内蒙古白云鄂博地区新元古界温都尔庙群 洋壳残片特征及地质意义

王继春^{1,2},肖荣阁¹,苏士杰²,廖 蕾³,刘少华¹,梁 锋⁴ (1.中国地质大学(北京)地球科学与资源学院,北京 100083;2.内蒙古自治区地质调查院,呼和浩特 010022; 3.内蒙古自治区地质勘查基金管理中心,呼和浩特 010022;4.中钢集团天津地质研究院,天津 300061)

摘 要: 文章从温都尔庙群岩石组合、岩石化学和同位素年龄特征入手,研究显示该套岩石具有 洋中脊拉斑玄武岩的特征;岩石稀土特征表明其形成于陆间小洋盆环境。它属于华北板块北缘中 段新元古代构造演化阶段的产物,为研究华北板块北缘地壳演化提供了新的依据。 关键词: 温都尔庙群;洋壳残片;新元古代;华北板块;白云鄂博;内蒙古 中图分类号: P534.3;P544.4 文献标识码: A 文章编号: 100F 1412(2011)0F 005F 07

0 引言

温都尔庙群由内蒙古地质局呼和浩特区调队 1:100万地质调查时创建^[1],1:20万区调进行了 详细研究^[2],主要指出露于集宁一二连浩特铁路线 以东、朱日和及其以北地区的一套绿片岩相浅变质 岩系;1:5万区调中又做了大量研究工作^[3-4]。温 都尔庙群主要由黑云石英岩、含铁石英岩、铁矿层、 绿泥片岩组成,原岩是基性火山岩变质和硅-铁质 沉积岩,其中标志层是含铁石英岩,呈褐色块状或条 带状产出;上部岩性以二云石英片岩、绿泥石英片 岩、石英岩为主,局部为薄层状、透镜状大理岩和方 解石英片岩。邵济安^[5]、唐克东^[6]、肖荣阁^[7]、聂凤 军^[8]等对苏尼特左旗一带的变质-火山岩系进行了 不同侧面的研究,并且提供了大量的详实数据。

1: 25 万区域地质调查^[9]在白云鄂博北发现 了乌德构造混杂带(图1),认为其形成时代为早古 生代。在该混杂带中分布有大量的中、新元古界温 都尔庙群构造岩片、岩块。因此,研究温都尔庙群对 于了解华北板块北缘中、新元古代的构造演化及白 云鄂博地区的控矿条件具有非常重要的意义。

1 地质背景

温都尔庙群主要分布于白乃庙一温都尔庙一带 和艾勒格庙一查干诺尔一红格尔一带,位于华北地 块和分离出去的宝音图群小陆块边缘。其下部称桑 达来呼都格组为绿片岩组合,原岩以拉斑玄武岩系 等基性火山岩为主,局部发育有硅铁质岩、碳酸盐岩 透镜体及辉长岩、蛇纹岩等。据内蒙古第一区域地 质研究院在图林凯超基性岩体中采样,测得 Sm-Nd 等时线年龄为1642 Ma^[10];上部哈尔哈达组为各种 石英片岩及含铁石英岩夹大理岩透镜体构成的深水 相沉积中等变质岩石组合。温都尔庙铁矿即产于哈 尔哈达组中。

白云鄂博北的温都尔庙群赋存于乌德早古生代 构造混杂带中(图2),呈大小不一的岩片和岩块混 杂于构造带内。岩块大小不等,形态各异。岩块差 异甚为悬殊,形状呈不规则状、透镜状、长条状为主, 大到几百平方米,小到几十平方厘米或几平方厘米。 整个混杂带延伸很长,分布有宽有窄。有的在十几平 方米的范围内可见到几种不同的岩石混杂在一起。 其岩性为基性火山岩变质的绿片岩组合、硅铁质岩、

收稿日期: 2010 05 04

基金项目: 中国地质调查局国土资源大调查项目(20001300008051)资助。

作者简介: 王继春(1985), 男, 内蒙古通辽人, 硕士, 矿床及地球化学专业, 主要从事地质矿产调查工作。通信地址: 北京海淀区学院路 29 号中国地质大学(北京) 地球科学与资源学院; 邮编 100083; E-mail: wangjichu nmail@ sohu.com

