喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义

高利娥, 曾令森, 石卫刚, 陈振宇, 胡明月, 孙东阳. 2012. 喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义. 岩石学报, 28(9): 2963-2980.
引用本文: 高利娥, 曾令森, 石卫刚, 陈振宇, 胡明月, 孙东阳. 2012. 喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义. 岩石学报, 28(9): 2963-2980.
GAO LiE, ZENG LingSen, SHI WeiGang, CHEN Zhenyu, HU MingYue, SUN DongYang. 2012. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis. Acta Petrologica Sinica, 28(9): 2963-2980.
Citation: GAO LiE, ZENG LingSen, SHI WeiGang, CHEN Zhenyu, HU MingYue, SUN DongYang. 2012. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis. Acta Petrologica Sinica, 28(9): 2963-2980.

喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义

  • 基金项目:

    本文受中国地壳探测项目(SinoProbe-2-6); 科技部973项目(2011CB403102)和国家自然科学基金项目(41073024)联合资助

详细信息
    作者简介:

    高利娥, 女, 1983年生, 博士生, 岩石学专业, E-mail: liegao09@gmail.com

  • 中图分类号: P595

Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis

  • 在喜马拉雅碰撞造山带中, 石榴石是变泥质岩的主要造岩矿物, 也是花岗岩或淡色体的重要副矿物, 保存了有关地壳深熔作用的关键信息, 是揭示大型碰撞造山带中-下地壳物质的物理和化学行为的重要载体。在喜马拉雅造山带内, 新生代花岗质岩石(淡色花岗岩和混合岩中的淡色体)含两类石榴石, 大多数为岩浆型石榴石, 自形-半自形, 不含包裹体, 但淡色体中含有港湾状的混合型石榴石。岩浆型石榴石具有以下地球化学特征:(1)从核部到边部, 显示了典型的“振荡型”生长环带;(2)富集HREE, 亏损LREE, 从核部到边部, Hf、Y和HREE含量降低;(3)显著的Eu负异常;(4)相对于源岩中变质石榴石, Mn和Zn的含量显著增高。岩相学和地球化学特征都表明:变泥质岩熔融形成的熔体(淡色体)捕获了源岩的变质石榴石, 熔体与石榴石反应导致大部分元素的特征被改变, 只在核部保留了源岩的部分信息。同时, 在花岗质熔体结晶过程中, 形成少量的岩浆型石榴石。这些石榴石摄取了熔体中大量的Zn, 浓度显著升高, 在斜长石和锆石同步分离结晶作用的共同影响下, 石榴石中Eu为明显负异常,Hf、Y和HREE浓度从核部到边部逐渐降低。上述数据和结果表明, 花岗岩中石榴石的矿物化学特征记录了精细的有关花岗岩岩浆演化的重要信息。

  • 加载中
  • 图 1 

    喜马拉雅造山带地质简图

    Figure 1. 

    Simplified geologic map of the Himalayan Orogenic Belt, Southern Tibet

    图 2 

    喜马拉雅造山带中不同地区含石榴石淡色花岗岩或淡色体的显微照片

    Figure 2. 

    Photomicrographs showing the mineral assemblages and textures of granites and metapelite-hosted leucosome from different areas along the Himalayan Orogenic Belt

    图 3 

    喜马拉雅造山带内淡色花岗岩和淡色体中石榴石的端元组分图解

    Figure 3. 

    End-member discrimination diagrams for garnets in leucogranite and metapelite-hosted leucosome along the Himalayan Orogenic Belt

    图 4 

    喜马拉雅造山带内不同地区淡色花岗岩中石榴石的端元成分剖面图

    Figure 4. 

    Compositional profile for garnets in leucogranites and metapelite-hosted leucosome from different areas along the Himalayan Orogenic Belt

    图 5 

    喜马拉雅造山带中不同地区淡色花岗岩类和变泥质岩中石榴石的Zn-ΣHREE (a)、Zn-Y (b)和Sc-Y (c)协变图

    Figure 5. 

    Co-variation diagram Zn-ΣHREE (a), Zn-Y (b) and Sc-Y (c) for garnets in leucogranites and metapelite-hosted leucosome as well as metapelites from different areas along the Himalayan Orogenic Belt

    图 6 

    喜马拉雅造山带中不同地区淡色花岗岩类中石榴石的稀土元素配分图(标准化值据Sun and McDonough, 1989)

    Figure 6. 

    Chondrite-normallized REE distribution patterns for garnets in leucogranites and metapelite-hosted leucosome from different areas along the Himalayan Orogenic Belt (normalized values after Sun and McDonough, 1989)

    图 7 

    喜马拉雅造山带中不同地区淡色花岗岩类中石榴石的(Gd/Yb)N-Y/Yb图解

    Figure 7. 

