新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义

翁凯, 徐学义, 马中平, 陈隽璐, 孙吉明, 张雪. 新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2016, 32(5): 1420-1436.
引用本文: 翁凯, 徐学义, 马中平, 陈隽璐, 孙吉明, 张雪. 新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2016, 32(5): 1420-1436.
WENG Kai, XU XueYi, MA ZhongPing, CHEN JunLu, SUN JiMing, ZHANG Xue. The geochemistry and chronology characteristics and the geological significance of ultramafic rock in Mayile ophiolite, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(5): 1420-1436.
Citation: WENG Kai, XU XueYi, MA ZhongPing, CHEN JunLu, SUN JiMing, ZHANG Xue. The geochemistry and chronology characteristics and the geological significance of ultramafic rock in Mayile ophiolite, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(5): 1420-1436.

新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义

  • 基金项目:

    本文受国家自然科学基金项目(41272089)、中国地质调查局地质调查项目(1212011085009、1212011085055、12120115066701)和中央高校基本科研基金项目(310827161021)联合资助.

详细信息

The geochemistry and chronology characteristics and the geological significance of ultramafic rock in Mayile ophiolite, West Junggar, Xinjiang

More Information
  • 玛依勒蛇绿岩出露于玛依勒蛇绿混杂岩带中,该带位于西准噶尔造山带西南缘,是区内规模较大的一条蛇绿混杂岩带,蛇绿岩中镁铁-超镁铁质岩研究对探讨古亚洲洋古生代构造演化具有重要意义。本文选取玛依勒蛇绿岩中的镁铁-超镁铁质岩进行系统的岩石学、地球化学和年代学研究。结果表明,玛依勒蛇绿混杂岩中超镁铁质岩以富集Al2O3、CaO为特征,TiO2含量与俯冲带之上地幔橄榄岩中含量相当,稀土配分曲线为轻稀土富集型,微量元素受蚀变作用影响,呈现出两种不同的曲线特征。镁铁质岩石可分为两组:I组镁铁质岩具有高MgO、低Al2O3,LREE轻微富集,富集大离子亲石元素,亏损Nb、Ta的特征,形成于消减带相关的岛弧环境;Ⅱ组镁铁质岩具有富碱、TiO2,且呈LREE显著富集的右倾稀土配分曲线特征,富集大离子亲石元素,Nb、Ta正异常特征,代表了洋盆中海山或洋岛的残片。I组镁铁质岩中两个辉长岩岩块的LA-ICP-MS锆石U-Pb年龄分别为512.1±7.2Ma(MSWD=0.014)和531±12Ma(MSWD=0.17),与巴尔鲁克蛇绿岩、唐巴勒蛇绿岩中镁铁质岩岩块获得的锆石U-Pb年龄相吻合,且这三条蛇绿岩都具有SSZ型蛇绿岩的地球化学特征,可能为不同环境下同一洋盆的演化产物。
  • 加载中
  • [1]

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79

    [2]

    Bai JK, Chen JL, Yan Z et al. 2015. The timing of opening and closure of the Mayile oceanic basin: Evidence from the angular unconformity between the Middle Devonian and its underlying geological body in the southern West Junggar. Acta Petrologica Sinica, 31(1): 133-142 (in Chinese with English abstract)

    [3]

    Bai WJ, Robinson P, Yang JS et al. 1995. Tectonic evolution of different dating ophiolites in the western Junggar, Xinjiang. Acta Petrologica Sinica, 11(Suppl.): 62-72 (in Chinese with English abstract)

    [4]

    Cao MJ, Qin KZ, Li GM et al. 2016. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Lithos, 246-247: 13-30

    [5]

    Cao RL. 1994. Ophiolite and basic ultrabasic rocks in the northern Xinjiang. Xinjiang Geology, 12(1): 25-31 (in Chinese)

    [6]

    Chen B and Zhu YF. 2010. Petrology and geochemistry of gabbro in Baikouquan, Keramay (Xinjiang, NW China): Implication of magmatic evolution. Acta Petrologica Sinica, 26(8): 2287-2298 (in Chinese with English abstract)