图1 白云鄂博北区域地质略图

Fig. 1 Schematic geological map of the north of Bayan Obo 1. 二连组 2. 白女羊盘组 3. 固阳组 4. 李三沟组 5. 苏吉组 6. 阿木山组 7. 查干哈布组 8. 西 别河组 9. 布龙山组 10. 哈拉组 11. 艾勒格庙组 12. 呼吉尔图组 13. 白乃庙组 14. 比鲁特组 15. 宝音图群 16. 侏罗纪花岗岩 17. 三叠纪花岗岩 18. 晚二 叠世花岗岩 19. 晚奥陶世花岗 岩 20. 乌德构造混杂带 21. 地质界线 22. 角度不整合/平行不整合界线 23. 平移断层/性质 不明断层 24. 逆断层/正断层 碳酸盐岩透镜体、各种石英片岩 及含铁石英岩夹大理岩透镜体等。 温都尔庙群的岩块普遍遭受不同 级别的剪切、碾滚、拉断,形成石香 肠、菱形体、楔状体、不规则揉褶 等。它们之间多以断裂或剪切面 为界,故均为构造接触。同一岩块 在横向上具有不连续性。

从区域角度上分析, 混杂带 北部出露古元古界宝音图群, 该地 层主要是古元古代末期从华北地 块分离出去的小地块的组成部分。 并在其周围可以观察到新元古界 艾勒格庙组(Qna) 地层组合。混 杂带南西方向数公里处出露较大 面积的新元古界白云鄂博群上部 呼吉尔图组(Qnb) 地层及部分新 元古界白乃庙组(Qnb)地层。

从宏观上观察,本区元古宇 自南向北依次为白云鄂博群、温 都尔庙群构造残片、宝音图群。 总体呈3条 NW-SE 向的狭长条 带排列。

图 2 乌德构造混杂岩带(局部)构造岩块混杂分布图

Fig. 2 Map showing mixed distribution of different tectonite blocks
1. 乌德混杂带 2. 下白垩统李三沟组 3. 下泥盆统查干哈布组 4. 中下奥陶统哈拉组
5. 中下奥陶统布龙山组 6. 新元古界温都尔庙岩群 7. 古元古界宝音图岩群 8. 超基性岩 9. 奥陶纪闪长岩

2 岩石学特征

乌德构造混杂带中的温都尔庙群均经受了不同 程度变形变质作用的改造,主要表现为低绿片岩相 区域低温动力变质作用。岩石类型主要有透辉片 岩、角闪片岩、绿帘绿泥片岩等。原岩为变质基性火 山岩,岩石中出现绿泥石、绿帘石、钠长石、阳起石、 黑硬绿泥石、斜黝帘石变质矿物。

构造混杂带基质由晚奥陶世碎裂石英闪长岩、 细粒闪长岩及超铁镁质碎裂蛇纹石化橄榄岩等组 成。岩石强烈破碎,蛇纹石化、滑石化极为发育。经 强烈的动力改造,被挤压破碎成极为细小的碎屑物 质,以柔流的形式充填于混杂岩块间。

构造混杂带中的其他组分也非常复杂,由不同 性质、不同时代的外来岩块、原地岩块和基质3部分 组成。它们分别来自华北地块边缘基底碎块、超铁 镁质岩石以及火山岛弧、弧后盆地的岩石碎块。

3 地球化学特征

3.1 岩石化学特征

自云鄂博北温都尔庙群岩石(阳起片岩、阳起黝 帘片岩、绿泥片岩等)化学分析(表 1)显示, $w(SiO_2)$ 较低(47.3%~50.3%); $w(Al_2O_3)$ 相对较高 (14.96%~16.75%); $Na_2O > K_2O$;w(MgO) =6.21%~10.7%;并且 $w(TiO_2)$ 相对较高(0.95% ~1.39%); $w(\Sigma FeO) = 6.48\% \sim 9.82\%$;w(CaO)= 11.6%~16.2%。 在(Na2O+ K2O) —SiO2 图(图3)中,火山岩均 落入玄武岩区,与活动大陆边缘岛弧带钙碱系列有 明显区别。同时,原岩中大量绿泥石、绿帘石和角闪 石的出现也显示出原岩具有基性火山岩的特点。

