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Evaluation of CMIP5 Earth System Models in Reproducing Leaf

Area Index and Vegetation Cover over the Tibetan Plateau

BAO Yan1,2 (
���

), GAO Yanhong2∗ ( � ��� ), LÜ Shihua2 ( ���
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ABSTRACT

The abilities of 12 earth system models (ESMs) from the Coupled Model Intercomparison Project Phase
5 (CMIP5) to reproduce satellite-derived vegetation biological variables over the Tibetan Plateau (TP) were
examined. The results show that most of the models tend to overestimate the observed leaf area index (LAI)
and vegetation carbon above the ground, with the possible reasons being overestimation of photosynthesis
and precipitation. The model simulations show a consistent increasing trend with observed LAI over most of
the TP during the reference period of 1986–2005, while they fail to reproduce the downward trend around the
headstream of the Yellow River shown in the observation due to their coarse resolutions. Three of the models:
CCSM4, CESM1-BGC, and NorESM1-ME, which share the same vegetation model, show some common
strengths and weaknesses in their simulations according to our analysis. The model ensemble indicates a
reasonable spatial distribution but overestimated land coverage, with a significant decreasing trend (–1.48%
per decade) for tree coverage and a slight increasing trend (0.58% per decade) for bare ground during the
period 1950–2005. No significant sign of variation is found for grass. To quantify the relative performance
of the models in representing the observed mean state, seasonal cycle, and interannual variability, a model
ranking method was performed with respect to simulated LAI. INMCM4, bcc-csm-1.1m, MPI-ESM-LR,
IPSL CM5A-LR, HadGEM2-ES, and CCSM4 were ranked as the best six models in reproducing vegetation
dynamics among the 12 models.
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1. Introduction

Terrestrial ecosystems substantially affect near-

surface thermal and hydrological fluxes, as well as

the greenhouse gas exchange between the land sur-

face and atmosphere. The vegetation cover effects

can be biophysical and biochemical. On one hand,

changes in vegetation biomass and coverage between

vegetated and bare land can affect the land surface

albedo and evapotranspiration, which, in turn, modify

near-ground climatic characteristics, such as tempera-

ture and precipitation; on the other hand, changes in

tree cover strongly affect the amount of carbon stored

in biomass and the soil, which alters the atmospheric

CO2 concentration and operates as a biogeochemical

feedback mechanism between vegetation dynamics and

the climate (Arneth et al., 2010; Bathiany et al., 2010;

Port et al., 2012).
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In a modeling system, changes in vegetation

biomass and coverage affect the simulated climate in

future climate projections through biophysical and

biogeochemical effects. In the earth system models

(ESMs) as part of the Coupled Model Intercomparison

Project Phase 5 (CMIP5), a dynamic global vegetation

model (DGVM) is often included, which calculates in-

teractive vegetation variation (biomass and coverage)

due to climate change simulated by the atmospheric

model component (Collins et al., 2011; Watanabe et

al., 2011). Since DGVMs are driven by atmospheric

models, and simulated biases inevitably exist in these

atmospheric components, the subsequent simulations

of vegetation dynamics are also far from perfect.

These biases need to be quantified. Model quan-

tification with several metrics is a good option to ex-

press the simulation quality from a variety of differ-

ent aspects. Recently, a number of studies have been

carried out for assessing land surface models with sev-

eral metrics involving carbon and hydrological charac-

teristics (Abramowitz et al., 2008; Randerson et al.,

2009; Cadule et al., 2010; Blyth et al., 2011; Anav

et al., 2013a). Although these studies are good ex-

amples of multi-model assessment, their quantifica-

tion approaches cannot clearly identify the best and

worst models for reproducing vegetation biological fea-

tures. A ranking approach based on different vari-

ables could solve this problem. Brunke et al. (2003)

developed a ranking scheme to score the multi-bulk

aerodynamic algorithms in computing ocean surface

turbulent fluxes. Decker (2012) applied this approach

to rank the bias and standard deviation of errors be-

tween reanalysis products and flux tower measure-

ments. Wang and Zeng (2012) extended this rank-

ing approach to all four statistical quantities, i.e., cor-

relation coefficient (ρ), ratio of standard derivations

(σr/σobs), standard deviation of differences (σd), and

mean bias (BIAS), computed from surface meteoro-

logical variables, and then ranked the six reanalysis

datasets in reproducing climate features over the Ti-

betan Plateau (TP). Anav et al. (2013b) ranked 18

models from CMIP5 with averaged seasonal cycles and

probability density functions (PDFs) of ocean carbon

and land carbon. These studies provide good exam-

ples of model performance identification.

The TP is one of the highest plateaus on the

earth. It has a unique alpine vegetation composition

and climatic features, along with a low intensity of hu-

man disturbance, which makes the TP an ideal place

to study the response of vegetation variation to cli-

mate change. Previous analysis of climate records has

shown that the TP has experienced very substantial

climate change in recent decades, and temperatures

are projected to continue increasing throughout the

remainder of the present century according to global

climate models (Piao et al., 2010). According to the

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4), by the end of the

21st century, the temperature of this highland region

will have risen by at least 1.8–4.0℃ (IPCC, 2007). Un-

der this warming scenario, the vegetation of the TP is

expected to actively respond (Kato et al., 2004; Piao et

al., 2006). Piao et al. (2009) and Zhang et al. (2009)

pointed out that terrestrial ecosystems over the TP act

as a small carbon sink. These ecosystems are highly

sensitive to temperature, and any rise in temperature

will cause loss of biomass in the dominant biomes of

the TP (e.g., alpine steppe and alpine meadow; Tan et

al., 2010). Therefore, it is important to explore poten-

tial future changes in vegetation variation on the TP

in response to climate change in order to develop ap-

propriate countermeasures. The ESMs coupled with

DGVMs in CMIP5 can produce the climate and veg-

etation distribution, and provide evolutionary infor-

mation for both the historical period and the future.

These simulations and projections can be used to un-

derstand the potential vegetation response to climate

change. However, to improve the reliability of such

predictions, model evaluations are essential.

This study aims to assess 12 ESMs from CMIP5

in reproducing the vegetation dynamics and biological

properties over the TP. In Section 2, the DGVMs cou-

pled with ESMs and the datasets used for the model

validation, as well as the evaluation approaches ap-

plied, are described. The performance of the 12 ESMs

is then reported in Section 3. The model ranking re-

sults for leaf area index (LAI) with respect to three

skill score metrics are presented in Section 4. In Sec-
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tion 5, a summary and discussion of the key findings

is provided.

