利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构

王爽, 孙新蕾, 秦加岭, 何立朋, 邓阳凡. 2018. 利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构. 地球物理学报, 61(2): 593-603, doi: 10.6038/cjg2018L0434
引用本文: 王爽, 孙新蕾, 秦加岭, 何立朋, 邓阳凡. 2018. 利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构. 地球物理学报, 61(2): 593-603, doi: 10.6038/cjg2018L0434
WANG Shuang, SUN XinLei, QIN JiaLing, HE LiPeng, DENG YangFan. 2018. Fine fault structure of Xinfengjiang water reservoir area from high-frequency ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 61(2): 593-603, doi: 10.6038/cjg2018L0434
Citation: WANG Shuang, SUN XinLei, QIN JiaLing, HE LiPeng, DENG YangFan. 2018. Fine fault structure of Xinfengjiang water reservoir area from high-frequency ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 61(2): 593-603, doi: 10.6038/cjg2018L0434

利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构

  • 基金项目:

    广州市科技计划项目(201707020029),国家自然科学基金(41774053)和同位素地球化学国家重点实验室(中国科学院广州地球化学研究所)基金(SKLabIG-16-03)共同资助

详细信息
    作者简介:

    王爽, 女, 1992年生, 现于中国科学院广州地球化学研究所攻读博士学位, 主要从事地震学方面的研究.E-mail:wang_shuang9279@163.com

    通讯作者: 孙新蕾, 女, 研究员, 1976年生, 主要从事地球内部结构及动力学方面的研究.E-mail:xsun@gig.ac.cn
  • 中图分类号: P315

Fine fault structure of Xinfengjiang water reservoir area from high-frequency ambient noise tomography

More Information
  • 广东河源新丰江水库位于华南典型断层上,自1959年水库蓄水以来,库区地震活动性明显增强,并发生了6.1级触发地震.然而我们对其地下结构的了解还远远不够,对库区地震的研究也因此存在很多不确定性.为了研究库区浅层地下结构,我们在2015年初在新丰江库区人字石断裂周边布设了42个短周期地震仪的密集地震台网.台间距大约为100~500 m,时间跨度为1个月.我们对获得的每个台站的连续信号分段进行处理,并对任意台站对的信号进行互相关和叠加处理,恢复所有台站对间的经验格林函数(EGF).然后利用多次滤波分析方法测量瑞利波群速度频散曲线,并反演该区域的群速度分布和三维剪切波速度结构.我们的结果表明,对于这样比较密集的台站间距,高频(0.2~1.2 s)频散信号基本可以得到很好的恢复,且该频段信号对浅层地下结构(< 1 km)较为敏感.剪切波速度分布表明该区域人字石断裂位置出现明显的低速分布,并且低速区在断裂南端向两侧延伸,有可能代表与人字石断裂交错的小断裂区域.同时,人字石断裂把该区域划分成了东西两部分,两侧整体上呈现高速异常,与地表山丘相吻合.我们的结果得到了新丰江人字石断裂附近的近地浅层的小尺度精细速度结构,为进一步理解该区域的构造以及地震发生提供了重要依据.

  • 加载中
  • 图 1 

    (a) 新丰江库区地理位置示意图.其中红色实线分别代表河源断裂(HYF)、人字石断裂(RZSF)、大坪-岩前断裂(DYF)、石角-新港-白田断裂(SXBF),红色虚线表示北东东向深部断裂, 灰色圆圈表示自1970年至今该地区发生的3级以上地震及2010—2015年0级以上地震.左下角红色方框中显示了图 1a的位置.靠近新丰江水库的黑色方形即为图 1b的位置;(b)人字石断裂及密集地震台网的分布情况.黑色三角形表示台站位置,红色实线表示人字石断裂.蓝色实线为图 2中台站26和34的射线路径

    Figure 1. 

    (a) The geological setting of XFJ water reservoir area. Red lines in the map are the NNE and NNW faults, which include Heyuan Fault (HYF), Renzishi fault (RZSF), Daping-Yanqian fault (DYF) and Shijiao-Xingang-Baitian faults (SXBF). The NEE fault is represented by red dashed line, since it is an inferred deep fault. The grey circles indicate earthquakes with magnitude greater than 3 since 1970 and earthquakes with magnitude greater than zero from 2010 to 2015. The red rectangular in the lower left-hand shows the region of Fig. 1a. The black rectangular in Fig. 1a next to XFJ reservoir shows the location of Fig. 1b. (b) Distribution of the dense seismic array and the RZSF in XFJ area. Stations and the fault are denoted by black triangles and red line, respectively. The blue line represent the ray path between the station pair 26 and 34 in Fig. 2

    图 2 

    台站26和34之间一个月的瑞利波互相关波形,其在不同滤波频段的信号也同时展示,表现出明显的频散现象

    Figure 2. 