    [7]

    Chen S and Guo ZJ. 2010. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica, 26(8): 2336-2344 (in Chinese with English abstract)

    [8]

    Coleman RG. 1977. Ophiolites: Ancient Oceanic Lithosphere. Berlin, Heidelberg: Springer-Verlag, 1-140

    [9]

    Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621-625

    [10]

    Corfu F, Hanchar JM, Hoskin PWO et al. 2003. Atlas of zircon textures. In: Hanchar JM and Hoskin PWO (eds.). Reviews in Mineralogy and Geochemistry. Washington: Mineralogical Society of America, 53: 469-500

    [11]

    Ellam RM and Hawkesworth CJ. 1988. Elemental and isotopic variations in subduction related basalts: Evidence for a three component model. Contributions to Mineralogy and Petrology, 98(1): 72-80

    [12]

    Feng YM, Zhu BQ, Xiao XC et al. 1991. Mountains Tectonic Evolution in West Junggar, Xinjiang, China. Beijing: Beijing Science and Technology Press, 66-91 (in Chinese)

    [13]

    Gu PY, Li YJ, Zhang B et al. 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China. Acta Petrologica Sinica, 25(6): 1364-1372 (in Chinese with English abstract)

    [14]

    Gu PY, Li YJ, Wang XG et al. 2011. Geochemical evidences and tectonic significances of Dalabute SSZ-type ophiolitic mélange, western Junggar Basin. Geological Review, 57(1): 36-44 (in Chinese with English abstract)

    [15]

    Han BF, Ji JQ, Song B et al. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract)

    [16]

    Han S, Dong JQ, Yu FS et al. 2004. Trace element geochemistry of the opiolite from Mayila mountain-Saleinohai of West Junggar, Xinjiang. Xinjiang Geology, 22(3): 290-295 (in Chinese with English abstract)

    [17]

    Hao ZG, Wang XB, Bao PS et al. 1989. Geological characteristics and genetic study on ophiolites of the two types in the western Zhungeer, Xinjiang Uygur Autonomous Region. Acta Petrologica et Mineralogica, 8(4): 299-310 (in Chinese with English abstract)

    [18]

    He GQ, Li MS, Liu DQ et al. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi: Xinjiang People's House, 1-437 (in Chinese)

    [19]

    He GQ, Liu DQ, Li MS et al. 1995. The five-stage model of crust evolution and metallogenic series of chief orogenic belts in Xinjiang. Xinjiang Geology, 13(2): 99-176, 178-196 (in Chinese with English abstract)

    [20]

    He GQ and Li MS. 2001. Significance of paleostructure and paleogeography of Ordovician-Silurian rock associations in northern Xinjiang, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(1): 99-110 (in Chinese with English abstract)

    [21]

    He GQ, Liu JB, Zhang YQ et al. 2007. Keramay ophiolitic mélange formed during Early Paleozoic in western Junggar basin. Acta Petrologica Sinica, 23(7): 1573-1576 (in Chinese with English abstract)

    [22]

    Hou ZQ, Mo XX, Zhu QW et al. 1996. Mantle plume in the Sanjiang Paleo-Tethyan lithosphere: Evidence from mid-ocean ridge basalts. Earth Science, 17(4): 362-375 (in Chinese with English abstract)

    [23]

    Jahn BM, Wang T and Litvinovsky BA. 2006. Crustal growth in the central Asian orogenic belt (the Altaids): Nd isotope evidence. Geochimica et Cosmochimica Acta, 70(18 S1): A287

    [24]

    Jian P, Liu DY, Shi YR et al. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the Central Asian orogenic belt. In: Sklyarov EV (ed.). Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment; Guidebook and Abstract Volume of the Siberian Workshop IGCP-480. Irkutsk: Institute of the Earth Crust, Siberian Branch of Russian Academy of Sciences, 246

    [25]