根据其 Al₂O₃ 含量较高, TiO₂ 含量较低等岩石 化学特点, 可以初步推测该套岩石符合大洋中脊玄 武岩的特征。

在 AFM 图解中(图 4)^[11],样品显示拉斑玄武 岩趋势,主要分布在右偏下方,没有铁的明显富集。 主要样品的 Na²O> K²O,并且从(Na²O+ K²O) – SiO² 图解(图 3)中,可以看出 SiO² 和(Na²O + K²O)没有明显的正相关关系,温都尔庙群火山岩富 钠,显示"细碧岩"的特点,表明这些样品属细碧岩化 的拉斑玄武岩。

在< FeO> - MgO- Al2O3 图解(图5)中,样品 主要集中在洋中脊火山岩区;另外,在< FeO> / MgO- TiO2 图解(图6)中,所有的样品均落在洋中 脊拉斑玄武岩区内。

在 SiO₂ - < FeO> / MgO 变异图(图 7)^[6]中, 样品主要集中在拉斑玄武岩系列区,显示在分异过 程中,随 SiO₂ 的增加有富集铁的趋势;在< FeO> - < FeO> / MgO 和 TiO₂ - < FeO> / MgO 图解中 均显示温都尔庙群基性火山岩属大洋型深海拉斑玄 武岩^[5]。

综合其岩石化学特征,表明该套岩石符合大洋 中脊玄武岩特征。

3.2 稀土元素特征

温都尔庙群变质火山岩稀土元素组成及特征参 数见表 2 和表 3。

表 1 温都尔庙群岩石化学分析结果?

样号	岩石名称	SiO_2	Al_2O_3	Fe_2O_3	FeO	${\rm TiO}_2$	K_2O	Na_2O	CaO	MgO	MnO	P_2O_5	$\rm H_{2}O^{+}$	CO_2
$2P_4GS_{3\!\!-\!1}$	绿泥片岩	47.3	16.75	4.17	4.95	0.95	0.76	1.89	13.4	7.92	0.158	0.16	-	-
$2P_8GS_{31}$	阳起黝帘片岩	47.7	16.16	2.13	6.88	1.39	0.43	2.2	14.3	6.61	0.16	0.24	-	-
$2P_{81}GS_{11}$	阳起片岩	47.6	14.68	3.64	2.84	1.11	0.4	1.13	16.2	10.7	0.14	0.39	1.13	0.75
$2P_{81}GS_{22}$	绿泥片岩	48.5	18.86	1.11	6.5	1.14	1.34	2.91	10.6	6.21	0.12	0.21	1.67	0.22
$2P_{21}GS_{14}$	阳起片岩	50.3	14.96	2.47	7.35	1.06	0.45	1.99	11.6	7.69	0.17	0.21	1.24	0.55

Table 1 Petrochemical compositions of rocks from Ondor sum Group

测试单位:内蒙古地质研究所,原子吸收分光光度计分析;量的单位:w B/%。

表 2 温都尔庙群变质火山岩的稀土元素组成^[9]

Table 2 REE contents of metamorphic volcanic rocks of Ondor sum Group

样号	岩性	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Нo	Er	Τm	Yb	Lu	Y
1xt4038	绿帘绿泥片岩	63.98	111	16	61.6	9.54	2.67	8.16	1.2	6.27	1.05	2.49	0.37	2.45	0.4	33.2
1XT 6135	角闪斜长片岩	64.72	124.31	15.89	65.29	11.11	2.99	9.45	1.2	5.89	1.04	2.79	0.38	2.53	0.34	26.3
1XT 6136	黑云角闪斜长片岩	86.95	163.76	20.8	82.3	12.37	2.62	10.54	1.32	5.94	0.84	1.93	0.24	1.57	0.22	21.51
1x t4032-1	绿帘绿泥片岩	24.34	38.8	4.4	15.7	3.5	0.73	2.82	0.4	1.93	0.39	0.95	0.13	0.88	0.1	10.8

测试单位:北京大学地质系测试中心, ICP AES 法分析;量的单位 w_B/10-6。

图 5 温都尔庙群变质基性火山岩 <FeO>-MgO-Al₂O₃ 图解

Fig. 5 <FeO>-MgO-Al₂O₃ Diagram of the metamorphic basic volcanic rocks in Ondor sum Group A. 洋中脊火山岩 B. 洋岛火山岩 C. 大陆火山岩

D. 岛弧扩张中心火山岩 E. 造山带火山岩

图 4 温都尔庙群变质基性火山岩 AFM 图解 Fig. 4 AFM diagram of metamorphic basic volcanic rocks in Ondor sum Group