    (Gd/Yb)N-Y/Yb diagram for garnets in leucogranites and metapelite-hosted leucosome from different areas along the Himalayan Orogenic Belt

    图 8 

    喜马拉雅造山带中不同地区淡色花岗岩类的稀土元素配分图(标准化值据Sun and McDonough, 1989)

    Figure 8. 

    Chondrite-normallized REE distribution patterns for leucogranites and metapelite-hosted leucosome from different areas along the Himalayan Orogenic Belt (normalized values after Sun and McDonough, 1989)

  •  

    Abbott RN. 1981. The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman-Piute Range, California: A discussion. The Journal of Geology, 89(6): 767-769

     

    Aikman AB, Harrison TM and Ding L. 2008. Evidence for early (>44Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters, 274: 14-23

     

    Albee AL. 1972. Metamorphism of pelitic schists: reaction relations of chloritoid and staurolite. Bulletin of the Geological Society of America, 83(11): 3249-3268

     

    Allan BD and Clarke DB. 1981. Occurrence and origin of garnets in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 19(1): 19-24

     

    Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33: 853-856

     

    Ayres M, Harris N and Vance D. 1997. Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: An example from Himalayan leucogranites. Mineralogical Magazine, 61: 29-36

     

    Beaumont C, Jamieson RA, Nguyen MH and Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414: 738-742

     

    Breton NL and Thompson AB. 1998. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology, 99: 226-237

     

    Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: Mechanisms and consequences. Journal of the Geological Society, 164: 709-730

     

    Burg JP, Guiraud M, Chen GM and Li GC. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth and Planetary Science Letters, 69(2): 391-400

     

    Cawood PA, Johnson MRW and Nemchin AA. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255(1/2): 70-84

     

    Cawthorn RG and Brown PA. 1976. A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation. The Journal of Geology, 467-476

     

    Chernoff CB and Carlson WD. 1999. Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology, 27(6): 555-558

     

    Corrie SL, Kohn MJ and Vervoort JD. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth and Planetary Science Letters, 289(3/4): 406-416

     

    Cottle JM, Searle MP, Horstwood MSA and Waters DJ. 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U-Th-Pb geochronology. The Journal of Geology, 117(6): 643-664

     

    Debon F, Le Fort P, Sheppard S and Sonet J. 1986. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal Section. Journal of Petrology, 27: 219-250

     

    Deniel C, Vidal P, Fernandez A, Fort P and Peucat JJ. 1987. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology, 96(1): 78-92

     

    Ding L, Kapp P and Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3): 1-18

     

    Du Bray EA. 1988. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis-southeastern Arabian Shield. Contributions to Mineralogy and Petrology, 100(2): 205-212

     

    Ganguly J, Dasgupta S, Cheng W and Neogi S. 2000. Exhumation history of a section of the Sikkim Himalayas, India: Records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth and Planetary Science Letters, 183(3-4): 471-486

     

    Gao LE, Zeng LS, Liu J and Xie KJ. 2009. Early Oligocene Na-rich peraluminous lecogranites in the Yardoi gneiss dome, southern Tibet: Formation mechanism and tectonic implications. Acta Petrologica Sinica, 25(9): 2289-2302(in Chinese with English abstract)

     

    Gao LE. 2010. Metamorphic and anatexis events in the Yardoi gneiss dome, Southern Tibet. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences, 1-153(in Chinese with English summary)

     

    Gao LE, Zeng LS and Hu GY. 2010. High Sr/Y two-mica granite from Quedang area, southern Tibet, China: Formation mechanism and tectonic implication. Geological Bulletin of China, 29(2-3): 214-226(in Chinese with English abstract)

     

    Gao LE, Zeng LS and Xie KJ. 2012. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57: 639-650. doi: 10.1007/s11434-011-4805-4

     

    Green TH. 1976. Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition. Geology, 4(2): 85-88

     

    Green TH. 1977. Garnet in silicic liquids and its possible use as a PT indicator. Contributions to Mineralogy and Petrology, 65(1): 59-67

     

    Griffen DT and Ribbe PH. 1972. The crystal chemistry of staurolite. American Journal of Science, 273: 479-495

     

    Groppo C, Lombardo B, Rolfo F and Pertusati P. 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51-75

     

    Guillot S and Le Fort P. 1995. Geochemical constrains on the bimodal origin of High Himalayan leucogranites. Lithos, 35: 221-234

     