2. Data and methods

2.1 Vegetation biological variables of ESMs

Twelve ESMs with vegetation dynamic distribu-

tion (including both DGVM outputs and non-DGVM

outputs) from CMIP5 were selected in this study. Ta-

ble 1 lists the model names and summarizes the com-

ponents and characteristics of each ESM. In terms of

the land surface, apart from bcc-csm1.1-m and IN-

MCM4, all of the models account for land use change;

likewise, apart from BNU-ESM, NorESM1-ME and

CESM1-BGC, none of the models have an interac-

tive land nitrogen cycle. Several biological variables

such as LAI, plant functional types (PFTs), net pri-

mary productivity (NPP), gross primary productivity

(GPP), and the climatic fields related to vegetation

growth and terrestrial carbon budget such as precipi-

tation (Pr) and surface air temperature (Tas), are pro-

vided in the models’ outputs. These variables are not

available for every model, e.g., NPP for INMCM4 is

unavailable, GPP for INMCM4 is available but with

unrealistic values (most GPP values are around zero),

and only 6 of the 12 ESMs provide outputs of PFTs.

Table 2 lists the variables used in our analysis (marked

by asterisks).

Although the vegetation models in this study dif-

fer in their representations of vegetation types, soil

Table 1. Details of the models and model components used in this study

Model Full model Land/vegetation Land horizontal Dynamic

acronym name model resolution vegetation

bcc-csm1.1-m Beijing Climate Center BCC-AVIM1.1 1◦ × 1◦ N

Climate System Model

BNU-ESM Beijing Normal University CoLM/BUN-DGVM(CN) 2.8◦ × 2.8125◦ Y

Earth System Model

CanESM2 The second generation Canadian CLASS2.7 2.8◦ × 2.8125◦ N

Earth System Model

CCSM4 Community Climate System CLM4/CLM4CN 0.9◦ × 1.25◦ N

Model, version 4.1

CESM1-BGC Community Earth System 0.9◦ × 1.25◦ N

Model- geochemistry

GFDL-ESM2G Geophysical Fluid Dynamics LM3/LM3V 2.5◦ × 2◦ Y

Laboratory Earth System Model,

version 2, with Generalized Ocean

Layer Dynamics (GOLD) model as

ocean component (ESM2G)

HadGEM2-ESM Hadley Centre Global JULES/TRIFFID 1.875◦ × 1.25◦ Y

Environment Model

version 2 - Earth System

IPSL-CM5A-LR Climate model of Laboratory SVAT/ORCHIDEE 3.75◦ × 1.875◦ Y

of Meteorological Dynamic with

NEMO for the ocean, Institute

Pierre Simon Laplace

MIROC-ESM Earth System Model of MATSIRO/SEIB-DGVM 2.8◦ × 2.8125◦ Y

Model for Interdisciplinary

Research on Climate

MPI-ESM-MR The Max Planck Institute JSBACH/BETHY 2.8◦ × 2.8125◦ Y

for Meteorology

NorESM1-ME The Norwegian Earth System CLM4/CLM4CN 2.5◦ × 1.875◦ N

Model that includes prognostic

biogeochemical cycling

INMCM4 Institute for Numerical No name 1.5◦ × 2◦ N

Mathematics

Note: “Y” means “yes”; “N” means “no”.
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Table 2. Variables provided by the 12 CMIP5 ESMs

Model Pr Tas LAI NPP/ Run Vegetation fraction

GPP numbers Bare ground Tree Grass

bcc-csm1.1-m * * * * 3

BNU-ESM * * * * 1 * * *

CanESM2 * * * * 5

CCSM4 * * * * 6

CESM1-BGC * * * * 1

GFDL-ESM2G * * * * 1 * *

HadGEM2-ESM * * * * 5 * * *

IPSL-CM5A-LR * * * * 4 * * *

MIROC-ESM * * * * 3 * * *

MPI-ESM * * * * 3 * * *

INMCM4 * * * 1 * * *

NorESM1-ME * * * * 1

Grid cells marked by an asterisk indicate that the data were available for the model. For INMCM4, GPP was provided but with

unreasonable values of around zero, so these were neglected in our analysis.

properties, carbon, and nitrogen pools, as well as their

horizontal and vertical resolutions at the surface and

in the atmosphere and ocean, there are some similari-

ties in their treatment of vegetation cover and the ter-

restrial carbon cycle: plants are categorized into sev-

eral different PFTs, and the parameterizations for leaf

photosynthesis, autotrophic respiration, carbon allo-

cation, and phenology are similar across the models,

although their specific parameters and limiting condi-

tions are different. For instance, in most of the ESMs,

the leaf carbon pool (Cleaf) is related to LAI via the

equation

LAI ∝ Cleaf × SLA, (1)

where SLA is the specific leaf area, which is either a

PFT-specific constant or a value that varies along the

vertical gradient in the canopy (Thornton and Zim-

mermann, 2007).

Our analysis focuses on the period 1950–2005 (the

concentration-driven historical period) referred to as

the “20th-century simulation” period. The last 20

years of this period (1986–2005) form a particular fo-

cus due to the reliable and complete observational

record during this time, which is suitable for com-

parison purposes. Although the CMIP5 archive in-

cludes daily means for a selection of variables, only the

monthly-mean output is used in our analysis, since this

temporal frequency is high enough to provide a rea-

sonably comprehensive picture of model performance

both in terms of the mean state of the system, the

trend, and its seasonal and interannual variability.

Before performing the evaluation, the model out-

puts and observations were preprocessed, including the

elimination of snow-cover effects by identifying and fil-

tering the snow-mask points in both the model simu-

lations and observations, and regridding them into a

common resolution of 1◦ ×1◦, with only fractional land

in grid cells considered. It should be noted that some

of our selected models performed more than one ex-

periment and generated several groups of outputs (see

Table 2). To ensure the reliability of our analysis, all

the data available from the CMIP5 data portal were

collected and integrated into the model ensemble.

2.2 Validation data

Data from a variety of sources are used in our

model evaluation. Table 3 lists the data sources, tem-

poral and spatial resolutions, and regional mean values

over the TP and standard deviations (SD) provided as

the reference uncertainty (the actual data uncertain-

ties are generally larger than the standard deviations

provided here).

