辽冀地区条带状铁建造地球化学特征:Ⅰ.主量元素特征

杨秀清, 李厚民, 李立兴, 姚通, 陈靖, 刘明军. 辽冀地区条带状铁建造地球化学特征:Ⅰ.主量元素特征[J]. 岩石学报, 2014, 30(5): 1218-1238.
引用本文: 杨秀清, 李厚民, 李立兴, 姚通, 陈靖, 刘明军. 辽冀地区条带状铁建造地球化学特征:Ⅰ.主量元素特征[J]. 岩石学报, 2014, 30(5): 1218-1238.
YANG XiuQing, LI HouMin, LI LiXing, YAO Tong, CHEN Jing, LIU MingJun. Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area:Ⅰ Characteristics of major elements[J]. Acta Petrologica Sinica, 2014, 30(5): 1218-1238.
Citation: YANG XiuQing, LI HouMin, LI LiXing, YAO Tong, CHEN Jing, LIU MingJun. Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area:Ⅰ Characteristics of major elements[J]. Acta Petrologica Sinica, 2014, 30(5): 1218-1238.

辽冀地区条带状铁建造地球化学特征:Ⅰ.主量元素特征

  • 基金项目:

    本文受国家“973”项目(2012CB416801)、国土资源部公益性行业专项经费项目(201111002、200911007)和地质矿产评价项目(1212011120988)联合资助.

详细信息

Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area:Ⅰ Characteristics of major elements

More Information
  • 辽冀地区(主要包括鞍山-本溪地区和冀东地区)位于华北克拉通东北部,产出有诸多BIFs型大型-特大型铁矿床。鞍山-本溪地区和冀东地区是我国最大的两个铁矿集区,其中鞍本地区铁矿储量占全国的24%左右,冀东地区铁矿资源储量占全国的10%以上。虽然辽冀地区BIFs大多为形成于新太古代绿岩带中的Algoma型BIFs,但不同矿区BIFs形成环境和受后期改造的程度不一致,鞍本地区BIFs变质级别为绿片岩相-角闪岩相,冀东地区BIFs经历了绿片岩相-麻粒岩相的变质作用,且辽冀地区普遍发育混合岩化。本文主要对比研究了辽冀地区28个铁矿床200件铁矿石的主量元素特征,为探讨辽冀地区BIFs的形成提供了更多的信息。BIFs样品主要由SiO2和Fe2O3T组成,其中鞍山-本溪地区SiO2+Fe2O3T平均为95.10%,冀东地区SiO2+Fe2O3T平均为88.06%,CaO和MgO含量仅次于SiO2和Fe2O3T,且大部分矿区具有正相关关系,Al2O3、TiO2、K2O、Na2O、MnO、P2O5含量很低,这暗示BIFs原岩为一种化学沉积岩,主要为含有少量碳酸盐泥的硅质和铁质的胶体沉积;辽冀地区Al2O3和TiO2均可见明显的正相关,这可能是由于BIFs沉积过程中有少量碎屑物质的加入,这种相关性在冀东地区更为明显,且除SiO2+Fe2O3T外,其它氧化物含量明显高于鞍本地区,说明冀东地区BIFs形成时沉积环境更为动荡,有更多的碎屑物质加入;虽然辽冀不同地区BIFs经历了不同级别的变质作用,形成了不同的矿物组合,但是氧化物含量却变化不大,这说明了变质反应主要为等化学反应;鞍本地区和冀东地区碱质含量也存在差异性,前者的Na2O和K2O含量均低于后者,且后者Na2O2O,结合野外地质特征,可能暗示了混合岩化作用对冀东地区的影响更为显著。
  • 加载中
  • [1]

    Arora M, Govil PK, Charan SN, Raj BU, Balaram V, Manikyamba C, Chatterjee AK and Naqvi SM. 1995. Geochemistry and origin of Archean banded iron-formation from the Bababudan schist belt, India. Economic Geology, 90(7): 2040-2057

    [2]

