日本海沟俯冲带MW9.0地震震源区应力场演化分析

杨佳佳, 张永庆, 谢富仁. 2018. 日本海沟俯冲带MW9.0地震震源区应力场演化分析. 地球物理学报, 61(4): 1307-1324, doi: 10.6038/cjg2018L0258
引用本文: 杨佳佳, 张永庆, 谢富仁. 2018. 日本海沟俯冲带MW9.0地震震源区应力场演化分析. 地球物理学报, 61(4): 1307-1324, doi: 10.6038/cjg2018L0258
YANG JiaJia, ZHANG YongQing, XIE FuRen. 2018. The evolutionary analysis of the stress field in the seismic focal zone of the great Tohoku-Oki earthquake (MW=9.0) in the Japan Trench subduction zone. Chinese Journal of Geophysics (in Chinese), 61(4): 1307-1324, doi: 10.6038/cjg2018L0258
Citation: YANG JiaJia, ZHANG YongQing, XIE FuRen. 2018. The evolutionary analysis of the stress field in the seismic focal zone of the great Tohoku-Oki earthquake (MW=9.0) in the Japan Trench subduction zone. Chinese Journal of Geophysics (in Chinese), 61(4): 1307-1324, doi: 10.6038/cjg2018L0258

日本海沟俯冲带MW9.0地震震源区应力场演化分析

  • 基金项目:

    国家自然科学基金(41374051),中央级公益性科研院所基本科研业务专项(ZDJ2012-11),国家科技支撑计划(2012BAK19B03)资助

详细信息
    作者简介:

    杨佳佳, 女, 1992年生, 硕士研究生在读, 主要从事构造应力场相关研究.E-mail:13540428192@163.com

    通讯作者: 张永庆, 男, 1972年生, 副研究员, 主要从事应力场和地震活动性相关研究.E-mail:zyqicd@163.com
  • 中图分类号: P315

The evolutionary analysis of the stress field in the seismic focal zone of the great Tohoku-Oki earthquake (MW=9.0) in the Japan Trench subduction zone

More Information
  • 于2011年3月11日发生在日本东北部的MW9.0级逆冲型板间地震是日本有地震记录以来震级最大的一次地震.本研究基于NIED F-net矩张量解目录中的震源机制解,选取两个长轴相互垂直的矩形区域进行应力场2D反演,获取了日本海沟俯冲带地区应力场的空间及时间分布图像.结果表明:主震前,俯冲带地区应力状态在空间上大体趋于一致,即应力轴(P轴、σ1轴及SHmax轴)系统性地倾向板块汇聚方向,P轴、σ1轴倾角整体偏缓(< 30°),且远离震源区及日本海沟东侧区域内的应力轴倾角普遍大于主震震源区内应力轴倾角;主震前,受2003年5月26日在宫城县北部发生的MW7.0地震影响,位于MW9.0地震震源区西北侧的应力场出现明显扰动,σ1轴倾向顺时针偏转150°~180°,并于之后大体恢复至震前状态,同期其他地区没有明显变化,这种情况可能和主震断层局部(深部)的前兆性滑动有关;主震后,距离震源区较远处应力场变化不大,主震震源区内应力场发生显著改变,P轴及σ1轴均以大角度(>60°)倾伏于板块汇聚方向,SHmax轴顺时针偏转60°~90°且在日本海沟附近普遍平行于海沟轴.这项研究以时空图像的方式展示了大地震前应力场变化的特点,反映了大地震孕震过程中构造与地震的相互作用,对于理解大地震孕震过程有重要意义.

  • 加载中
  • 图 1 

    地震活动分布、研究区网格划分及时段划分

    Figure 1. 

    The tectonic setting, grids division and time spans of the study area

    图 2 

    区域1和区域2主震前震源机制解三角分类

    Figure 2. 

    The triangle classification of focal mechanism solutions in Region 1 and 2

    图 3 

    数据拟合误差与模型长度间的折中曲线图

    Figure 3. 

    Trade-off between data misfit and model length

    图 4 

    区域1主震前后PT轴赤平投影图

    Figure 4. 

    Stereomaps of P and T axes in Region 1

    图 5 

    区域1主震前后主应力轴赤平投影图

    Figure 5. 

    Stereomaps of three principle stress axes in Region 1

    图 8 

    区域1水平最大主应力(SHmax)方向分布

    Figure 8. 

    The orientations distribution of the maximum horizontal stress (SHmax) in Region 1

    图 6 

    区域2主震前(a)、后(b)PT轴赤平投影图

    Figure 6. 