2.2.1 Precipitation and surface air temperature

The monthly precipitation (Pr) and surface air

temperature Tas data of 2400 meteorological stations

from 1961 to 2010 covering the whole of the Chinese

mainland (Wu and Gao, 2013) are used for the model

evaluation. It is found that precipitation over the TP

has an annual mean value of 1.13 mm day−1 with an

SD of ±0.12 mm day−1 (11%), while surface air tem-
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Table 3. Observed data used for the model evaluation

Variable Type Temporal coverage Spatial resolution Mean (SD)

Pr (mm day−1) Station Monthly (1960–2011) 0.5◦ × 0.5◦ 1.13 (±0.12)

Tas (℃) –1.3 (±0.51)

LAI GLASS 8 days (1982–2011) 5 km (AVHRR)/ Annual 0.44 (±0.06)

1 km (MODIS) GS 0.66 (±0.09)

NPP IGBP Climatology (1986–1995) 0.5◦ × 0.5◦ 150.25

(gC m−2 yr−1) MODIS Annual (2000–2005) 0.5◦ × 0.5◦ 116.25 (±8.06)

GPP MTE Monthly (1982–2011) 0.5◦ × 0.5◦ 143.69 (±9.49)

(gC m−2 yr−1) MODIS Annual (2000–2005) 0.5◦ × 0.5◦ 246.25 (±14.18)

Vegetation MODIS/CLM4 Climatology 0.5◦ × 0.5◦ BGD 58.95

fraction (%) TRE 8.96

GAS 21.89

MODIS/VCF Monthly (2000–2001) 8 km TRE 6.72 (±1.1)

Standard deviation (SD) is computed from the interannual variations of the regional average over the TP. BGD, TRE, and GAS

indicate bare ground, tree, and grass, respectively. GS indicates growing season (April–October).

perature has an annual mean of –1.3℃ with a larger

SD range than precipitation of ±0.51℃ (39%).

2.2.2 LAI, NPP, and GPP

The LAI product of the Global Land Sur-

face Satellite (GLASS) dataset is generated from

the Advanced Very High Resolution Radiometer

(AVHRR) (1982–1999) and the Moderate Resolution

Imaging Spectroradiometer (MODIS) reflectance data

(2000–2011) using general regression neural networks

(GRNNs) (Liang et al., 2013; Xiao et al., 2014). Differ-

ent from the existing neural network methods that use

only remote sensing data acquired at a specific time

to retrieve LAI, the reprocessed MODIS reflectance

data for an entire year were input into the GRNNs

to estimate 1-yr LAI profiles. The MODIS reflectance

product (MOD09A1) provides surface reflectance for

each of the MODIS land spectral bands with a 500-m

spatial resolution and an 8-day temporal sampling pe-

riod. The AVHRR reflectance data are from NASA’s

Land Long Term Data Record (LTDR) project, which

reprocessed Global Area Coverage (GAC) data from

AVHRR sensors onboard NOAA satellites and created

a daily surface reflectance product on a 0.05◦ spatial

resolution. The maximum value composite (MVC)

approach is used to composite the daily surface re-

flectance data into composites of 8-day intervals in

order to maintain a consistent time resolution with

MODIS surface reflectance data. The time series of red

and near-infrared (NIR) reflectance data of AVHRR

and MODIS are used to generate the GLASS LAI

product. The data quality of the MODIS and AVHRR

images is greatly influenced by clouds, cloud shadows,

snow, and other abnormal climate conditions, which

hinder the surface reflectance inversion and further im-

pact the quality of the GLASS products. Some data,

such as AVHRR, MOD09A1, MOD09GA, MCD43B3,

and MOD02, are preprocessed before being used to

produce the GLASS products. To improve the data

quality, the existing MODIS snow and cloud mask and

the reflectance characteristics of the non-snow/cloud

pixels are used in combination to identify pixels of

snow, clouds and abnormal values. All of the identi-

fied values are filled by the clear pixel. GLASS LAI on

the TP shows an annual mean of 0.44 with an SD of

±0.06 (13.6%), and a mean value for the growing sea-

son (GS; April–October) of 0.66 with an SD of ±0.09

(13.6%).

The International Geosphere Biosphere Pro-

gramme (IGBP) Global NPP Model Intercomparison

Data were used to compare with the simulated NPP.

The IGBP NPP data were obtained from the website

of the International Satellite Land Surface Climatol-

ogy Project, Initiative II (ISLSCPII) with a resolution

of 0.5◦. The IGBP NPP data were derived from an

original dataset containing both the gridded average

NPP values from 17 global models of biogeochemistry

(Cramer et al., 1999; Cramer, 2011) for 1986–1995 and

their climatological average (http://daac.ornl.gov/cgi-

bin/dsviewer.pl?ds−id=1027). This dataset is popular

for model validation (Dan et al., 2007; Fisher et al.,
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2008), although it is a simulation product. The IGBP

NPP data show an annual mean NPP value of 150.25

g C m−2 yr−1 with a wide uncertainty range of 6%–

100% according to the officially provided SD. To make

our evaluation more precise, the annual mean NPP

and GPP data from MODIS (Zhao et al., 2005, 2006,

2010) with a 1-km resolution covering the period 2000–

2012 are also used. The data quality is affected by the

uncertainties in descriptions of the biome type and me-

teorological input data, as well as in the algorithm that

translates measured parameters into inferred process

rates. It has also been indicated that these uncertain-

ties may be large in some regions or during certain

seasons (Zhao et al., 2005). It is found that MODIS

NPP and GPP have mean values of 116.25 and 143.69

g C m−2 yr−1 respectively, with relatively small SD

values of ±8.06 g C m−2 yr−1 (7%) and ±9.49 g C

m−2 yr−1 (6.6%), suggesting that the MODIS prod-

ucts are of high quality. The GPP data derived from

the global upscaling flux tower measurements on the

global scale based on the model tree ensemble (MTE)

approach with the relatively long time series (1982–

2012) described by Jung et al. (2009, 2011) are also

used for the validation. Jung et al. (2011) estimated

the uncertainty of globally averaged GPP to be ±6 kg

C m−2 yr−1 (< 15%). In the TP region, the GPP data

show an annual mean value of 246.25 g C m−2 yr−1,

with a small and ideal SD range of ±14.18 g C m−2

yr−1 (5.8%).