    Barley ME, Pickard AL, Hagemann SG and Folkert SL. 1999. Hydrothermal origin for the 2 billion year old Mount Tom Price giant iron ore deposit, Hamersley Province, Western Australia. Mineralium Deposita, 34(8): 784-789

    [3]

    Basta FF, Maurice AE, Fontboté L and Favarger PY. 2011. Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF. Precambrian Research, 187(3): 277-292

    [4]

    Bekker A, Slack JF, Planavsky A, Krapež B, Hofmann A, Konhauser KO and Rouxel OJ. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105(3): 467-508

    [5]

    Cheng YQ. 1957. The problem of high grade iron ore genesis in Precambrian Anshan-type banded iron deposits in the Liaoning and Shandong provinces, in the northeast of China. Acta Geologica Sinica, 37(2): 153-180 (in Chinese with English abstract)

    [6]

    Dai YP, Zhang LC, Wang CL, Liu L, Cui ML, Zhu MT and Xiang P. 2012. Genetic type, formation age and tectonic setting of Waitoushan banded iron formation, Benxi, Liaoning Province. Acta Petrologica Sinica, 28(11): 3574-3594(in Chinese with English abstract)

    [7]

    Ding WJ, Chen ZL, Chen BL, Dong FX and Cui LL. 2009. Geochemical characters of banded iron formations from Xingshan iron deposit in Qian’an area, Hebei Province: Implication for their origin. Journal of Geomechanics, 15(4): 363-373(in Chinese with English abstract)

    [8]

    Duchac KC and Hanor JS. 1987. Origin and timing of the metasomatic silicification of an Early Archean komatiite sequence, Barberton Mountain Land, South Africa. Precambrian Research, 37(2): 125-146

    [9]

    Dymek RF and Klein C. 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800Ma Isuasupracrustal belt, West Greenland. Precambrian Research, 39(4): 247-302

    [10]

    Ewers WE and Morris RC. 1981. Studies of the Dales Gorge member of the Brockman iron formation, Western Australia. Economic Geology, 76(7): 1929-1953

    [11]

    Geng YS, Du DL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529

    [12]

    Govett GJS. 1966. Origin of banded iron formations. Geological Society of America Bulletin, 77(11): 1191-1212

    [13]

    Gross GA. 1965. Geology of iron deposits in Canada: General geology and evaluation of iron deposits. Geological Survey of Canada Economic Report, 22: 1-181

    [14]

    Gross GA and McLeod CR. 1980. A preliminary assessment of the chemical composition of iron formations in Canada. Canadian Mineralogist, 16(2): 223-229

    [15]

    James HL. 1954. Sedimentary facies of iron formation. Economic Geology, 49(3): 235-249

    [16]

    Klein C. 1983. Diagenesis and metamorphism of Precambrian banded iron-formations. Developments in Precambrian Geology, 6: 417-469

    [17]

    Klein C and Beukes NJ. 1989. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84(7): 1733-1774

    [18]

    Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90(10): 1473-1499

    [19]

    Kranidiotis P and MacLean WH. 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82(7): 1898-1911

    [20]

    Krapež B, Barley ME and Pickard AL. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology, 50(5): 979-1011

    [21]

    Kusky TM, Windley BF and Zhai MG. 2007. Tectonic evolution of the North China Block: From orogen to craton to orogen. In: Zhai MG, Windley BF, Kusky TM et al. (eds.). Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society of London Special Publication, 280: 1-34

    [22]

    Kusky TM. 2010. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1): 26-35

    [23]

    Lan TG, Fan HR, Yan KF, Zheng XL and Zhang HD. 2012. Geological and geochemical characteristics of Paleoproterozoic Changyi banded iron formation deposit, Jiaodong Peninsula of eastern of China. Acta Petrologica Sinica, 28(11): 3595-3611(in Chinese with English abstract)

    [24]

    Lepp H and Goldich SS. 1964. Origin of Precambrian iron formations. Economic Geology, 59(6): 1025-1060

    [25]