    Stereomaps of P and T-axes in Region 2 before (a) and after (b) mainshock

    图 7 

    区域2主震前后主应力轴赤平投影图

    Figure 7. 

    Stereomaps of three principle stress axes in Region 2

    图 9 

    区域2水平最大主应力(SHmax)方向分布

    Figure 9. 

    The orientations distribution of the maximum horizontal stress (SHmax) in Region 2

    图 10 

    区域2各网格σ1轴方向随6个时段的变化情况

    Figure 10. 

    The temporal and spatial variation of orientations of σ1-axes in Region 2

    图 11 

    区域2各网格反演出的R值随6个时段的变化曲线

    Figure 11. 

    The temporal and spatial variation of R values in Region 2

  •  

    Chen G Q, Wu Y Q, Jiang Z S, et al. 2013. Characteristics of seismogenic model of MW 9.0 earthquake in Tohoku, Japan reflected by GPS data. Chinese Journal of Geophysics (in Chinese), 56(3):848-856, doi:10.6038/cjg20130314.

     

    Chiba K, Iio Y, Fukahata Y. 2012. Detailed stress fields in the focal region of the 2011 off the pacific coast of Tohoku earthquake-implication for the distribution of moment release. Earth, Planets and Space, 64(12):1157-1165. doi: 10.5047/eps.2012.07.008

     

    Feng C J, Zhang P, Sun W F, et al. 2013. A discussion on the impact of Japan MW9.0 earthquake on the main active fault zone in north-and northeast-China continent and the seismic risk. Earth Science Frontiers (in Chinese), 20(6):123-140. http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201306021.htm

     

    Ghimire S, Tanioka Y. 2011. Spatial distribution of stress and frictional strength along the interplate boundary in northern Japan and its correlation to the locations of large earthquakes. Tectonophysics, 511(1-2):1-13. doi: 10.1016/j.tecto.2011.08.004

     

    Gou FJ, Miura S, Kodaira S, et al. 2013. Along-trench structural variation and seismic coupling in the northern Japan subduction zone. Earth, Planets and Space, 65(2):75-83. doi: 10.5047/eps.2012.06.003

     

    Hao J L, Wang W M, Yao Z X. 2011. Source process of the 2011 MW9.0 Tohuko Japan earthquake. Science China Earth Sciences, 54(8):1105-1109, doi:10.1007/s11430-011-4241-y.

     

    Hardebeck J L, Michael A J. 2006. Damped regional-scale stress inversions:methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research:Solid Earth, 111(B11):B11310, doi:10.1029/2005JB004144.

     

    Hardebeck J L. 2015. Stress orientations in subduction zones and the strength of subduction megathrust faults. Science, 349(6253):1213-1216. doi: 10.1126/science.aac5625

     

    Hasegawa A, Horiuchi S, Umino N. 1994. Seismic structure of the northeastern Japan convergent margin:A synthesis. Journal of Geophysical Research:Solid Earth, 99(B11):22295-22311. doi: 10.1029/93JB02797

     

    Hasegawa A, Yoshida K, Asano Y, et al. 2012. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth and Planetary Science Letters, 355-356:231-243. doi: 10.1016/j.epsl.2012.08.042

     

    Heidbach O, Tingay M, Barth A, et al. 2010. Global crustal stress pattern based on the world stress map database release 2008. Tectonophysics, 482(1-4):3-15. doi: 10.1016/j.tecto.2009.07.023

     

    Hiratsuka S, Sato T. 2011. Alteration of stress field brought about by the occurrence of the 2011 off the pacific coast of Tohoku earthquake (MW9.0). Earth, Planets and Space, 63(7):681-685. doi: 10.5047/eps.2011.05.013

     

    Igarashi T, Matsuzawa T, Umino N, et al. 2001. Spatial distribution of focal mechanisms for interplate and intraplate earthquakes associated with the subducting pacific plate beneath the northeastern Japan arc:a triple-planed deep seismic zone. Journal of Geophysical Research:Solid Earth, 106(B2):2177-2191. doi: 10.1029/2000JB900386

     

    Ikuta R, Satomura M, Fujita, A, et al. 2012. A small persistent locked area associated with the 2011 MW9.0 Tohoku-Oki earthquake, deduced from GPS data. Journal of Geophysical Research:Solid Earth, 117(B11):11408, doi:10.1029/2012JB009335.