2.2.3 Vegetation cover

The Community Land Model version 4 (CLM4)

vegetation fraction data (Lawrence et al., 2007, 2011)

derived from MODIS (hereafter MODIS/CLM4),

which cover the whole global land surface with a high

resolution of 0.5◦ × 0.5◦, are used to evaluate the frac-

tional distributions of bare ground and two vegetation

cover types: trees and grass. The MODIS Vegeta-

tion Continuous Fields (VCF) dataset for vegetation

cover (hereafter MODIS/VCF) derived from Hansen

et al. (2003) is also used for evaluation of tree and bare

ground simulations in this study. These two datasets

describe the land surface in fractions of vegetation

cover types: woody vegetation (trees and shrubs),

herbaceous vegetation (grasses and crops), and bare

(non-vegetated) ground. This is similar to the way

in which DGVMs describe the vegetation cover (or

PFTs), which is why they are chosen for our evalua-

tion. For comparison, the MODIS-derived and model-

simulated PFTs are placed into three broad vegetation

classes: bare ground, tree, and grass PFTs. Table 4

provides the details of these classifications. The tree

fraction of MODIS/VCF shows a mean value of 6.72%

with an uncertainty of 1.1% (14.8%). Note that in

most of the ESMs, the anthropogenic land use is pre-

determined; in particular, the extent of pasture and

cropland is prescribed, and the dynamic vegetation

models used only affect the natural vegetation distri-

bution. Therefore, only the evaluation of the coverage

Table 4. Correspondence between model and MODIS vegetation PFT classifications

MODIS-derived PFT Type Acronym Model type

Needleleaf evergreen tree–temperate NET temperate Tree

Needleleaf evergreen tree–boreal NET boreal

Needleleaf deciduous tree–boreal NDT boreal

Broadleaf evergreen tree–tropical BET tropical

Broadleaf evergreen tree–temperate BET temperate

Broadleaf deciduous tree–tropical BDT tropical

Broadleaf deciduous tree–temperate BDT temperate

Broadleaf deciduous tree–boreal BDT boreal

C3 arctic grass Grass

C3 grass

C4 grass

Pasture

Crop1

Crop2

Bare soil Bare ground
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of natural vegetation is performed here, and the land

cover variation due to transitions from natural to an-

thropogenic vegetation, and vice versa, is not consid-

ered.

2.3 Evaluation approach

A series of analyses were conducted for evaluating

and ranking the models. In the following, we describe

the diagnostics used for model evaluation and the met-

rics used for model ranking.

2.3.1 Evaluation metrics

There are multiple metrics that can be used for

evaluating the agreement between simulated and ob-

served LAI and vegetation cover. Here, the square

of the Pearson correlation coefficient (r2) is used to

quantify the spatial correlation between the vegeta-

tion distribution in the model and observation. In a

linear approximation, this metric quantifies a fraction

of variation explained by the model as

r2 =

[ N
∑

i

Wi(Mi −M)(Oi −O)
]2

[ N
∑

i=1

Wi(Mi −M)
N
∑

i=1

Wi(Oi −O)
]2
, (2)

where Mi and Oi are the variables simulated by the

model or observed in the grid cell i, and Wi is an areal

weight of grid cell i (
N
∑

i=1

Wi = 1). Here, we calculated

Wi in the Pearson correlation coefficient (CC) equa-

tion based on the area of each grid associated with the

central geographic latitude of each grid. In our case,

the study region (i.e., the TP) covers 25◦–40◦N, where

the values of Wi do not vary much and can almost be

neglected. N is the total number of grid cells under

evaluation.

The amplitude of the difference between two

datasets is measured by using the root-mean-square

error (RMSE):

RMSE =

√

√

√

√Wi

N
∑

i=1

(Mi −Oi)2. (3)

The two metrics, r2 and RMSE, are calculated sepa-

rately for LAI and each vegetation class. During this

process, the model is evaluated at every grid point and

then aggregated over the entire land surface of the TP.

2.3.2 Ranking metrics

The method described in Section 2.3.1 cannot

fully identify the best and the worst models among the

12 ESMs with respect to TP vegetation simulation.

Accordingly, a ranking method is used to assess the

model performance with three ranking metrics. One

metric is an upgraded version of Eq. (3), with the

aim to check the annual seasonal cycle (in terms of

monthly data) of vegetation features:

RMSE2

m,i =
1

N

N
∑

i=1

[

(

Mi,t −M i

)

−
(

Oi,t −Ot

)

]2

, (4)

where t corresponds to the temporal dimension, and

N is the number of months. Equation (4) can be nor-

malized by the maximum to obtain the relative error

(Re) as follows:

Re = 1−
RMSE2

m,i

max(RMSE2

m,i)
. (5)

The other metric, the model variability index (MVI),

as introduced by Gleckler et al. (2008) and Scher-

rer (2011), designed to check the model’s representa-

tion of the interannual features of the observation, is

equated by the ratio of the standard deviation of the

model means divided by the standard deviation of the

observed means (see Eq. (6)), where σo,i and σm,i

are the standard deviations of the annual time series

of the model and observation for a given variable at

each grid cell i, respectively. Perfect model-reference

agreement would result in an MVI value approaching

zero. This approach avoids the cancellation effects of

a model when experiencing problems related to ex-

cessively large or small interannual variability (IAV)

(Gleckler et al., 2008; Scherrer, 2011). It is a good

method for assessing the difference between a single

model and observation, providing a consistent stan-

dard for identifying the standard deviation of a single

model.

MVI =
(σm,i

σo,i

−
σo,i

σm,i

)

. (6)

In some model evaluation studies, an MVI value equal

to 0.5 is considered as a good representation of IAV

(Scherrer, 2011; Anav et al., 2013b). However, the

MVI threshold can vary markedly, changing in a wide
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range due to differences in physical variables and study

regions, especially biological variables. For example,

Anav et al. (2013b) showed that, on the global scale,

calculated MVI of LAI and GPP from 18 models of

CMIP5 had ranges of 2–6 and 1–10, respectively, and

the ranges were even wider in the Southern Hemi-

sphere. Previous studies have shown that numerical

models generally perform poorly over the TP than in

other places of China due to the TP snow coverage,

which may have caused large uncertainty. In this case,

a much higher and more variable MVI is expected. To

solve this problem, we normalize the MVI by the max-

imum to obtain the relative MVI (RMVI) (Eq. (7)).

A value approaching 1 is considered to denote the best

level of agreement between model and observation.

RMVI = 1−
MVIm,i

max(MVIi)
. (7)

It should be noted that normalizing the skill score cal-

culations in this way only yields a measure of how good

a given model is with respect to a particular reference

dataset, and does not have any real meaning.

In addition, the bias between a given model (M)

and the reference data (O) is also computed as the

third skill score to check the main bias between ESM

simulations and the observation (Eq. (8)).

Bm
i = |Mi −Oi|. (8)

Similar to the other metrics, models are evaluated at

every grid point and then aggregated over the entire

land area of the TP.