    Li HM, Wang DH, Li LX, Chen J, Yang XQ and Liu MJ. 2012a. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China. Geology in China, 39(3): 559-580(in Chinese with English abstract)

    [26]

    Li HM, Chen YC, Li LX et al. 2012b. Metallogeny of the Iron Deposit China. Beijing: Geological Publishing House, 1-246(in Chinese)

    [27]

    Li HM, Liu MJ, Li LX, Yang XQ, Chen J, Yao LD, Hong XK and Yao T. 2012c. Geology and geochemistry of the marbe in the Gongchangling iron deposit in Liaoning Province and their metallogenic significance. Acta Petrologica Sinica, 28(11): 3497-3512(in Chinese with English abstract)

    [28]

    Li HM, Zhang ZJ, Li LX, Zhang ZC, Chen J and Yao T. 2013. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264-287

    [29]

    Li JH and Kusky TM. 2007. A Late Archean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics. In: Zhai MG, Xiao WJ, Kusky TM and Santosh M (eds.). Tectonic Evolution of China and Adjacent Crustal Fragments. Gondwana Research, 12(1): 47-66

    [30]

    Li YH, Zhang ZJ, Wu JS and Shang LP. 2011. Metamorphic chronology of the BIF in Malanzhuang of eastern Hebei Province and its geological implications. Mineral Deposits, 30(4): 645-653(in Chinese with English abstract)

    [31]

    Li ZH, Zhu XK and Tang SH. 2008. Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source. Acta Petrologica et Mineralogica, 27(4): 285-290(in Chinese with English abstract)

    [32]

    Li ZH, Zhu XK, Tang SH, LJ and Liu H. 2010. Characteristic of rare earth elements and geological significations of BIFs from Jidong, Wutai and Lvliang area. Geoscience, 24(5): 840-846(in Chinese with English abstract)

    [33]

    Luo ZK, Guan K, Qiu YS, Miao LC, Qiu YM, McNaughton NJ and Groves DI. 2001. Zircon SHRIMP U-Pb dating of albited dyke in Jinchangyu gold mine, Jidong area, Heibei, China. Contributions to Geology and Mineral Resources Research, 16(4): 226-231(in Chinese with English abstract)

    [34]

    Manikyamba C, Balaram V and Naqvi SM. 1993. Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precambrian Research, 61(1-2): 137-164

    [35]

    Nutman AP, Wan YS, Du LL, Friend CR, Dong CY, Xie HQ, Wang W, Sun HY and Liu DY. 2011. Multistage Late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189(1-2): 43-65

    [36]

    Paris I, Stanistreet IG and Hughes MJ. 1985. Cherts of the Barberton greenstone belt interpreted as products of submarine exhalative activity. The Journal of Geology, 111-129

    [37]

    Roy S and Venkatesh AS. 2009. Banded Iron Formation to Blue Dust: Mineralogical and geochemical constraints from the Precambrian Jilling-Langalata deposits, Eastern Indian Craton. Applied Earth Science, 118(3-4): 178-188

    [38]

    Santosh M, Zhao DP and Kusky T. 2010. Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography. Journal Geodynamics, 49(1): 39-53

    [39]

    Shen BF. 2012. Geological characters and resource prospect of the BIF type iron ore deposit in China. Acta Geologica Sinica, 86(9): 1376-1395(in Chinese with English abstract)

    [40]

    Shen QH. 1998. Geological characteristics and forming environment of Early Precambrian banded iron formation in North China Platform. In: Cheng YQ (ed.). Research Contributions of Early Precambrian Geology of North China Platform. Beijing: Geological Publishing House, 1-30 (in Chinese)

    [41]

    Shen QH, Song HX, Yang CH and Wan YS. 2011. Petrochemical characteristics and geological significations of banded iron formations in the Wutai Mountain of Shanxi and Qian’an of eastern Hebei. Acta Petrologica et Mineralogica, 30(2): 161-171(in Chinese with English abstract)

    [42]

    Siever R. 1957. The silica budget in the sedimentary cycle. American Mineralogist, 42(11-12): 821-841