图 6 温都尔庙群变质基性火山岩 <FeO>/MgO-TiO₂ 图解

Fig. 6 <FeO>/MgO-TiO₂ Diagram of the metamorphic basic volcanic rocks in Ondor sum Group MORB. 洋中脊拉斑玄武岩 IAT. 岛弧拉斑玄武岩 OIB. 洋岛拉斑玄武岩

表3	温都尔庙群变质火山岩的稀土元素特征值 ^[9]

Table 3 Characteristic value of REE contents of Ondor sum Group metamorphic volcanic rocks

样号	岩性	HREE	LREE/ HREE	REE	(La/ Y b) _N	$(La/Sm)_N$	$(G d/ Lu)_N$	La/Yb	Ce/ La	Ce/Yb	δ(Eu)	ð(Ce)
1xt4038	绿帘绿泥片岩	22.39	11.83	287.18	17.61	4.2	2.5	26.11	1.73	45.31	0.90	0.81
1XT 6135	角闪斜长片岩	23.62	12.04	307.93	17.24	3.7	3.46	25.58	1.92	49.13	0.87	0.91
1XT 6136	黑云角闪斜长片岩	22.6	16.32	391.4	37.35	4.4	5.96	55.38	1.88	104.3	0.68	0.90
1x t4032-1	绿帘绿泥片岩	7.6	11.51	95.07	18.65	4.8	3.5	27.66	1.59	44.09	0.69	0.84

球粒陨石丰度: 据 Boynton(1984); 量的单位 w_B/10⁻⁶。

图 7 温都尔庙群变质基性火山岩 SiO₂, < FeO>, TiO₂ 分别对< FeO> / MgO 图解 Fig. 7 SiO₂, < FeO>, TiO₂ vs < FeO> / MgO diaram of the metamorphic basic volcanic rocks in Ondor sum Group

稀土元素总量较高, w(REE) = 95.03×10⁻⁶~ 391.4×10⁻⁶。LREE/HREE=11.51~16.32,总 体呈LREE>HREER的特点,普遍具有轻稀土富 集和重稀土亏损的性质。

稀土元素球粒陨石标准化图解(图 8)表明稀土 分布模式曲线向右倾斜。

Fig. 8 Chondrite normalized REE pattern of debris of the Ondor sum Group

稀土元素的特征值参数(表 3):(La/Yb) = 17.24~37.35,(La/Sm) = 3.7~4.2,(Gd/Lu) = 2.5~5.96,表明轻稀土、重稀土元素配分曲线右倾 明显。 $\delta(Ce) = 0.81 \sim 0.91$,所有样品都为略小于 1 的负异常。 $\delta(Eu)$ 值均小于 1($\alpha(Eu)$ 平均为 0.93), 呈负异常,表明了铕的亏损。(La/Sm) Δ 值均大于 1,最大者达 4.8,为洋中脊玄武岩 P 型^[12],即富集型 或异常型。

从稀土元素球粒陨石标准化图解和特征参数值 可知,本区基性火山岩稀土元素分配形式为右倾斜 型,但有别于 N-MORB 的曲线形式,反映本区的玄 武岩可能代表了一种扩张规模不大的陆间洋盆特 征。

综上所述, 温都尔庙群在岩石化学特征方面具 大洋拉斑玄武岩特征, 稀土元素配分样式有 LREE 富集趋势和 Eu 的负异常(δ(Eu) = 0.78), 与科尔曼 的典型大洋中脊有所不同, 这意味着控制岩浆活动 的构造环境并非典型大洋中脊, 可能是陆间洋盆沿 扩张中心火山活动的产物。

4 时代确定

据前人资料,温都尔庙群主要分布于白乃庙一 温都尔庙一带和艾勒格庙一查干诺尔一红格尔一 带,白云鄂博矿区北部地区发现温都尔庙群构造残 片,对华北板块北缘地壳演化及周边成矿条件的控 制都具有相当重要的意义。前人对温都尔庙群地质 年代的确定做了大量的工作。

唐克东等(1992)依据绿片岩和绢云母石英片岩 的全岩 RbrSr 等时线年龄((435±61)Ma和(509± 40)Ma)和全岩 K-Ar法年龄(453 Ma和473 Ma)认 为温都尔庙群形成于震旦-寒武纪^[6]。