3. CMIP5 model performance

LAI is defined as one side of the green leaf area

per unit ground area in broad leaf canopies and as one

half of the total needle surface area per unit ground

area in coniferous canopies (Watson, 1947). It is an

important indicator of vegetation state because it af-

fects the radiative transfer process within the canopy,

as well as evapotranspiration from the surface, and

consequently modulates near-surface climate and at-

mospheric circulations (Kang et al., 2007). The mean

values of vegetation distribution are useful for sim-

ply quantifying vegetation ecosystem—climate inter-

actions, which may provide insight into model perfor-

mance, as emphasized in some model intercomparison

studies. Therefore, we begin by providing general in-

formation on the LAI simulations of the 12 ESMs.

Figure 1a shows the simulated LAI compared with

the observed LAI derived from satellite data (GLASS).

Large differences are found among the models. Apart

from CanESM2 and INMCM4, the LAI in the grow-

ing season over 1986–2005 in the remaining 10 mod-

els is overestimated, with values scattered around the

CMIP5 ensemble mean and ranging from 0.44 to 3.6.

Unrealistically high LAI is found in BNU-ESM and

GFDL-ESM2G, with average values greater than 3.0

over the TP. This result is consistent with previous

LAI evaluation on the global scale (Anav et al., 2013b;

Shao et al., 2013). The overestimation in BNU-ESM

is universal around the globe, and the overestimation

in GFDL-ESM2G may be caused by a flaw in the land

surface model physics, which allows only coniferous

trees to grow in cold climate in case large LAI con-

tributed by coniferous trees establishes in areas where

there should be tundra or cold deciduous trees (Anav

et al., 2013a). CanESM2 shows a very small box

range (or slight difference between minimum and max-

imum), suggesting weak interannual variability in the

CanESM2 simulation.

For vegetation carbon flux above the ground (or

NPP above the ground) during 1986–1995, Fig. 1b

shows much more scattered distributions, with mag-

nitudes varying from 125.8 to 554.86 g C m−2 yr−1,

implying large uncertainty among the models. With

the exception of CanESM2 and NorESM1-ME, 9 of

the 11 models (Note that the NPP of INMCM4 was

not available in the CMIP5 data portal) tend to over-

estimate the IGBP NPP magnitudes (150.25 g C m−2

yr−1). The systematic bias in NPP generally re-

flects the accuracy of the simulated LAI shown in Fig.

1a. Following the erroneous pattern of LAI, GFDL-

ESM2G, and CanESM2 respectively show the largest

and least bias, when compared with the IGBP NPP.

For CCSM4 and CESM1-BGC that use CLM4 ex-

tended with a carbon-nitrogen (CN) biogeochemical

model (hereafter CLM4CN) as their vegetation model,

very similar overestimated NPP is simulated. How-
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Fig. 1. Model statistics of LAI in the growing season (April–October), annual mean net primary productivity (NPP),

precipitation (Pr), surface air temperature (Tas), and gross primary productivity (GPP). (a) LAI in the growing season

over the reference period of 1986–2005; (b) annual mean NPP during 1986–1995; (c) NPP during 2000–2005; (d) Pr; (e)

Tas; (f) GPP during 1986–1995; and (g) GPP during 2000–2005. Values from top to bottom of each box inside each

panel are the maximum, 75 percentile, median, 25 percentile, and minimum of the model values during the evaluation

period. The x-axis identifies the 12 models and the observation dataset. The box values of “ALL” are calculated based

on the model sequences. Each box is marked (*) with the mean value of the individual model. The width of each box

indicates the run numbers for every ESM. In (b, c) and (f, g), NPP and GPP for INMCM4 are missing because they were

unavailable in the CMIP5 data portal. The black lines in each of the panels indicate the mean value of observations.
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ever, NorESM1-ME, which also uses CLM4/CLM4CN

as its land surface/vegetation model but forced by

the revised Community Atmosphere Model version 4

(CAM4) (Neale et al., 2010) with CCSM4, an abnor-

mally low NPP mean value is found, suggesting that

the relationship between LAI and biomass production

in this model is unrealistic. NPP derived from MODIS

during 2000–2005 shows a much lower annual mean

value (116.25 g C m−2 yr−1) than the IGBP NPP

mean during this period, which is severely overesti-

mated by all of the 11 ESMs, and with a much larger

range from 131.29 to 588.68 g C m−2 yr−1—even for

CanESM2, which is one of the two ESM models that

underestimate the observed LAI, as mentioned above.

The simulated NPP during 2000–2005 shows a 4.2–

65.3 g C m−2 yr−1 increase with a generally smaller

interannual variability (see the much narrower box

range) compared with that during 1986–1995, which

is reasonable and consistent with the LAI variations.

The overestimation of LAI may be associated

with an overestimation of observed precipitation. It

is found that the erroneous pattern of simulated LAI

conforms well with the simulated precipitation (Fig.

1d), with the exception of IPSL-CM5A-LR, GFDL-

ESM2G, and INMCM4. The large bias found in BNU-

ESM could be in some way due to the serious wet bias

that this model has in reproducing the observed pre-

cipitation. The mean annual precipitation as reported

by the station data is 1.12 mm day−1, while BNU-

ESM produces a value about 4 times as large (4.03 mm

day−1). CanESM2 shows a small and underestimated

LAI, which is consistent with the relatively small wet

bias in the model. The simulated surface air temper-

ature does not contribute much to the overestimated

LAI, since all the models apart from BNU-ESM gener-

ate a colder than observed atmosphere near the surface

of the TP, which is not conducive for plant growth,

vegetation photosynthesis, and carbon exchange be-

tween vegetation and the atmosphere.

GPP represents the uptake of atmospheric CO2

during photosynthesis. Anav et al. (2013b) attributed

the overestimated LAI in 18 ESM models from CMIP5

to two reasons. One is associated with the overesti-

mated photosynthesis (or GPP), which could lead to

a surplus of biomass stored into the leaves, and the

missing parameterization of ozone also partially ex-

plains the LAI overestimation due to the high GPP,

with the proof that ozone leads to a mean global LAI

reduction of about 10%–20% during the historical pe-

riod as compared with a simulation without elevated

tropospheric ozone (Sitch et al., 2007; Wittig et al.,

2009). In our case, the 12 ESMs are found to seri-

ously overestimate the MODIS (Fig. 1f) and MTE

(Fig. 1g) GPP, with a similar erroneous pattern to

LAI. Therefore, the overestimation of photosynthesis

could be one of the possible reasons for the LAI overes-

timation. This highlights the wet bias of models since

precipitation is another main limiting factor for plant

photosynthesis across the globe besides temperature.

The level of uncertainty in satellite-derived LAI is also

another possible reason for the unrealistically overesti-

mated LAI over the TP. This is because remote sens-

ing data cannot represent the real LAI distribution

spatially and temporally, although it has been widely

recognized as a valuable tool for detection and analy-

sis of LAI.