    [43]

    Song B, Nutman AP, Liu D and Wu J. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79-94

    [44]

    Sugitani K. 1992. Geochemical characteristics of Archeancherts and other sedimentary rocks in the Pilbara Block, Western Australia: Evidence for Archean seawater enriched in hydrothermally-derived iron and silica. Precambrian Research, 57(1): 21-47

    [45]

    Wan YS. 1993. The Formation and Evolution of the Banded Iron Formation in Gongchangling Distract, Liaoning. Beijing: Scientific and Technical Documentation Press, 1-93 (in Chinese)

    [46]

    Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ and Geng YS. 2005. Geochemical and Nd isotopic compositions of 3.8Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences, 24(5): 563-575

    [47]

    Wan YS, Song B, Geng YS and Liu DY. 2005. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, northern Liaoning Province and its geological significance. Geological Review, 51(2): 128-137(in Chinese with English abstract)

    [48]

    Wan YS, Dong CY, Xie HQ, Wang SJ, Song MC, Xu ZY, Wang SY, Zhou HY, Ma MZ and Liu DY. 2012. Formation ages of Early Precambrian BIFs in the North China craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447-1478(in Chinese with English abstract)

    [49]

    Wang RM, He GP, Chen ZZ, Zheng YS and Geng YS. 1987. Graphic Method for Ptotolith Metamorphic Rocks. Beijing: Geological Publishing House, 1-199 (in Chinese)

    [50]

    Wu FY, Zhao GC, Wilde SA and Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545

    [51]

    Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2010. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362

    [52]

    Wu JS, Geng YS, Shen QH, Wan YS, Liu DY and Song B. 1998. Archean Geological Characteristics and Tectonic Evolution of Sino-Korea Paleo-Continent. Beijing: Geological Publishing House (in Chinese)

    [53]

    Xiang P, Cui ML, Wu HY, Zhang XJ and Zhang LC. 2012. Geological characteristic, ages of host rocks and its geological significance of the Zhoutaizi iron deposit in Luanping, Hebei Province. Acta Petrologica Sinica, 28(11): 3655-3669(in Chinese with English abstract)

    [54]

    Xu GR and Chen JH. 1984. Metallogenic characteristics of iron deposit in Archean greenstone basin of Anshan-Benxi area, Northeast China. Mineral Deposits, 3(2): 1-10(in Chinese with English abstract)

    [55]

    Yang XQ, Li HM, Li LX, Liu MJ, Chen J and Bai Y. 2012. Characteristics of rare earth elements and geological significations of magnetite from Gongchangling iron deposit in Liaoning Province. Rock and Mineral Analysis, 31(6): 1058-1066(in Chinese with English abstract)

    [56]

    Yang XQ, Li HM, Xue CJ, Li LX, Liu MJ and Chen J. 2013. Geochemical characteristics of two types of iron ore from Waitoushan iron deposit, Liaoning Province: Constraints on ore-forming. Acta Geologica Sinica, 87(10): 1580-1592(in Chinese with English abstract)

    [57]

    Yang ZS, Yu BX and Gao DH. 1983. Research of tectonic deformation of the metamorphic sedimentary iron-deposit in Waitoushan area, Liaoning Province. Journal of Changchun University of Earth Science, (2): 11-23(in Chinese with English abstract)

    [58]

    Yao PH. 1993. Iron ore Deposit of China. Beijing: Metallurgical Industry Press, 242-247 (in Chinese)

    [59]

    Yao T, Li HM, Yang XQ, Li LX, Chen J, Zhang JY and Liu MJ. 2014. Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area: Ⅱ. Characteristics of rare earth elements. Acta Petrologica Sinica, 30(5): 1239-1252 (in Chinese with English abstract)

    [60]

    Zhai MG, Windley BF and Sill JD. 1989. REE and trace element geochemistry of the Archean Anshan-Benxi BIF, Liaoning, Northeast China. Geochimica, (3): 241-250(in Chinese with English abstract)

    [61]