北京大学地质学系填图队(1994)在额和尼呼都 格绿泥阳起片岩中获得 Sm-Nd 同位素等时线年龄 为 821 Ma^[15]。张臣、吴泰然等(1998)在德言其庙 片麻岩(温都尔庙群下部桑达来呼都格组变质基性 火山岩) Sm-Nd 等时线年龄为(961 ±66) Ma^[16-17]。 与聂凤军(1994) 的结果^[18] 相互印证,其时代归属为 新元古代应该是可信的。

徐备等(1994) 在温都尔庙群的绿帘绿泥片岩中 获得 Sm-Nd 同位素等时线年龄为1511 Ma^[13]。李 述靖(1995) 在必鲁图南侧绢云绿泥片岩中获得 Rb Sr 同位素等时线年龄为1413 Ma^[14]。两者相互印 证,其时代应归属为中元古代。

王楫、陆松年(1995) 采自白云鄂博东矿尖山组 顶部富钾粗面质火山岩(原岩为黑色玄武岩),采用 单颗粒锆石 U-Pb 稀释法测定 5 个四方柱状原生锆 石的年龄,给出的 U-Pb 同位素比值及表面年龄都 十分相近,测试结果均落在谐和曲线上,5 个颗粒的 数据统计权重平均²⁰⁷ Pb/²⁰⁶Pb 表面年龄为(1 728± 5) $M a^{[19]}$ 。袁忠信(1991)在白云鄂博铌稀土、铁矿 床的成矿时代研究中测定矿体的 Smr N d 全岩等时 线年龄为 1 580 $M a^{[20]}$,其时代应归属为中元古代。

综上所述, 温都尔庙群的地质年代应为中新元 古代。温都尔庙群和白云鄂博群属于同一时代不同 构造环境的沉积地层组合。

5 结论

白云鄂博北温都尔庙群角闪片岩和透辉石岩、 阳起片岩及绿泥片岩等的岩石化学特征表明它们的 原岩成分为基性火山岩;火山岩变质变形较弱,仍保 持块状外表,见气孔构造,并夹红色含铁石英岩,证 明火山活动与沉积作用是同期的。

温都尔庙群变质基性火山岩具大洋底环境下形 成的细碧岩化拉斑玄武岩性质,可能是大陆拉伸解 体阶段陆壳断离后出现的新洋壳。

始于古元古代末期并一直延续至新元古代的裂 谷作用是华北板块北缘中– 西段最主要的构造事件 之一, 裂谷作用的范围西起阿拉善右旗的雅布赖地 区, 东经渣尔泰山、白云鄂博至苏左旗以南一带。 在中、新元古代, 由于古元古代末期拉张作用的进一 步持续, 从华北地块分离出去的宝音图群(北带) 与 华北地块之间形成了大洋, 沉积了温都尔庙群、白乃 庙组和艾勒格庙组, 与拉张未被分离接受沉积的白 云鄂博群和渣尔泰山群属同期不同环境的产物, 形 成截然不同的两套建造^[23]。

因此,中、新元古代时期华北板块北缘早中期为 拉张洋壳阶段,到晚期转为汇聚阶段,至青白口纪末 期则进入褶皱造山阶段的板块构造格局中。温都尔 庙群可能就是早中期拉张洋壳阶段时形成的。

致谢:本文在写作过程中得到教授级高工贾和 义的指导,并提出了宝贵的意见。同时感谢中国地 质大学(北京)万天丰教授的指导。文中所用图件由 中国地质大学(北京)研究生李超协助完成。文中引 用了内蒙古地质局、内蒙古第一区域地质研究院、北 京大学地质学系填图队、中国地质大学(北京)等多 家单位的区调成果,在此一并表示谢意!