     

    Kanamori H, Stewart G S. 1978. Seismological aspects of the Guatemala earthquake of February 4, 1976. Journal of Geophysical Research:Solid Earth, 83(B7):3427-3434. doi: 10.1029/JB083iB07p03427

     

    Katsumata K. 2011. A long-term seismic quiescence started 23 years before the 2011 off the pacific coast of Tohoku earthquake (M=9.0). Earth, Planets and Space, 63(7):709-712. doi: 10.5047/eps.2011.06.033

     

    Koge H, Fujiwara T, Kodaira S, et al. 2014. Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench:An inference from topographic variation. Earth, Planets and Space, 66(1):153. doi: 10.1186/s40623-014-0153-3

     

    Lay T, Astiz L, Kanamori H, et al. 1989. Temporal variation of large intraplate earthquakes in coupled subduction zones. Physics of the Earth and Planetary Interiors, 54(3-4):258-312. doi: 10.1016/0031-9201(89)90247-1

     

    Lin W R, Saito S, Sanada Y, et al. 2011. Principal horizontal stress orientations prior to the 2011 MW9.0 Tohoku-Oki, Japan, earthquake in its source area. Geophysical Research Letters, 38(7):L00G10, doi:10.1029/2011GL049097.

     

    Lund B, Townend J. 2007. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal, 170(3):1328-1335. doi: 10.1111/gji.2007.170.issue-3

     

    Martínez-Garzón P, Bohnhoff M, Kwiatek G, et al. 2013. Stress tensor changes related to fluid injection at The Geysers geothermal field, California. Geophysical Research Letters, 40(11):2596-2601, doi:10.1002/grl.50438.

     

    Martínez-Garzón P, Kwiatek G, Ickrath M, et al. 2014. MSATSI:a MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool. Seismological Research Letters, 85(4):896-904. doi: 10.1785/0220130189

     

    Ozawa S, Nishimura T, Suito H, et al. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356):373-376. doi: 10.1038/nature10227

     

    Rebetsky Y L, Polets A Y, Zlobin T K. 2016. The state of stress in the earth's crust along the northwestern flank of the pacific seismic focal zone before the Tohoku earthquake of 11 march 2011. Tectonophysics, 685:60-76. doi: 10.1016/j.tecto.2016.07.016

     

    Sato M, Fujita M, Matsumoto Y, et al. 2013. Interplate coupling off northeastern Japan before the 2011 Tohoku-Oki earthquake, inferred from seafloor geodetic data. Journal of Geophysical Research:Solid Earth, 118(7):3860-3869. doi: 10.1002/jgrb.50275

     

    Shao Z G, Wu Y Q, Jiang Z S, et al. 2011. The analysis of coseismic slip and near-field deformation about Japanese 9.0 earthquake based on the GPS observation. Chinese Journal of Geophysics (in Chinese), 54(9):2243-2249, doi:10.3969/j.issn.0001-5733.2011.09.006.

     

    Sheng Z S, Wan Y G, Cheng J, et al. 2012. Primary research on the coulomb stress triggering of the 2011 MW9.0 Tohoku earthquake. Seismology and Geology (in Chinese), 34(2):325-337. https://www.researchgate.net/publication/274526686_A_post-Tohoku_earthquake_review_of_earthquake_probabilities_in_the_Southern_Kanto_District_Japan

     

    Shimazaki K. 1978. Correlation between intraplate seismicity and interplate earthquakes in Tohoku, northeast Japan. Bulletin of the Seismological Society of America, 68(1):181-192. https://www.researchgate.net/profile/Kunihiko_Shimazaki/publication/265435291_Correlation_between_intraplate_seismicity_and_interplate_earthquakes_in_Tohoku_Northeast_Japan/links/55964fb508ae21086d20a393.pdf?origin=publication_detail

     

    Spence W. 1987. Slab pull and the seismotectonics of subducting lithosphere. Reviews of Geophysics, 25(1):55-69. doi: 10.1029/RG025i001p00055

     

    Tan C X, Hu Q Y, Zhang P, et al. 2015. Present tectonic stress adjustment process before and after Japan MW9.0 earthquake in North and Northeast China and its research significance. Earth Science Frontiers (in Chinese), 22(1):345-359, doi:10.13745/j.esf.2015.01.030.

     

    Umino N, Hasegawa A, Takagi A. 1990. The relationship between seismicity patterns and fracture zones beneath northeastern Japan. Tohoku Geophys. J., 33(2):149-162. https://link.springer.com/article/10.1186/BF03352553

     

    Wang F, Shen Z K, Wang Y Z, et al. 2011. Influence of the March 11, 2011 Mw9.0 Tohoku-Oki earthquake on regional volcanic activities. Chinese Science Bulletin, 56(20):2077-2081, doi:10.1007/s11434-011-4523-y.

