. Jan. 20.12 20. 25 0. 0067 20. 05 —0.0034
1st dec. Feb. 18. 02 19.09 0. 0596 20. 09 0.1148
2nd dec. Feb. 17. 94 17. 94 0. 0002 18.74 0. 0446
3rd dec. Feb. 17. 38 17. 58 0. 0116 18.52 0. 0655
1st dec. Mar. 19. 68 18. 42 —0. 0640 17.73 —0. 0992
2nd dec. Mar. 19. 32 18.58 —0. 0381 19. 14 - 0. 0093
3rd dec. Mar. 21.56 19. 70 —0. 0864 19, 68 —0.0874
1st dec. Apr. 15.58 22.14 0.4209 21.42 0. 3749
2nd dec. Apr. 14.58 18. 23 0. 2502 17.90 0. 2276
3rd dec. Apr. 16.10 14. 36 —0.1084 15. 46 —0.0398
1st dec. May 16.52 16. 23 —0.0176 16. 31 —0.0128
2nd dec. May 15. 66 15. 69 ) 0. 0021 16. 95 0. 0825
3rd dec. May 14.92 16. 27 0. 0907 16. 61 0.1132

mean 0. 8386 0.9266

* RE means relation error
To compare the accuracy from the two methods we use (35) to calculate
__SSE; — SSE, 120.88 —104.74 __ 20
Co=""gsg,  — 1m.es 1% 38
where SSE, denotes the residual sum of squares for the regression scheme. Results show
that the accuracy given by the developed model is 13. 3% higher than that from the

regression forecasts due mainly to the fact that the study system is not definitely a linear

entity. Considered in the mixed model is not just the evolution of the system itself but the
role of external physical processes as well and these integrated effects are revealed through
nonlinear mapping, which is able to better describe the substantial relation inside than the
linear technique. With the mixed model a SH forecast was made for the decades of October
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1995 (sowing period for winter wheat), and the forecast soil humidity for winter wheat
growth (January through May, 1996) was good (Table 3), with the ANN prediction for
sowing of 3. 8% for mean relative error (prediction minus measurement) compared to
corresponding 8. 28% given by the regression for the first two decades of October, 1995.
This provided a sound basis for farmers in their action of supplying water for the sowed
crop. Also, the January—May 1996 (total of 15 decades) humidity predictions show that
the ANN approach yielded. on average, relative error of 8. 38% versus 9. 26% from the
regression, a result that was close to that from experiments with 20 independent samples
8.3% vs 9. 7%). This demonstrates that the developed model can provide an effective
service for drought prevention/combat and water resource management in agricultural
operations, the model can also give more stable and advantageous dryness/wetness
prognosis as well. Nonetheless, the present study is confined to the comparison of results
between ANN and regression techniques, and further exploration is needed to reveal the
difference between ANN and EDA (exploration date analysis) within a nonlinear

framework.

IV. CONCLUDING REMARKS

Because of the length limitation of the continuous SH measurements, no calculation is
performed of the chaos indices (e. g., incidence dimension and Lyapunov exponent) in
designing the prognostic model so that no study was made of the dimension of its
“attractive system” and no fuller arguments are given in defining the dimension for model
establishment. Evidently, a high-quality model depends substantially on all of the
considered factors related to the predictand’s future state. For this reason., rainfall and
insolation duration are included in model (5). Will the forecast accuracy be improved if
other contributing meteorological factors, dynamic and thermal, are involved? This is a
problem that remains to be investigated.
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