    Zhai MG, Windley BF and Sills JD. 1990. Archaean gneisses amphibolites, and banded iron-formations from the Anshan area of Liaoning Province, NE China: Their geochemistry, metamorphism and petrogenesis. Precambrian Research, 46(3): 195-216

    [62]

    Zhai MG, Sills JD and Windley BF. 1990. Metamorphic minerals and metamorphism of Anshan group in Anshan-Benxi area Liaoning. Acta Petrologica et Mineralogica, 9(2): 148-158 (in Chinese with English abstract)

    [63]

    Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.1): 219-232

    [64]

    Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract)

    [65]

    Zhang BH, Cai YT, Zhang WB, Cui WZ, Zheng JQ and Liu RQ. 1986. Structural deformation of the Early Precambrian rock groups in the Anshan area, Liaoning Province. Journal of Changchun University of Earth Science, (2): 47-56 (in Chinese with English abstract)

    [66]

    Zhang LC, Zhai MG, Zhang XJ, Xiang P, Dai YP, Wang CL and Pirajno F. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Research, 222-223: 325-328

    [67]

    Zhang LC, Zhai MG, Wan YS, Guo JH, Dai YP, Wang CL and Liu L. 2012. Study of the Precambrian BIF-iron depositsin the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11): 3431-3445(in Chinese with English abstract)

    [68]

    Zhang XJ, Zhang LC, Xiang P, Wan B and Pirajno F. 2011. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137-148

    [69]

    Zhang YX. 1986. Archean Geology and Metamorphic Iron Deposit in the Eastern Hebei Province. Beijing: Geological Publishing House (in Chinese)

    [70]

    Zhang ZC, Hou T, Santosh M, Li HM, Li JW, Zhang ZH, Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247-263

    [71]

    Zhao GC, Wilde SM, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73

    [72]

    Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792(in Chinese with English abstract)

    [73]

    Zhou ST. 1994. Geology of Banded Iron Deposits in Anshan-Benxi Area. Beijing: Geological Publishing House, 1-276 (in Chinese)

    [74]

    程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153-180

    [75]

    代堰培, 张连昌, 王长乐, 刘利, 崔敏利, 朱明田, 相鹏. 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景. 岩石学报, 28(11): 3574-3794

    [76]

    丁文君, 陈正乐, 陈柏林, 董法先, 崔玲玲. 2009. 河北迁安杏山铁矿床地球化学特征及其对成矿物质来源的指示. 地质力学学报, 15(4): 363-373

    [77]

    蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 郑小礼, 张华东. 2012. 鲁东昌邑古元古代BIF铁矿矿床地球化学特征及矿床成因讨论. 岩石学报, 28(11): 3595-3611

    [78]

    李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军. 2012a. 中国铁矿成矿规律及重点矿集区资源潜力分析. 中国地质, 39(3): 559-580

    [79]

    李厚民, 陈毓川, 李立兴等. 2012b. 中国铁矿成矿规律. 北京: 地质出版社, 1-246

    [80]

    李厚民, 刘明军, 李立兴, 杨秀清, 陈靖, 姚良德, 姚通. 2012c. 辽宁弓长岭铁矿区大理岩地质地球化学特征及其成矿意义. 岩石学报, 28(11): 3497-3512

    [81]

    李延河, 张增杰, 伍家善, 尚龙平. 2011. 冀东马兰庄条带状硅铁建造的变质时代及地质意义. 矿床地质, 30(4): 645-653

    [82]

    李志红, 朱祥坤, 唐索寒. 2008. 鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示. 岩石矿物学杂志, 27(4): 285-290

    [83]

    李志红, 朱祥坤, 唐索寒, 李津, 刘辉. 2010. 冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义. 现代地质, 24(5): 840-846

    [84]

    罗镇宽, 关康, 裘有守, 苗来成, Qiu YM, Mcnaughton NJ, Groves DI. 2001. 冀东金厂峪金矿区钠长岩脉及青山口花岗岩体SHRIMP锆石U-Pb定年及其意义. 地质找矿论丛, 16(4): 226-231