    Example of a one-month cross-correlation between the station pair 26 and 34. The raw cross-correlation (bottom) is filtered by 4 different frequency bands, and are shown in the same figure as comparison. The dispersion of the Rayleigh waves is clearly observed

    图 3 

    台站34与其他所有台站之间的经验格林函数,滤波范围分别为(a) 0.5~10 Hz、(b) 0.5~3 Hz、(c) 1~5 Hz.虚线为零时间线,灰色斜线表示该频段内瑞利波在不同距离的近似到时, 其斜率为区域的平均慢度

    Figure 3. 

    Example of a one-month cross-correlation record-sections between station 34 and all the other stations. These seismograms are bandpass filtered from (a) 0.5 to 10 Hz, (b) 0.5 to 3 Hz and (c) 1 to 5 Hz, respectively. The dashed line is the zero time and thick grey line indicates the approximate arrival times of Rayleigh waves at different distances, whose slope can be approximated as averaged slowness of this area

    图 4 

    不同周期射线路径覆盖图

    Figure 4. 

    Ray path coverage of Rayleigh wave group velocity at four different periods

    图 5 

    线性剪切波速度反演的例子

    Figure 5. 

    Examples of shear wave velocity inversion

    图 6 

    不同周期群速度的检测板测试恢复图

    Figure 6. 

    The checkerboard test at different periods

    图 7 

    瑞利波群速度图

    Figure 7. 

    Maps of Rayleigh wave group velocity at different periods

    图 8 

    100、300、450、650 m深度的剪切波速度图像

    Figure 8. 

    Maps of shear wave velocity at depth of 100 m, 300 m, 450 m and 650 m

    图 9 

    0.2~1.0 s瑞利波群速度对剪切波速度的深度敏感核

    Figure 9. 

    Depth sensitivity kernels for 0.2~1.0 s Rayleigh wave group velocity on the shear wave velocity

    图 10 

    三维剪切波速度的3条垂直剖面图,其位置如图 8所示.黑色三角形表示人字石断裂所在位置

    Figure 10. 

    The shear velocity structure of three cross sections (location shown in Fig. 8). The black triangles on the top represent RZSF

  •  

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3):1239-1260, doi:10.1111/j.1365-246X.2007.03374.x.

     

    Cheng H H, Zhang H, Zhu B J, et al. 2012. Finite element investigation of the poroelastic effect on the Xinfengjiang Reservoir-Triggered earthquake. Science China Earth Sciences, 55(12):1942-1952, doi:10.1007/s11430-012-4470-8.

     

    Ding Y Z, Pan J X, Xiao A Y, et al. 1983. Tectonic environment of reservoir induced earthquake in the Xinfengjiang reservoir area. Seismology and Geology (in Chinese), 5(3):63-74. https://www.sciencedirect.com/science/article/pii/S1674984715301002

     

    Feng R. 1977. On the variations of the velocity ratio before and after the Xinfengjiang reservoir impounding earthquake of M=6.1. Acta Geophysica Sinica (in Chinese), 20(3):211-221. https://es.scribd.com/.../SWCOEH-2-0-OH-Glossary-English-Spanish

     

    Guo G A, Feng R. 1992. The joint inversion of 3-D velocity structure and source parameter in Xinfengjiang reservoir. Acta Geophysica Sinica (in Chinese), 35(3):331-342. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201003009.htm

     

    Herrmann R B. 2013. Computer programs in seismology:an evolving tool for instruction and research. Seismological Research Letters, 84(6):1081-1088, doi:10.1785/0220110096.

     

    Huang Y C, Yao H, Huang B S, et al. 2010. Phase velocity variation at periods of 0.5~3 seconds in the taipei basin of taiwan from correlation of ambient seismic noise. Bulletin of the Seismological Society of America, 100(5A):2250-2263, doi:10.1785/0120090319.

     

    Li J, Yang J A, Li Z J, et al. 2014. Introduction of the special array for seismic response of xinfengjiang reservoir dam. Science and Technology of West China, 13(7):22-24, doi:10.3969/j.issn.1671-6396.2014.07.010.

     

    Li Z W, Ni S D, Zhang B L, et al. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophysical Research Letters, 43(10): 4954-4961, doi: 10.1002/2016gl068895.

     

    Lin F C, Ritzwoller M H, Townend J, et al. 2007. Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International, 170(2):649-666, doi:10.1111/j.1365-246X.2007.03414.x.

     

    Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1):281-298, doi:10.1111/j.1365-246X.2008.03720.x.

     

    Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography:surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177(3):1091-1110, doi:10.1111/j.1365-246X.2009.04105.x.

     

    Lin F C, Li D Z, Clayton R W, et al. 2013. High-resolution 3d shallow crustal structure in long beach, California:application of ambient noise tomography on a dense seismic array. Geophysics, 78(4):Q45-Q56, doi:10.1190/geo2012-0453.1.

     

    Rawlinson N, Sambridge M. 2005. The fast marching method:an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4):341-350, doi:10.1071/eg05341.

     

    Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715):1615-1618, doi:10.1126/science.1108339.

     

    Shen C G, Chen H Q, Zhang C H, et al. 1974. Xinfengjiang reservoir earthquakes and its influence on the dam. Science in China (in Chinese), 17(2): 184-205.