    Hall A. 1965. The origin of accessory garnet in the Donegal granite. Mineralogical Magazine, 35: 628-633

     

    Harris N and Massey J. 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537-1546

     

    Harris N, Ayres M and Massey J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite-implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 100: 15767-15777

     

    Harrison TM, Aleinikoff JN and Compston W. 1987. Observations and controls on the occurrence of inherited zircon in Concord-type granitoids, New Hampshire. Geochimica et Cosmochimica Acta, 51(9): 2549-2558

     

    Harrison TM, Grove M, Lovera OM, Catlos EJ and D'Andrea J. 1999. The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. Journal of Asian Earth Sciences, 17: 755-772

     

    Heinrichs H, Schulz-Dobrick B and Wedepohl KH. 1980. Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochimica et Cosmochimica Acta, 44(10): 1519-1533

     

    Hiroi Y and Ellis DJ. 1994. The use of garnet porphyroblasts in highly deformed pelitic rocks to infer the former presence of partial melting. Eos (Transactions, American Geophysical Union), 75: 364

     

    Hodges KV, Parrish RR, Housh TB, Lux DR, Burchfiel BC, Royden LH and Chen Z. 1992. Simultaneous Miocene extension and shortening in the Himalaya orogen. Science, 258: 1466-1469

     

    Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112: 324-350

     

    Hu MY, He HL, Zhan XC, Fan XT, Wang G and Jia ZR. 2008. Matrix normalization for in-situ multi-element quantitative qnalysis of zircon in Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 36(7): 947-953(in Chinese with English abstract)

     

    Inger S and Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34: 345-368

     

    King J, Harris N, Argles T, Parrish R and Zhang HF. 2011. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123: 218-239

     

    Knesel KM and Davidson JP. 2002. Insight into collisional magmatism from isotopic fingerprints of melting reactions. Science, 296: 2206-2208

     

    Kohn MJ. 2003. Geochemical zoning in metamorphic minerals. In: Rudnick RL (ed.). The Crust. Treatise on Geochemistry, 3: 229-261

     

    Le Fort P. 1981. Manaslu leucogranite: A collision signature of the Himalaya, A model for its genesis and emplacement. Geophysical Research Letters, 86: 10545-10568

     

    Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1-3): 39-57

     

    Lee J, Hacker BR, Dinklage WS, Wang Y, Gans P, Calvert A, Wan JL, Chen WJ, Blythe AE and McClelland W. 2000. Evolution of the Kangmar dome, southern Tibet: Structural, petrologic and thermochronologic constraints. Tectonics, 19(5): 872-895

     

    Lee J and Whitehouse MJ. 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 35: 45-48

     

    Li DW, Liao QA, Yuan YM, Wan YS, Liu DM, Zhang XH, Yi SH, Cao SZ and Xie DF. 2003. SHRIMP U-Pb zircon geochronology of granulites at Rimana (Southern Tibet) in the central segment of Himalayan Orogen. Chinese Science Bulletin, 48(23): 2647-2650

     

    Liu SW, Zhang JJ, Shu GM and Li QG. 2005. Mineral chemistry, PTt paths and exhumation processes of mafic granulites in Dinggye, Southern Tibet. Science in China (Series D), 48(11): 1870-1881

     

    Lombardo B and Rolfo F. 2000. Two contrasting eclogite types in the Himalayas: Implications for the Himalayan orogeny. Journal of Geodynamics, 30(1-2): 37-60

     

    Miller CF and Stoddard EF. 1981. The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman-Piute Range, California. The Journal of Geology: 233-246

     

    Murphy MA. 2007. Isotopic characteristics of the Gurla Mandhata metamorphic core complex: Implications for the architecture of the Himalayan orogen. Geology, 35(11): 983-986

     

    Pandey A, Leech M, Milton A, Singh P and Verma PK. 2010. Evidence of former majoritic garnet in Himalayan eclogite points to 200-km-deep subduction of Indian continental crust. Geology, 38(5): 399-402

     

    Patio Douce AE and Harris N. 1998. Experimental constraints on Himalayan Anatexis. Journal of petrology, 39: 689-710

     

    Qi XX, Zeng LS, Meng XJ, Xu ZQ and Li TF. 2008. Zircon SHRIMP U-Ph dating for Dala granite in the Tethyan Himalaya and its geological implications. Acta Petrologica Sinica, 24(7): 1501-1508(in Chinese with English abstract)

     

    Quigley MC, Yu LJ, Gregory C, Corvino A, Sandiford M, Wilson CJL and Liu XH. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa dome, southern Tibet. Tectonophysics, 446(1): 97-113

     