    Lei M, Zhao ZD, Hou QY et al. 2008. Geochemical and Sr-Nd-Pb isotopic characteristics of the Dalabute ophiolite, Xinjiang: Comparison between the Paleo-Asian Ocean and the Tethyan mantle domains. Acta Petrologica Sinica, 24(4): 661-672 (in Chinese with English abstract)

    [26]

    Li JY, He GQ, Xu X et al. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)

    [27]

    Li RS, Ji WH, Xiao PX et al. 2012. The periodical achievement and new cognitions of regional geological survey, northern Xinjiang. Xinjiang Geology, 30(3): 253-257 (in Chinese with English abstract)

    [28]

    Liu XJ, Xu JF, Wang SQ et al. 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica, 25(6): 1373-1389 (in Chinese with English abstract)

    [29]

    Ludwig RK. 1998. ISOPLOT: A plotting and regression program for radiogenic-isotope data, Version 2.96. US Geological Survey Open File Report (91-445), 1-40

    [30]

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [31]

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218

    [32]

    Morrison GW. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1): 97-108

    [33]

    Mullen ED. 1983. MnO-TiO2-P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

    [34]

    Neal CR and Taylor LA. 1989. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimica et Cosmochimica Acta, 53(5): 1035-1040

    [35]

    Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300

    [36]

    Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society, London, Special Publication, 77-94

    [37]

    Pearce JA. 2003. Supra-subduction zone ophiolites: The search for modern analogues. In: Dilek Y and Newcomb S (eds.). Ophiolite Concept and the Evolution of Geological Thought. Geological Society of American Special Paper. Colorado: Geological Society of America, 269-293

    [38]

    Peng GY. 1996. Podiform chromite and associated ophiolitic rocks in West Junggar, Xinjiang, NW China. Ph. D. Dissertation. Washington: George Washington University, 1-369

    [39]

    Robertson AHF. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67

    [40]

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific & Technical, 1-352

    [41]

    Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307

    [42]

    Shen P, Shen YC, Pan HD et al. 2012. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China. Journal of Asian Earth Sciences, 49: 99-115

    [43]

    Shi RD. 2005. Comment on the progress in and problems on ophiolite study. Geological Review, 51(6): 681-693 (in Chinese with English abstract)

    [44]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 313-345

    [45]

    Wang XL, Zhou JC, Qiu JS et al. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, South China: Implications for tectonic evolution. Precambrian Research, 145(1-2): 111-130

    [46]

    Wang ZH, Shun S, Li JL et al. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and Geochronological constraints from the ophiolites. Tectonics, 22(2), doi: 10.1029/2002TC001396

    [47]

    Weaver BL. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397

    [48]

    Wei RZ. 2010. The Mayileshang pillow lavas (western Junggar, Xinjiang) and their tectonic implications: Constraints from the geological and geochemical characteristics and Rb-Sr isochron ages. Xinjiang Geology, 28(3): 229-235 (in Chinese with English abstract)

    [49]

    Windley BF, Alexeiev D, Xiao W et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47

    [50]

    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30

    [51]

    Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569

    [52]

    Xiao WJ, Han CM, Yuan C et al. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117

    [53]

    Xiao XC, Tang YQ, Li JY et al. 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture. Beijing: Science and Technology Press, 1-29 (in Chinese)

    [54]

    Xiao XC, Tang YQ, Feng YM et al. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1-169 (in Chinese)

    [55]

    Xu X, He GQ, Li HQ et al. 2006. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating. Geology in China, 33(3): 470-475 (in Chinese with English abstract)

    [56]

    Xu X, Zhou KF and Wang Y. 2010. Study on extinction of the remnant oceanic basin and tectonic setting of West Junggar during Late Paleozoic. Acta Petrologica Sinica, 26(11): 3206-3214 (in Chinese with English abstract)

    [57]

    Xu XY, Li RS, Chen JL et al. 2014. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area. Acta Petrologica Sinica, 30(6): 1521-1534 (in Chinese with English abstract)

    [58]

    Xu Z, Han BF, Ren R et al. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos, 132-133: 141-161

    [59]

