Supersaturated Aqueous Magnesium Borate Solutions, a Structural Study by Difference FT—Raman and ¹¹B NMR Spectroscopy

LI Jun, LI Bing

(Xi' an Branch, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xi' an, 710043, China)

Abstract Three kinds of supersaturated aqueous magnesium borate solutions were prepared The differential FT⁻ Raman and ¹¹ B NMR spectra of supersaturated and saturated aqueous magnesium borate solutions were recorded The B(OH)₃, B $(OH)_{4}^{-}$, B₃O₃ $(OH)_{4}^{-}$, and B₅O₆ $(OH)_{4}^{-}$ were detected in supersaturated and saturated MgB₆O₁₀ ° 7. 5H₂O, MgB₄O₇ ° 9H₂O, and Mg₂B₆O₁₁ ° 15H₂O solutions There were no simple crystallization mechanisms for these magnesium borates, complicated dynamic equilibria among the boron species in solutions existed during the precipitation of magnesium borates **Key words**; Magnesium borate; Supersaturated solutions; Differential FT⁻ Raman spectra; ¹¹B NMR spectra **CLC number**; **O**645. 16 **Document code A Article ID**; 1008⁻ 858**X**(2004) 03⁻ 0026⁻05

1 Introduction

Aqueous borate solutions are important in chemistry, geochemistry, and industry. The speciation of aqueous borate solutions have been studied by using indirect and direct methods¹⁻³ for long time because of their complexity and importance. The above studies have shown that the nature of aqueous borate solutions depends strongly on the pH values and boron concentrations of aqueous solutions, as well astemperature. The B(OH) 3, B(OH) $\frac{1}{4}$, B₂O (OH) $\frac{5}{5}$, B₃O₃ (OH) $\frac{1}{4}$, B₃O₃ (OH) $\frac{1}{4}$, B₄O₅ (OH) $\frac{2^{-1}}{4}$, and B₅O₆(OH) $\frac{4}{4}$, B₄O₅ (OH) $\frac{3}{4}$, B₄O₅ (OH) $\frac{4}{4}$, B₄O₅ (

room temperature. In our recent study on the speciation of aqueous borate solutions, these five boron species were found to be the main species in' solutions, there was no evidence found for presence of higher polymeric boron species.

It is known that aqueous borate solutions become easily supersaturated with respect to borates at given conditions. The observations by Gao et al. $^{4-7}$ on the behavior of magnesium borates in salt lake brines have shown that magnesium borates could exist in solution to high concentrations, the brines were highly supersaturated with respect to magnesium borates. Dilution of these brines accelerated the precipitation of magnesium borates. Lehmann and Rietz⁸ found that several magnesium borates could be crystallized from the supersaturated magnesium borate solutions at room and at high temperatures.

Foundation item: Supported by National Natural Science Faundation of China for this project (29771032).

Releived date: 2004–02–16; Revised date: 2004–03–29

Biography: Li Jun(1966–), male, Master. (C) 1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

Reburn and Gale⁹ prepared highly supersaturated lithium tetraborate solutions that maintained long time without precipitation. A method to prepare supersaturated solution with respect to borax was patented.¹⁰ Understanding of structures of supersaturated aluminate and silicate solutions.¹¹ important both for aluminum and silicate industries, is good, however very little is known about the structures of supersaturated borate solutions. The understanding of the structur al mechanisms of supersaturated borate solutions is not only scientifically interesting, but serves industrial interests. The understanding provides us the information of structural changes in aqueous solutions, and enables us to develop more feasible chemical technologies. As a continuing study on the speciation of aqueous borate solutions, we caried out the structural study of supersaturated magnesium boratesolutions. We will propose structural mechanisms of supersaturated aqueousmagnesium borate solutions, and crystallization mechanisms of magnesium borates from supersaturated borate solutions.