     

    Wang K L, Hu Y, He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic earth. Nature, 484(7394):327-332. doi: 10.1038/nature11032

     

    Wang M, Li Q, Wang F, et al. 2011. Far-field coseismic displacements associated with the 2011 Tohoku-Oki earthquake in Japan observed by Global Positioning System. Chinese Science Bulletin, 56(23):2419-2424, doi:10.1007/s11434-011-4588-7.

     

    Wang X S, Lü J, Xie Z J, et al. 2015. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chinese Journal of Geophysics (in Chinese), 58(11):4149-4162, doi:10.6038/cjg20151122.

     

    Wessel P, Smith W H F. 2013. New version of the generic mapping tools. EOS, 76(33):329. http://www.soest.hawaii.edu/pwessel/papers/1995/EOS_95/eos_95.html

     

    Yin J R, Zhu Y Q. 2011. Preliminary discussion on distribution and dislacation mode of the fault for Ms9.0 Earthquake in Honshu, Japan. Journal of Geodesy and Geodynamics (in Chinese), 31(2):12-16. http://en.cnki.com.cn/Article_en/CJFDTotal-DKXB201102003.htm

     

    Yoshida K, Hasegawa A, Okada T, et al. 2012. Stress before and after the 2011 great Tohoku-Oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophysical Research Letters, 39(3):L03302, doi:10.1029/2011GL049729.

     

    Zhang C, Zhang S X, Carminati E, et al. 2014. Thermal structure of Japan Trench subduction zone and deep-focus earthquakes. Chinese Journal of Geophysics (in Chinese), 57(10):3208-3217, doi:10.6038/cjg20141009.

     

    Zheng J C, Wang P, Li D M, et al. 2013. Tectonic stress field in Shandong region inferred from small earthquake focal mechanism solutions. Acta Seismologica Sinica (in Chinese), 35(6):773-784. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201306001.htm

     

    陈光齐, 武艳强, 江在森等. 2013. GPS资料反映的日本东北MW9.0地震的孕震特征.地球物理学报, 56(3):848-856, doi:10.6038/cjg20130314. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract9332.shtml

     

    丰成君, 张鹏, 孙炜锋等. 2013.日本MW9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨.地学前缘, 20(6):123-140. http://engine.scichina.com/doi/10.1360/N972015-00602

     

    郝金来, 王卫民, 姚振兴. 2011. 2011年3月11日日本东北沿海MW9.0级地震震源破裂过程.中国科学:地球科学, 41(6):745-749. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201106002&dbname=CJFD&dbcode=CJFQ

     

    邵志刚, 武艳强, 江在森等. 2011.基于GPS观测分析日本9.0级地震同震位错与近场形变特征.地球物理学报, 54(9):2243-2249, doi:10.3969/j.issn.0001-5733.2011.09.006. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8159.shtml

     

    盛书中, 万永革, 程佳等. 2012. 2011年日本9.0级大地震的应力触发作用初步研究.地震地质, 34(2):325-337. http://d.wanfangdata.com.cn/Periodical_dzdz201202011.aspx

     

    谭成轩, 胡秋韵, 张鹏等. 2015.日本MW9.0级大地震前后华北和东北地区现今构造应力作用调整过程与研究意义探讨.地学前缘, 22(1):345-359, doi:10.13745/j.esf.2015.01.030.

     

    王凡, 沈正康, 王阎昭等. 2011. 2011年3月11日日本宫城MW9.0级地震对其周边地区火山活动的影响.科学通报, 56(14):1080-1083. http://engine.scichina.com/doi/10.1360/N972015-00602

     

    王敏, 李强, 王凡等. 2011.全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移.科学通报, 56(20):1593-1596. http://engine.scichina.com/doi/10.1360/N972015-00602

     

    王晓山, 吕坚, 谢祖军等. 2015.南北地震带震源机制解与构造应力场特征.地球物理学报, 58(11):4149-4162, doi:10.6038/cjg20151122. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11987.shtml

     

    尹继尧, 朱元清. 2011.日本9.0级地震断层分布和错动方式探讨.大地测量与地球动力学, 31(2):12-16. http://www.cqvip.com/QK/95685A/201102/37550852.html

     

    张晨, 张双喜, Carminati E等. 2014.日本海沟俯冲带热结构与深源地震.地球物理学报, 57(10):3208-3217, doi:10.6038/cjg20141009. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract10873.shtml

     

    郑建常, 王鹏, 李冬梅等. 2013.使用小震震源机制解研究山东地区背景应力场.地震学报, 35(6):773-784. http://www.cqvip.com/QK/93548X/201306/47643604.html

  • 加载中

(11)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-04-28
修回日期:  2018-02-26
上线日期:  2018-04-05

目录