    [85]

    沈保丰. 2012. 中国BIF型铁矿床地质特征和资源远景. 地质学报, 86(9): 1376-1395

    [86]

    沈其韩. 1998. 华北地台早前寒武纪条带状铁英岩地质特征和形成的地质背景. 见: 程裕淇主编. 华北地台早前寒武纪地质研究论文集. 北京: 地质出版社, 1-30

    [87]

    沈其韩, 宋会侠, 杨崇辉, 万渝生. 2011. 山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义. 岩石矿物学杂志, 30(2): 161-171

    [88]

    万渝生. 1993. 辽宁弓长岭含铁岩系的形成与演化. 北京: 北京科学技术出版社, 1-93

    [89]

    万渝生, 宋彪, 耿元生, 刘敦一. 2005. 辽北抚顺-清原地区太古宙基底地球化学组成特征及其地质意义. 地质论评, 51(2): 128-137

    [90]

    万渝生, 董春燕, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代-SHRIMP 锆石U-Pb年龄. 地质学报, 86(9): 1447-1478

    [91]

    王仁民, 贺高珍, 陈珍珍, 郑松彦, 耿元生. 1987. 变质岩原岩图解判别法. 北京:地质出版社, 1-199

    [92]

    伍家善, 耿元生, 沈其韩. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社

    [93]

    相鹏, 崔敏利, 吴华英, 张晓静, 张连昌. 2012. 河北滦平周台子条带状铁矿地质特征、围岩时代及其地质意义. 岩石学报, 28(11): 3655-3669

    [94]

    徐光荣, 陈江洪. 1984. 鞍本太古宙绿岩带盆地铁矿及其铁矿成矿特征. 矿床地质, 3(2): 1-10

    [95]

    杨秀清, 李厚民, 李立兴, 刘明军, 陈靖, 白云. 2012. 辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义. 岩矿测试, 31(6): 1058-1066

    [96]

    杨秀清, 李厚民, 薛春纪, 李立兴, 刘明军, 陈靖. 2103. 辽宁歪头山铁矿床两类矿石地球化学特征及其对成矿作用的制约. 地质学报, 87(10): 1580-1592

    [97]

    杨振升, 俞保祥, 高德华. 1983. 辽宁歪头山变质-沉积铁矿构造变形研究. 长春地质学院学报, (2): 11-23

    [98]

    姚培慧. 1993. 中国铁矿志. 北京: 冶金出版社, 242-247

    [99]

    姚通, 李厚民, 杨秀清, 李立兴, 陈靖, 张进友, 刘明军. 2014. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 稀土元素特征. 岩石学报, 30(5): 1239-1252

    [100]

    翟明国, Windley BF, Sill JD. 1989. 鞍本太古代条带状铁建造(BIF)的稀土及微量元素特征. 地球化学, (3): 241-250

    [101]

    翟明国, Sills JD, Windley BF. 1990. 鞍本地区鞍山群变质矿物及变质作用. 岩石矿物学杂志, 9(2): 148-158

    [102]

    翟明国, 卞爱国, 赵太平. 2000. 华北克拉通新太古代末超大陆拼合及古元古-中元古代裂解. 中国科学(D辑), 30(1): 129-137

    [103]

    翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36

    [104]

    张宝华, 蔡一廷, 张文博, 崔文智, 郑峻庆, 刘如琦. 1986. 鞍山地区早前寒武纪岩群的构造变形. 长春地质学院学报, (2): 47-56

    [105]

    张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431-3435

    [106]

    张贻侠. 1986. 冀东太古代地质及变质铁矿. 北京: 地质出版社

    [107]

    赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792

    [108]

    周世泰. 1994. 鞍山-本溪地区条带状铁矿地质. 北京: 地质出版社, 1-276

  • 加载中
计量
  • 文章访问数:  6114
  • PDF下载数:  9193
  • 施引文献:  0
出版历程
收稿日期:  2013-10-08
修回日期:  2014-01-22
刊出日期:  2014-05-31

目录