     

    Sun X L, Song X D, Zheng S H, et al. 2010. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthquake Science, 23(5):449-463, doi:10.1007/s11589-010-0744-4.

     

    Wan Y F, Ye D H, Chen D Q. 2008. Study on earthquake characteristics in Xinfengjiang region. South China Journal of Seismology, 28(2):59-66, doi:10.3969/j.issn.1001-8662.2008.02.009.

     

    Wang M Y, Yang M Y, Hu Y L, et al. 1976. Mechanism of the reservoir impounding earthquake at Xinfengjiang and a preliminary endeavour to discuss their cause. Acta Geophysica Sinica (in Chinese), 19(1):1-17. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ200902001.htm

     

    Weaver R L. 2005. Information from seismic noise. Science, 307(5715):1568-1569, doi:10.1126/science.1109834.

     

    Wei B, Chen P L, Li F G, et al. 1991. Focal mechanisms and tectonic stress field of the Xinfengjiang earthquakes. Acta Seismologica Sinica (in Chinese), 13(4):471-479. https://link.springer.com/article/10.1007/BF02650548

     

    Yang X, Kang Y, Lin X D. 2012. Discussion of wave velocity ratio variation and its type before the ML5.2 earthquake on February 16, 2012 in Xinfengjiang. South China Journal of Seismology (in Chinese), 32(S1):64-72. http://www.tandfonline.com/doi/full/10.3109/10641963.2014.897724?scroll=top&needAccess=true

     

    Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1):259-274, doi:10.1111/j.1365-246X.2006.03203.x.

     

    Yang Y J, Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography. Geochemistry, Geophysics, Geosystems, 9(2):Q02008, doi:10.1029/2007gc001814.

     

    Yang Z X, Liu B F, Wang Q C, et al. 2013. Tomographic imaging of the upper crustal structure beneath the Xinfengjiang reservoir area. Chinese Journal of Geophysics (in Chinese), 56(4):1177-1189, doi:10.6038/cjg20130413.

     

    Yao H J, Van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps. Geophysical Journal International, 166(2):732-744, doi:10.1111/j.1365-246X.2006.03028.x.

     

    Ye X W, Huang Y M, Hu X M, et al. 2013. Location of the Dongyuan MS4.8 earthquake sequence of Guangdong and 3D P-wave velocity structure in and around source region. Acta Seismologica Sinica (in Chinese), 35(6):809-819. https://core.ac.uk/display/25459066

     

    Zheng S H, Sun X L, Song X D, et al. 2008. Surface wave tomography of China from ambient seismic noise correlation. Geochemistry, Geophysics, Geosystems, 9(5):Q05020, doi:10.1029/2008gc001981.

     

    程惠红, 张怀, 朱伯靖等. 2012.新丰江水库地震孔隙弹性耦合有限元模拟.中国科学:地球科学, 42(6):905-916. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206011.htm

     

    丁原章, 潘建雄, 肖安予等. 1983.新丰江水库诱发地震的构造条件.地震地质, 5(3):63-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304015.htm

     

    冯锐. 1977.新丰江6.1级水库地震前后的波速比变化.地球物理学报, 20(3):211-221. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197703003.htm

     

    郭贵安, 冯锐. 1992.新丰江水库三维速度结构和震源参数的联合反演.地球物理学报, 35(3):331-342. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract4479.shtml

     

    李敬, 杨建安, 李志军等. 2014.新丰江水库大坝地震反应专用台阵介绍.中国西部科技, 13(7):22-24, doi:10.3969/j.issn.1671-6396.2014.07.010.

     

    沈崇刚, 陈厚群, 张楚汉等. 1974.新丰江水库地震及其对大坝的影响.中国科学, 17(2):184-205.

     

    万永芳, 叶东华, 陈大庆. 2008.广东新丰江地区地震研究.华南地震, 28(2):59-66, doi:10.3969/j.issn.1001-8662.2008.02.009.

     

    王妙月, 杨懋源, 胡毓良等. 1976.新丰江水库地震的震源机制及其成因初步探讨.地球物理学报, 19(1):1-17. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract5490.shtml

     

    魏柏林, 陈庞龙, 李富光等. 1991.新丰江地震震源机制解及构造应力场.地震学报, 13(4):471-479. http://d.old.wanfangdata.com.cn/Periodical/kjzx201036089

     

    杨选, 康英, 林向东. 2012.新丰江2012年02月16日ML5.2级地震前的波速比变化及地震类型探讨.华南地震, 32(S1):64-72. http://www.doc88.com/p-813687521633.html

     

    杨卓欣, 刘宝峰, 王勤彩等. 2013.新丰江库区上地壳三维细结构层析成像.地球物理学报, 56(4):1177-1189, doi:10.6038/cjg20130413. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract9433.shtml

     

    叶秀薇, 黄元敏, 胡秀敏等. 2013.广东东源MS4.8地震序列震源位置及周边地区P波三维速度结构.地震学报, 35(6):809-819. http://www.chinaagrisci.com/article/2014/0578-1752-47-17-3434.html

  • 加载中

(10)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-07-13
修回日期:  2017-09-11
上线日期:  2018-02-05

目录