    Schrer U, Xu R and Allegre C. 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters, 77: 35-48

     

    Searle MP, Parrish RR, Hodges KV, Hurford A, Ayres MW and Whitehouse MJ. 1997. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin and emplacement. Journal of Geology, 105: 295-317

     

    Searle MP and Szulc AG. 2005. Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. Journal of Asian Earth Sciences, 25(1): 173-185

     

    Spear FS and Kohn MJ. 1996. Trace element zoning in garnet as a monitor of crustal melting. Geology, 24(12): 1099-1102

     

    Stevens G, Villaros A and Moyen JF. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 35(1): 9-12

     

    Sun SS and McDonough WF. 1989. Chemical and isotopcsy stcmatics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Spec. Publ. Geol. Soc. Lond. , 42: 313-345

     

    Symmes GH and Ferry JM. 1992. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism. Journal of Metamorphic Geology, 10(2): 221-237

     

    Tuisku P, Ruosresuo P and Hkkinen AM. 1987. The metamorphic behaviour and petrogenetic significance of zinc in amphibolite facies, staurolite-bearing mica schists, Puolankajrvi Formation, Central Finland. Geochimica et Cosmochimica Acta, 51(6): 1639-1650

     

    Villaros A, Stevens G, Moyen JF and Buick IS. 2009. The trace element compositions of S-type granites: Evidence for disequilibrium melting and accessory phase entrainment in the source. Contributions to Mineralogy and Petrology, 158(4): 543-561

     

    Warren RC. 1970. Electron microprobe investigations of almandine garnets from a quartz diorite stock and adjacent metamorphic rocks, British Columbia. Eos, Transactions, American Geophysical Union, 51: 444

     

    Xu ZQ, Yang JS, Liang FH, Qi XX, Liu FL, Zeng LS, Liu DY, Li HB, Wu CL, Shi RD and Chen SY. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1): 1-12(in Chinese with English abstract)

     

    Xu ZQ, Cai ZH, Zhang ZM, Li HQ, Chen FY and Tang ZM. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463-1476(in Chinese with English abstract)

     

    Yang XS, Jin ZM, Huenges E, Gao S, Wunder B and Schilling FR. 2002. Genesis of granulite in Himalayan lower crust: Evidences from experimental study at high temperature and high pressure. Chinese Science Bulletin, 47: 448-454

     

    Yang XY, Zhang JJ, Qi GW, Wang DC, Guo L, Li PY and Liu J. 2009. Structure and deformation around the Gyirong basin, North Himalaya, and onset of the South Tibetan detachment system. Science in China (Series D), 52(8): 1046-1058

     

    Yu JJ, Zeng LS, Liu J, Gao LE and Xie KJ. 2011. Early Miocene leucogranites in Dinggye area, southern Tibet: Formation mechanism and tectonic implications. Acta Petrologica Sinica, 27(7): 1961-1972(in Chinese with English abstract)

     

    Zeng LS, Asimow PD and Saleeby JB. 2005. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochimica et Cosmochimica Acta, 69(14): 3671-3682

     

    Zeng LS, Liang FH, Xu ZQ and Qi XX. 2008. Metapelites in the Himalayan orogenic belt and their protoliths. Acta Petrologica Sinica, 24(7): 1517-1527(in Chinese with English abstract)

     

    Zeng LS, Liu J, Gao LE, Xie KJ and Wen L. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54: 104-112

     

    Zeng LS, Gao LE, Xie KJ and Liu J. 2011a. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303: 251-266

     

    Zeng LS, Gao LE and Xie KJ. 2011b. Concurrence of Mid-Miocene high Sr/Y granite and leucogranite in the Yardoi gneiss dome, Tethyan Himalaya, Southern Tibet. Mineralogical Magazine, 75(3): 2245

     

    Zeng LS, Gao LE, Dong CY and Tang SH. 2012. High pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, Southern Tibet. Gondwana Research, 21: 138-151

     

    Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T and King J. 2004a. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195-212

     

    Zhang HF, Harris N, Parrish R, Zhang L and Zhang Z. 2004b. U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications. Chinese Science Bulletin, 49(19): 2087-2092

     

    Zhang JJ, Guo L and Zhang B. 2007. Structure and kimematics of the Yalashangbo dome in the northern Himalayan dome belt, China. Chinese Journal of Geology, 42(1): 16-30(in Chinese with English abstract)

  • 加载中

(8)

计量
  • 文章访问数:  6885
  • PDF下载数:  8697
  • 施引文献:  0
出版历程
收稿日期:  2011-12-10
修回日期:  2012-05-08
刊出日期:  2012-09-01

目录