2 Experimental

Preparation of supersaturated aqueous magnesium borate solutions

Three kinds of supersaturated magnesium borate solutions were prepared chemically. The supersaturated MgB₆O₁₀ $^{\circ}$ 7. 5H₂O, MgB₄O₇. 9H₂O, and Mg₂B₆O₁₁ $^{\circ}$ 15H₂O solutions were prepared according to the methods presented in literature with a slight modification, ^{8, 12} The H₃BO₃ (A. R., Merck) and deionized water were used. The MgO Was decomposed from Mg (OH) $_2$ $^{\circ}$ 4MgCO₃ $^{\circ}$ 6H₂O (A. R., made in China) in an electric oven at temperature 600 $^{\circ}$ C for 3 hr, and stored in a desiccator. The MgO prepared by this method was of high activity. The mixtures of H₃BO₃, MgO, and H₂O (7. 067 g H₃BO₃, 0. 575 g MgO, and 50g H₂O for MgB₆O₁₀ $^{\circ}$ 7. 5H₂O₅ 6. 060g H₃BO₃, 0. 757g MgO, and 50g

H₂O for MgB₄O₇ °9H₂O; 1. 185g H₃BO₃, 0. 232 g MgO, and 50g H₂O for Mg₂B₆O₁₁ ° 15H₂O) were stirred continuously on a magnetic stirrer at room temperature After half of an hour for MgB₆O¹⁰ ° 7. 5H₂O, or one and half of an hour for MgB₄O₇ ° 9H₂O and Mg₂B₆O₁₁ °15H₂O, the mixtures became clear. The solutions were filtered to separate the undissolved residue, and the clear solutions were stored in conical flasks with stopper at room temperature. The boron concentrations of the solutions were analyzed, and the pH values were recorded. Two days later, the magnesium borates crystallized from the clear solutions. The solids were separated until the pH values of the solution sremained unchanged. The process of precipitation lasted for half of a month. The dry solids were fully characterized by chemical analysis, FT-IR and FT-Raman spectioscopy, and X-ray powder diffraction. The results shown that the solids were expected magnesium borates. It should be pointed out that the MgB4O7 ° 9H2O and MgaB6O11 °15H2O synthesized according to our improved method are of more pure quality, crystals are of larger size, and to obtain crystals shorter time is needed when the methods by Kesans

Spectroscopy

is used. 12

FT— Raman spectra were recorded on a Nicolet Raman 910 spectrometer. Excitationwavelength of 1064 nm of a Nd; YAG laser at about 1W power was used. The solutions were held in Pyrex tubes. The wavenumber range scanned was from 1600 to 300 cm⁻¹. Difference FT— Raman spectra were obtained by subtracting the spectrum of pure water from the spectra of the solutions. ¹¹B NMR spectra were recorded at 128. 3MHz on a Bruker DPX—400 instrument using a sealed 5 mm tube at 299 K. The NMRsolvent is H₂O. All chemical shifts of the signals were relative to Et₂O °BF₃ that was used as ex-

5H₂O: 6.060g H₃BO₃, 0.757g MgO, and 50g ternal reference. (C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

3 Results and discussions

The chemical analyses, pH, FT— Raman, and ¹¹ B NMR spectra of the supersaturated and saturated MgB₆O₁₀ °7. 5H₂O, MgB₄O₇ °9H₂O, and Mg₂B₆O¹¹ °15H₂O solutions are given in Tables 1 to 2, and the spectra are illustrated in Figures 1 to 2. The spectra of supersaturated solutions are similar to that of the corresponding saturated solutions. Comparison with corresponding solutions of sodium borate at saturation or nears aturation, no additional bands on the difference FT— Raman spectra and resonance on the ¹¹ B NMR spectra were found. Detailed discussions of the results are given in the following section. Supersaturated MgB₆O₁₀ °7. 5H₂O solution

Based on the assignments in previous papers²⁻⁴ and our new spectral information, B (OH)₃, B (OH)^{$\overline{4}$}, B₃O₃ (OH)₄^{$\overline{-}$}, and B₅O₆ (OH)₄^{$\overline{-}$} were found to be present in supersaturated and saturated MgB₆O₁₀ °7. 5H₂O solutions. Although the spectra did not show the presence of B₄O₅(OH)₄²⁻, we did not exclude it from the solutions studied. We think that it may be present in the solutions at concentration too low to be detected. The crystallized product $MgB_6O_{10} \circ 7.5H_2O$ has a hexaborate anion B_6O_7 $(OH)_6^{2^-}$ which consists of three boron—oxygen six member rings, each ring consists of two B—O tetrahedrons and one B—O triangle. The band 635 cm⁻¹ in the Raman spectra of triborates and hexaborates has been attributed to the symmetric pulse vibration¹³ of B_3O_3 (OH) $_5^{2^-}$ and B_6O_7 (OH) $_6^{2^-}$. B_6O_7 (OH) $_6^{2^-}$ has three the identical rings as the B_3O_3 (OH) $_5^{2^-} \circ B_3O_3(OH)_4^-$ present in solutions differs from $B_3O_3(OH)_5^{2^-}$ in the ratio of B—O triangles to B—O tetrahedrons. The $B_3O_3(OH)_4^-$ can easily transform into the $B_3O_3(OH)_5^{2^-}$ in aqueous solutions:

$$B_{3}O_{3}(OH)_{4}^{-}+OH^{-}=B_{3}O_{3}(OH)_{5}^{2-}$$
 (1)