Figure 2 shows spatial distributions of the mean

LAI of each model and their ensemble, as well as the

GLASS observation in the growing season over the

reference period. In general, each model reproduces

the observed LAI pattern, with LAI decreasing from

the southeast border where forests dominate, to the

northwestern TP mainly covered by bare land (Yu et

al., 2010). With the exception of CanESM2 and IN-

MCM4, LAI in the southeastern TP is severely over-

estimated in the remaining models, especially BNU-

ESM and GFDL-ESM2G, as mentioned when ana-

lyzing Fig. 1a. In addition, CCSM4, CESM1-BGC,

and NorESM1-ME produce similar overprediction pat-

terns in southeastern TP due to their use of the same

land/vegetation model. The dark crosses in Fig. 2

mark the areas where the simulated interannual vari-

ability of LAI is reliably consistent with the observa-

tion (p < 0.05). It can be seen that the simulated in-

terannual variability in most of the models has higher

reliability in the eastern and southwestern TP com-

pared to elsewhere. BNU-ESM and GFDL-ESM2G

generate increasing LAI in agreement with the obser-
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Fig. 2. Spatial distributions of simulated and observed LAI in the growing season. Figures (a–l) and (m) respectively

indicate the simulated LAI for the 12 individual models and the model ensemble, while (n) indicates the observed LAI of

GLASS. The hatched areas in (a–m) indicate the grids with statistically significant interannual change (p < 0.05). The

dark blue lines in each panel are the Yellow River (top) and the Yangtze River (bottom).

vation, albeit with unrealistically high values. How-

ever, HadGEM2-ES shows continuously descending

LAI, which is opposite to the observed interannual

variability (figure omitted), implying that there is

something wrong in the vegetation dynamics of the

HadGEM2-ES model.

Figure 3 compares the spatial distribution of the

linear trend between the GLASS observation (Figs.

3a–c) and the 12-model ensemble (Figs. 3d–f). The

observation shows a significant increasing tendency in

46% of the area of the TP (p < 0.05), with the trend

< 0.15 per decade (bar plot in the bottom left) (Figs.

3a and 3b). The most noticeable increase can be seen

at the eastern and southern borders, where the cover-

age is mainly forest (Yu et al., 2010) and where LAI in-

creases by more than 0.15 per decade (Fig. 3a). How-

ever, 2.2% of the area with the significant decreasing

tendency (between –0.1 and –0.15 per decade) can also

be found in the upper reaches (or headstream) of the

Yellow River and the edges of the northern and west-

ern TP, suggesting a degraded vegetation status there

in the past 20 years.

The model ensemble shows a distinct increasing

trend of LAI, with an expanded area of 82% over the

TP and a comparable trend of 0.05–0.15 per decade

in the observation (Figs. 3d and 3e). At the south-

ern and eastern borders of the TP, the ensemble sim-

ulation shows a slightly small increasing trend (0.10

to –0.15 per decade) compared with the observation.

However, the evident decreasing trend found in the

upper reaches of the Yellow River is not clearly shown

in the model ensemble due to the low resolution of the

models.

The consistency of the model simulations with the
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Fig. 3. Spatial distributions of the LAI linear trend, significance level, and consistency during the growing season

from 1986 to 2005 in (a, b, c) the observation and (d, e, f) simulation: (a, d) LAI linear trend (10−3 (10 yr)−1); (b,

e) significance level of the linear trend, in which the increasing/decreasing significance (p) is expressed quantitatively,

with colored areas indicating two divided levels (p < 0.01 and 0.01< p < 0.05); (c) consistency of single models with the

observation (GLASS); and (f) consistency of single models with the model ensemble. Filled colors in (c) and (f) indicate

the cumulative number of models showing a trend (increasing or decreasing) that is consistent with the observation or

the 12-ESM ensemble. The insets show the (a, d) frequency distributions of the corresponding trends, (b, e) different

significance levels, and (e, f) model numbers greater than 6.

observation reflects the reliability of the simulations

to a certain degree. It is indicated that the models

can generally reflect the variation of observed LAI in

the reference period, with 8 of the 12 models illustrat-

ing consistent increasing trends with the observation

in more than 80% of the area (Fig. 3c). As mentioned

above, the apparent disagreement exists at the north-

ern border and headstream of the Yellow River, where

the simulated LAI shows a strong increasing trend that

is out of phase with the observation. The model sim-

ulations show better agreement with the model en-

semble than that with the observation, with approxi-

mately 80% of the area possessing a coherent increas-

ing tendency, simulated by more than 10 models.

Figure 4 shows the seasonal evolution of observed

and simulated LAI for the entire TP. The GLASS ob-

servation indicates a clear interannual cycle, with the

LAI magnitude showing a remarkable increase in May

when the vegetation of the TP starts to green up,

reaching its peak in June and July, before recovering

to a low in the dormancy period after October. Most

models show a seasonal cycle with its phase in agree-

ment with the observation, except IPSL-CM5A-LR,

which does not present a complete seasonal variation

as the other models do, although the start of the grow-

ing season is not accurately simulated by the other

models (e.g., HadGEM-ESM2 shows a one-month ad-

vance, and CanESM2 and INMCM4 a one-month de-

lay). For GFDL-ESM2G and BNU-ESM, the simu-

lated LAIs show unrealistically high values for the en-

tire year, even during the dormancy seasons, with the

former possessing a very small seasonal variability and

the latter an extremely high LAI (maximum of 4.4)

during summer (June–August). The extensive cover-

age of evergreen vegetation (trees, shrubs, or tundra)

and the seasonal herbaceous vegetation or deciduous

trees, are respectively considered to contribute to their

overestimated LAI. Our assumption does not conflict
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Fig. 4. Observed and simulated climatological monthly mean LAI during the reference period 1986–2005 for each

calendar month. Color intensities reflect the magnitude of the climatological LAI mean. The x-axis corresponds to

calendar months, and the y-axis indicates the 12 ESMs, its ensemble, and the observation (GLASS).

with the previous explanation for overestimated LAI

in GFDL-ESM2G, since coniferous trees are also part

of the evergreen vegetation. The underestimation of

LAI in CanESM2 is probably related to the delayed

start of the growing season. A similar pattern of sea-

sonal variation is shown in CCSM4, CESM1-BGC, and

NorESM1-ME simulations, which stresses the impor-

tance of vegetation model performance to simulated

vegetation dynamics.