参考文献:

- [1] 内蒙地质局呼和浩特幅地质队.1:100万呼和浩特幅地质图 说明书[R].呼和浩特.内蒙古地质调查院,1960.
- [2] 内蒙古地质局.1:20万苏尼特左旗幅地质图说明书[R].呼 和浩特:内蒙古地质调查院,1965.
- [3] 北京大学地质学系填图队.1:5万白音宝力道地区等地质图 说明书[R].北京:北京大学,1994.
- [4] 中国地质大学(北京)内蒙古区调队.1:5万苏尼特左旗等地 质图说明书[R].北京:中国地质大学,1996.
- [5] 邵济安. 中朝板块北缘中段地壳演化[M]. 北京: 北京大学出版 社, 1991.
- [6] 唐克东. 中朝板块北侧褶皱带构造演化及成矿规律[M]. 北京: 北京大学出版社, 1992.
- [7] 肖荣阁,费红彩,安国英,等.内蒙古白云鄂博矿区白云岩岩石学及其成因研究[J].现代地质,2003,17(3):287-293.
- [8] 聂凤军, 裴荣富, 吴良士, 等. 内蒙古温都尔庙群变质火山- 沉 积岩 Smr Nd 同位素研究[J]. 科学通报, 1994, 39(13): 1211-1214.
- [9] 内蒙古自治区地质调查院.1 : 25 万白云鄂博幅区域地质调 查报告[R].呼和浩特:内蒙古地质调查院,2003.
- [10] 内蒙古第一地质研究院.1:5万都仁乌力吉地区地质调查 报告[R].呼和浩特:内蒙古地质调查院,1995.
- [11] Hugh R Rollison. Using Geochemical Data. Evaluation, Presentation, Interpretation [M]. Pearson Education Limited, 1993.
- [12] 韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2007.
- [13] 徐备.内蒙古北部温都尔庙群北带沉积环境及构造意义[J].
 地质科学, 1998, 33(4): 406 411.

- [14] 李述靖,高德臻.内蒙古苏尼特左旗地区若干地质构造新发现 及其构造属性的初步探讨[J].现代地质,1995(2):130141.
- [15] 北京大学地质学系填图队.1:5万白音宝力道地区地质图 说明书[R].北京:北京大学,1994.
- [16] 张臣,吴泰然.内蒙古温都尔庙群变质基性火山岩 Snr Nd, Rb Sr 同位素年代研究[J].地质科学,1998,33(1):25-30.
- [17] 吴泰然,张臣,万基虎.内蒙古温都尔庙地区温都尔庙群的形 成环境和构造意义[J].高校地质学报,1998(2):168 176.
- [18] 聂凤军, 裴荣富, 吴良士, 等. 内蒙古温都尔庙群变质火山-沉 积岩钐- 钕同位素研究[J]. 科学通报, 1994, 39(13): 1211-1214.
- [19] 王楫, 陆松年, 李惠民, 等. 内蒙古中部变质岩同位素年代构造

格架[M] // 中国地质科学院天津地质矿产研究所所刊(第 29 号). 北京: 地质出版社, 1995: F71.

- [20] 袁忠信,白鸽,吴澄宇,等.内蒙古白云鄂博银.稀土、铁矿床的 成矿时代和矿床成因[J].矿床地质,1991,14(3):197-205.
- [21] 张臣.内蒙古苏左旗南部温都尔庙群地层研究的新进展[J].
 地学前缘, 1999, 6(3): 112.
- [22] 彭立红. 内蒙温都尔庙群南带蛇录岩套的地质时代及其大地 构造意义[J]. 科学通报, 1984, 29(2): 104 107.
- [23] 邵积东.内蒙古大地构造分区及其特征[J].内蒙古地质,1998 (2):1-23.
- [24] 徐备. 华北板块北缘元古代年代地层格架及其形成过程[J]. 现代地质, 1999, 24(2): 219 220.

Characteristics and geological significance of oceanic crust relics in Neo proterozoic Ondorsum group in Baiyun['] ebo area, Inner Mongolia WANG Ji- chun^{1,2}, XIAO Rong ge¹, SU Shi-jie²,

LIAO Lei³, LIU Shao hua¹, LIANG Feng⁴

Faculty of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China;
 Geological Survey Institute of Inner Mongolia, Hohhot 010022, China;

3. Center for Fund of Geological Prospect of Inner Mongolia, Hohhot 010022, China;

4. Sinosteel Tianjin Geological Academy, Tianjin 300061, China)

Abstract: Study on rock assemblage, petrochemistry and isotopic age of Ondorsum Group shows that this rock assemblage is characteristic of ORB and the REE pattern reflects a small inter continent basin sedimentary environment. The assemblage is the product of Neo proterozoic tectonic evolution at middle of north margin of north China plate and provides a new basis for the study of crustal evolution of North China plate.

Key Words: Ondorsum group; oceanic crust reics; Neo-proterozoic era; north China plate; Baiyun ebo