The precursor of MgB₆O₁₀ °7. 5H₂O crystallized from supersaturated solution may be B₃O3(OH)₄⁻, but no simple crystallization mechanisms exist. Complicated dynamic equilibria among the boron species in solution must be established at low rate during slow precipitation of MgB₆O₁₀ °7. 5H₂O.

 $v_{p}B_{5}O_{6}(OH)_{4}^{-}$

	Solution	B Cone $/mol^{\circ}dm^{-3}$	pH	Chemical shift/ppm
MgB ₆ O ₁₀ °7. 5H ₂ O	Supersatu.	2 11	7. 18	18 71, 13 17, 1 44
	Satu	1. 04	6.84	19. 13, 13. 34, 1. 18
$\mathrm{MgB_4O_7~^\circ 9H_2O}$	Supersatu.	1. 81	7.94	17. 06, 12 96, 1. 16
	Satu	0.81	7.12	19. 09, 13. 01, 1. 22
$Mg_2B_6O_{10}^{\circ}$ 15H ₂ O	Supersatu.	0.36	9. 09	14. 29, 1. 16
	Satu	0.10	8 62	14. 98

Table 1 Chemical analyses and ¹¹B NMR spectra of supersaturated and saturated magnesium borate solutions

 $\label{eq:table 2} \textbf{Table 2} \quad \text{Differential FT-} Raman \ \text{spectra} \ (\ \text{in} \ \ \text{cm}^{-1}) \ \text{of supersaturated and saturated aqueous}$

		magnesium bora	ate solutions at r	oom temperature		
MgB ₆ O ₁₀ °7. 5H ₂ O		MgB_4O_7	MgB_4O_7 °9H ₂ O		$Mg_2B_6O_{10}^{\circ}15H_2O$	
Supersatu.	Satu	Supersatu	Satu.	Supersatu.	Satu	- Assignments
876 s	876s	876s	876s	876s	876m	$v_1 B(OH)_3$
745w		749w		744m		$v_1B(OH)_4$
612m	609w	612m	609w	609w		$v_{p}B_{3}O_{3}(OH)_{4}$

528w

w-weak, m-medium, s-strong

529w

529w

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

Fig 1 ¹¹ B NMR spectra of supersaturated and saturated magnesium borate solutions at room temperature (a) $MgB_6O_{10} \circ 7.5H_2O$ supersaturated; (b) $MgB_6O_{10} \circ 7.5H_2O$ saturated; (c) $MgB_4O_7 \circ 9H_2O$ supersaturated; (d) $MgB_4O_7 \circ 9H_2O$ supersaturated; (e) $MgB_6O_{11} \circ 15H_2O$ supersaturated; (f) $Mg2B_6O_{11} \circ 15H_2O$ supersaturated

Supersaturated MgB4O9 °9H2O solution

The difference FT— Raman and ¹¹ B NMR spectra of supersaturated and saturated MgB₄O₇ $^{\circ}$ 9H₂O solutions were analogous to that of MgB₆O₁₀ $^{\circ}$ 7. 5H₂O respectively. The B(OH) ³, B(OH) ⁴, B₃O₃(OH) ⁴, and B₅O₆(OH) ⁴, are main borom species in solution

Fig 2 Differential FT— Raman spectra of supersaturated and saturated magnesium borate solutions at room temperature (a) $MgB_6O_{10} \circ 7.5H_2O$ supersaturated; (b) $MgB_6O_{10} \circ 7.5H_2O$ saturated; (c) $MgB_6O_7 \circ 9H_2O$ supersaturated; (d) $MgB_4O_7 \circ 9H_2O$ saturated; (e) $Mg_2B_6O_{11} \circ 15H_2O$ supersaturated; (f) $Mg_2B_6O_{11} \circ 15H_2O$ saturated

ions. The crystallized product MgB4O7 $^{\circ}$ 9H₂O has tetraborate anion B4O5 (OH) 4²⁻, which is not observable by Raman and ¹¹B NMR spectroscopy. Thereare two possibilities that the unobservable B₄O₅ (OH) 4²⁻ due to its low concentration is the precursor, or the precursor is formed from complicated equilibria among the boron species in solutions. Supersaturated Mg2B₆O₁₁ °15H₂O solution

Because of low boron concentration, the B $(OH)_3$, $B(OH)_4^-$, and $B_3O_3(OH)_4^-$ are only observed in the difference FT⁻⁻ Raman and ¹¹B NMR spectra of supersaturated and saturated Mg₂B₆O₁₁ ° Publishing House. All rights reserved. http://www.