For vegetation cover, only three classes (bare

ground, trees, and grass) are focused upon, since

they have the widest coverage on the TP and the

strongest effect on biophysical properties of the land

surface (Brovkin et al., 2013). Figure 5a shows the

area-averaged PFTs of bare ground, trees, and grass

from model simulations during 1986–2005 compared

with the observations of MODIS/CLM4. The models

generally underestimate bare ground (except GFDL-

ESM2G) and overestimate tree coverage (except IPSL-

CM5A-LR), with very scattered grass coverage, al-

though individual models capture well the observed

PFTs (e.g., both HadGEM2-ES and MPI-ESM-LR

simulate comparable coverages of bare ground and

trees with the observation).

During the period from the middle of the 20th

to the early 21st century, the model ensemble shows a

slight increase in bare ground and decrease in tree cov-

erage, with respective trends of 0.58% and –1.48% per

decade (Fig. 5b). The simulated grass coverage does

not show significant variations during this period. In

the last two decades (1986–2005), the simulated tree

coverage shows a continuous but much more moderate

descending trend (–0.18% per decade), while the bare

ground area turns to a slight decrease (–0.08% per

decade); the sign of grass variation is still too weak to

be discerned.

Figure 6 shows the MODIS/VCF and simulated

spatial coverage for bare ground (Figs. 6a and 6d),

trees (Figs. 6b and 6e), and grass (Figs. 6c and 6f).

It can be seen from the observation that bare ground

is mainly located in the northwestern TP, and there is

almost no bare ground coverage at the southern and

eastern borders (Fig. 6a). Tree coverage exists mainly

at the southeastern edge of the TP, with a high frac-

tion of over 80% in most of the area. In the south-

eastern TP, grass is the dominant biome type, with an

area of coverage of 40.82%.

The simulated distribution of bare ground from
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Fig. 5. Observed and simulated vegetation coverage. (a) Three PFTs over the TP. The tree fraction in HadGEM2-ES

and bare ground fraction in MIROC-ESM are not shown since they are within 5%, which is considered to have insufficient

accuracy. (b) Temporal variation of PFT coverage for the model ensemble over the period 1950–2005. The black dashed

lines in (b) indicate the linear trends of the three PFTs, and “rc” indicates the trends of the PFTs.

Fig. 6. Spatial distributions of (a, b, c) observed and (d, e, f) simulated vegetation coverage (%) during 2000–2001 for

(a, d) bare ground, (b, e) trees, and (c, f) grass.

the model ensemble agrees well with the MODIS-

derived coverage (Fig. 6d), albeit the magnitudes in

most parts of the TP are underestimated by around

50%. The model ensemble reproduces the spatial dis-

tribution of observed tree coverage at the southern

and eastern borders of the TP, with an extra north-
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extending tree band at the northern edge of the TP

(Fig. 3e) due to the overestimation of GFDL-ESM2G

as described in Section 3.2. The observed grass frac-

tion is not captured well by the model ensemble. Un-

like the observed grass fraction, which is mainly lo-

cated in the southeastern TP, the simulated grass frac-

tion from the model ensemble evenly covers the entire

TP, with a PFT fraction two times of that of the ob-

servation.

It is clear that CMIP5 ESMs cannot well repro-

duce the observed PFTs. Besides the systemic bias

of PFTs in the models, the large differences between

CMIP5 ESM outputs and observations may also be

due to the ESMs’ coarse spatial resolutions, which

does not adequately represent the control that the

complex topography has on the vegetation distribu-

tion of the TP, even when they are downscaled to a

relatively high resolution of 1◦ × 1◦ as in our anal-

ysis. As a result, the heterogeneous spatial distribu-

tions of surface air temperature and precipitation are

smoothed compared to observations, which then influ-

ence the resulting vegetation distribution.

To facilitate comparisons in a concise way, the

square of the Pearson correlation coefficient (r2) and

the root-mean-square error (RMSE), as well as a Tay-

lor diagram, are used to quantify the performance of

the model simulations. Table 5 lists the values of r2

and RMSE separately for LAI and the three PFTs

mentioned above. Over the TP, r2 and RMSE of LAI

are equal to 0.69 and 1.25, respectively, which are com-

parable with the result of Brovkin et al. (2013) based

on CMIP5 ESM simulations on the global scale. The

model ensemble shows a relatively higher r2 and lower

RMSE values (0.59 and 14.48%) for tree fraction, when

compared with bare ground and grass. The grass frac-

tion, as an intermediate class between tree and bare

ground coverage, is reproduced less reliably over the

TP, with r2 of 0.19 and RMSE of 31.61%.

Figure 7 shows the Taylor diagram (Taylor, 2001)

derived from the standard deviations and correlation

coefficients of LAI in the growing season. The distance

from point to point (1.00, 1.00) in the Taylor diagram

indicates the relative skill of the model. It can be seen

that the normalized standard deviations spread out

over a large range from 0.75 to 2.79. Most of the mod-

els show larger interannual variability than the obser-

vation, with the ratio of the standard deviation to the

observation being more than 1, except for CanESM2

and MPI-ESM-LR, which also have smaller relative

bias (< 50%) than other models, suggesting that these

models perform well in reproducing the observed mean

state. Of the 12 models, INMCM4 shows the closest

value with the observation, while NorESM1-ME shows

the most dispersed standard deviation from the obser-

vation.

The correlation coefficients reflect agreement be-

tween the model simulations and the observation in

terms of spatial distribution. It is shown in Fig.

7 that the correlation coefficient values spread wit-

hin the range of 0.65–0.90, with most models having a

Table 5. Evaluation of simulated LAI and vegetation

coverage in terms of r2 and RMSE

Variable RMSE r
2

LAI 1.25 0.69

Bare ground 43.86% 0.56

Tree 14.84% 0.59

Grass 31.61% 0.19

Fig. 7. Taylor diagram of LAI during the growing season

for the reference period (1986–2005). The correlations and

ratios of standard deviations among model simulations and

the observation (GLASS) are calculated spatially.
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high value of more than 0.8, except HadGEM2-ES and

MIROC-ESM. Models CCSM4, CESM1-BGC, and

NorESM1-M show relatively high correlation coeffi-

cient values of 0.89 in their simulations. This suggests

good ability of CLM4/CLM4CN to represent observed

spatial distributions of LAI.

4. Model ranking

The diagnostics in Section 3 indicate that, gen-

erally, the CMIP5 ESMs can adequately reproduce

the observed biological characteristics of vegetation,

although a few of the models do show notably poorer

agreement than others, and general problems exist for

quite a few of the models. The measures provide the

basic information of model performance, which is cru-

cial for identifying model differences in a model eval-

uation system. However, the diagnostics are not suf-

ficient to clearly identify the best and worst models

in model ensemble members. To achieve this objec-

tive, specific metrics were defined (see Eqs. (4)–(8))

and calculated to produce a quantitative ranking of

the models.