 $15\mathrm{H}_2\mathrm{O}$ solutions. The most possible precursor of $\mathrm{Mg}_2\mathrm{B}_6\mathrm{O}_{11}°15\mathrm{H}_2\mathrm{O}$ is $\mathrm{B}_3\mathrm{O}_3$ (OH) $_4^-$. Just like in case of $\mathrm{Mg}\mathrm{B}_6\mathrm{O}_{10}$ °7. 5H2O and $\mathrm{Mg}\mathrm{B}_4\mathrm{O}_7$ °9H2O, complicated dynamic equilibria among boron species exist in solution.

References

- J. B. Farmer. Advances in Inorganic Chemistry and Radiochemistry [M]. London; Academic Press, 1982. 187.
- [2] G. Salentine. High field boron 11NMR of alkali borates Aqueous polyborate equilabria Christopher [J]. Inorg Chem, 1983, 22(26):3920—3924.
- [3] K. Ishihara, A. Nagasawa, K. Umemoto, H. Ito, K. Saito. Kinetic Study of Boric A cid⁻⁻ Borate Interchange in Aqueous Solution by ¹¹ B NMR Spectroscopy[J]. Inorg. Chem., 1994, 33(17): 3811 -- 3816.
- [4] Sh. Y. Gao, Zh. G. Chen, J. N. Feng, A New Solid Phase of Mg — Borate crystallized out from High—Boron—Containing concentrated Brine[J]. Wuji Huaxue Xuebao, 1986, 2(1):40.
- [5] Sh. Y. Gao, K. F. Xu, G. Li, J. N. Feng. Study on the Behaviour of Borate in Salt lake Brine During Dilution[J]. Acta Chimca Sinica, 1986, 44, 1229.

- [6] Sh. Y. Gao , Q. X. Li and Sh. P. Xia. Study on Kinetics of Mgo — Borate Crystallied out From MgO^o2B₂O₃—MgCl₂—H₂O Solution[J]. Wuji Huaxue Xuebao, 1988,4(2): 64.
- [8] H. A. Lehmann, G. Rietz, Z [J]. Anorg. Alleg. Chem., 1967, 350, 168.
- [9] W. T. Reburn, W. A. Gale. The System Lithium Oxide—Boric Oxide—Water [J] .J. Phys. Chem, 1995, 59(1): 19–24.
- [10] G. A. Connell [P] U.S. Patenet: 2643947, 1953
- [11] S. M. Bradley, J. V. Hanna.²⁷Al and ²³Na MAS NM R and Powder X— ray Diffraction studies of Sodium Aluminate Speciation and the Mechanistics of Aluminum Hydroxide Precipitation upon Acid Hydrolysis [J]. J. Am. Chem. Soc., 1994, 116(17): 7771 – 7783.
- [12] A. Kesans. Synthesis of Borates in Aqueous Solution and their Investigation[M]. Beijing: Science Press, 1962.
- [13] Li Jun, Xia Shuping, Gao Shiyang, FT—IR and Raman spectroscopic study of hydrated borates[J]. Spectrochim. Acta, 1995, 51A(4): 519.

差示FT-Raman 和¹¹B NMR 方法研究 过饱和镁硼酸盐的溶液结构

李 军,李 冰

(中国科学院盐湖研究所西安二部 陕西 西安 710043)

摘 要:用差示 FT- Raman 和¹¹B NM R 光谱研究了 MgB₆O₁₀ °7. 5H₂O、MgB₄O₇ °9H₂O、Mg2 B₆O₁₀ °15H₂O 三种镁 硼 酸盐饱和和过饱和溶液的结构机理,其结果表明饱和溶液和过饱和溶液中均存在 B(OH)₃、B(OH)₄⁻、B₃O₃(OH)₄⁻ N₃O₃(OH)₄⁻ N₃O₃(OH)₄⁻

关键词: 镁硼酸盐; 过饱和溶液; 差示 FT— Raman 光谱; ¹¹B NMR 光谱