Figure 8 shows the skill scores of simulated LAI

in terms of the metrics defined in Eqs. (4)–(8). It

is indicated that CanESM2, MPI-ESM-LR, and IN-

MCM4 posses the best skills for reproducing observed

amplitude and seasonal evolution (see “Re” of Figs.

8a and 1a), although it seems to be two months out of

phase with the observation during the peak season for

CanESM2 (Fig. 4). The poorest performance is found

in BUN-ESM and NorESM1-ME, mainly due to their

great discrepancies in LAI magnitude with the obser-

vation of GLASS (Fig. 1a). The relatively low skill

score for IPSL-CM5A-LR (ranking number of 7) is re-

lated to its bad representation of seasonal evolution,

since the simulation is totally out of phase compared

with the observation (Fig. 4). Our results are con-

sistent with another study based on CMIP5 biological

variables on the global scale (Anav et al., 2013b).

The models show very different skill scores when

ranked with respect to interannual variability, e.g.,

bcc-csm1.1-m and MPI-ESM-LR achieve the top two

scores among all 12 models (see “RMVI” in Fig. 8a).

The simulations of CCSM4, CESM1-BGC, as well as

NorESM1-ME, all achieve high scores, indicating good

ability of CLM4 to represent interannual variability.

Among the 12 models, CanESM2 and GFDL-ESM

show the worst simulation skills in reproducing inter-

annual variability of LAI.

Figure 8b shows an absolute measure of the

ESMs’ skills in reproducing the mean state of ob-

served LAI. As in Figs. 1a and 7, CanESM2 and IN-

MCM4 present the smallest bias of the 12 ESMs, when

compared with the observed LAI. It is not surprising

that GFDL-ESM and BNU-ESM show very poor skill,

which in both cases is related to the improper descrip-

tion of land surface model physics and the large wet

bias, as previously mentioned.

Finally, we calculated the arithmetic product of

weights according to the ranking orders for Re, RMVI,

and BIAS, with the ranking number greater than 10

(here larger numbers mean poorer simulation skill) out

of the lists, and then obtained the ranking sequence for

the model group. It was found that INMCM4, bcc-

csm1-m, MPI-ESM-LR, IPSL-CM5A-LR, HadGEM2-

Fig. 8. Model ranking with respect to LAI: (a) model

ranking results based on relative error (Re) calculated by

Eqs. (4) and (5) and relative model variability index

(RMVI) calculated by Eqs. (6) and (7); (b) model ranking

result based on absolute bias (BIAS) between simulations

and the observation calculated by Eq. (8).
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ES, and CCSM4 perform the best among the 12 mod-

els. No model ranking was performed for vegeta-

tion cover due to the deficiency of monthly vegetation

cover. It is important to note that the model ranking

results are dependent on the selection of variables and

skill score metrics applied, as well as the study region.

Therefore, this result is limited to the conditions of

the present analysis only.

5. Conclusions and discussion

In this study, the abilities of 12 CMIP5 ESMs to

reproduce the mean state, trends, seasonal cycle, and

interannual variability of vegetation dynamics for the

present day over the TP have been evaluated by com-

paring against the remotely sensed biological vegeta-

tion products. Several metrics, including three rank-

ing metrics, were applied to identify the strengths and

weaknesses of the individual models, as well as their

systematic biases.

The LAI patterns generated by the models agree

well with the observed data, though most of the mod-

els tend to overestimate the satellite LAI magnitude,

with r2 and RMSE values of 0.69 and 1.25 respectively

for the model ensemble. The simulated NPP is gen-

erally overestimated when compared with the IGBP

NPP (except for CanESM2 and NorESM1-ME) and

MODIS NPP during different periods. The wet bias

found in most models and overestimation of photosyn-

thesis as well as the bias of satellite data, are consid-

ered to be plausible reasons for the overestimation of

simulated LAI in most of the models. The model sim-

ulations capture the observed increasing trend of LAI

over most of the TP during the period 1986–2005; how-

ever, the decreasing trend around the headstream of

the Yellow River is not detected due to the coarse res-

olution of the ESMs. The model ensemble produces

overestimated bare ground and underestimated tree

fraction, with r2 values of 0.56 and 0.59 for bare soil

and tree fraction respectively. Grass coverage shows

the poorest performance. During 1950–2005, bare

ground over the TP shows a slight increasing trend of

0.58% per decade, while forest is decreasing at 1.48%

per decade. Grass coverage does not show any signif-

icant variation. The models show very different skill

scores in their simulations of the seasonal evolution

and interannual variability. By synthetically consid-

ering the model performance in terms of the mean

state, seasonal and interannual variability compared

with observed LAI, INMCM4, bcc-csm1-1m, MPI-

ESM-LR, IPSL-ESM-LR, HadGEM2-ES, and CCSM4

are ranked the best models in representing the vege-

tation characteristics of the TP.

In our study, LAI and vegetation cover have been

evaluated by using two metrics (r2 and RMSE) to

show the general performance of model simulations,

and we carried out vegetation cover validation sepa-

rately on three classes. There are a number of other

metrics used for vegetation biophysical variables. For

example, Monserud and Leemans (1992) used j statis-

tics to evaluate discrete vegetation, Poulter et al.

(2011) attempted to evaluate vegetation cover simul-

taneously in more than two classes based on the b-

diversity metric (mean Euclidean distance). The cho-

sen metrics depend mainly on the research objective.

Similarly, the relatively simple skill score metrics of

Re, RMVI, and BIAS were adopted for the model

ranking in this study, but there are more complicated

and mature metrics (Brunke et al., 2003; Decker et al.,

2012; Wang and Zeng, 2012) that could also be used

for ranking the models.

The CCSM4, CESM1-BGC, and NorESM1-ME,

which share CLM4/CLM4CN as their land surface

model and vegetation model, show some common

weaknesses and strengths in their simulations, such as

good performance in representing the observed spa-

tial distribution, seasonal cycle, and interannual vari-

ability, and bad performance in reproducing the mean

values of observed LAI and NPP. This suggests the im-

portance of land surface and vegetation physics for the

successful description of vegetation dynamics. It was

also noted in our analysis that the simulated PFT frac-

tions show much poorer performance compared with

LAI, for both the mean state and the spatial distri-

bution, which highlights a major weakness for model

developers to work on for future model improvements.
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