    Yang BK. 2011. The study of Tangbale ophiolitic in West Junggar, Xinjiang. Master Degree Thesis. Xi'an: Chang'an University, 1-35 (in Chinese)

    [60]

    Yang GX, Li YJ, Yang BK et al. 2012. Geochemistry of basalt from the Barleik ophiolitic mélange in West Junggar and its tectonic implications. Acta Geologica Sinica, 86(1): 188-197 (in Chinese with English abstract)

    [61]

    Yang GX, Li YJ, Yang BK et al. 2013. Zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar and implications for source nature. Acta Petrologica Sinica, 29(1): 303-316 (in Chinese with English abstract)

    [62]

    Yang GX, Li YJ, Xiao WJ et al. 2015. OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth-Science Reviews, 150: 477-496

    [63]

    Yang RY, Tang HF, Liu CQ et al. 2000. Geochemistry of mafic rocks from Dalabute ophiolite in western Junggar, Xinjiang, NW China. Acta Mineralogica Sinica, 20(4): 363-370 (in Chinese with English abstract)

    [64]

    Yin JY, Yuan C, Wang YJ et al. 2011. Magmatic records on the Late Paleozoic tectonic evolution of western Junggar, Xinjiang. Geotectonica et Metallogenia, 35(2): 278-291 (in Chinese with English abstract)

    [65]

    Yuan HL, Gao S, Liu XM et al. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370

    [66]

    Zhang C and Huang X. 1992. The ages and tectonic settings of ophiolites in West Junggar, Xinjiang. Geological Review, 38(6): 507-524 (in Chinese with English abstract)

    [67]

    Zhang LF. 1997. The 40Ar/39Ar metamorphic ages of Tangbale blueschists and their geological significance in West Junggar of Xinjiang. Chinese Science Bulletin, 42(22): 1902-1904

    [68]

    Zhang Q, Zhang KW and Li DZ. 1992. Mafic-Ultramafic Rocks in the Hengduan Mountains Region. Beijing: Science Press, 1-216 (in Chinese)

    [69]

    Zhang Q and Zhou GQ. 2001. Chinese Ophiolite. Beijing: Geological Publishing House, 1-182 (in Chinese)

    [70]

    Zhang Q, Wang Y, Zhou GQ et al. 2003. Ophiolites in China: Their distribution, ages and tectonic settings. In: Dile KY and Robinson PT (eds.). Ophiolites in Earth History. Geological Society, London, Special Publications, 541-566

    [71]

    Zhao WP, Jia ZK, Wen ZG et al. 2012. The discovery of the blueschists from the Baerluke ophiolitic mélange belt in western Junggar, Xinjiang. Northwestern Geology, 45(2): 136-138 (in Chinese with English abstract)

    [72]

    Zhu BQ, Wang LS and Wang LX. 1987. Paleozoic era ophiolite of south west part in western Junggar, Xinjiang, China. Bulletin of the Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (17): 3-64 (in Chinese with English abstract)

    [73]

    Zhu YF and Xu X. 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica, 22(12): 2833-2842 (in Chinese with English abstract)

    [74]

    Zhu YF, Xu X, Wei SH et al. 2007. Geochemistry and tectonic significance of OIB-type pillow basalts in western Mts. of Karamay City (western Junggar), NW China. Acta Petrologica Sinica, 23(7): 1739-1748 (in Chinese with English abstract)

    [75]

    Zhu YF, Xu X, Chen B et al. 2008. Dolomite marble and garnet amphibolite in the ophiolitic mélange in western Junggar: Relics of the Early Paleozoic oceanic crust and its deep subduction. Acta Petrologica Sinica, 24(12): 2767-2777 (in Chinese with English abstract)

    [76]

    Zong RW, Wang ZZ, Gong YM et al. 2015. Ordovician radiolarians from the Yinisala ophiolitic mélange and their significance in western Junggar, Xinjiang, NW China. Science China (Earth Sciences), 58(5): 776-783

    [77]

    白建科, 陈隽璐, 闫臻等. 2015. 西准噶尔南部玛依勒洋盆开启、闭合时限: 来自中泥盆统与下伏地质体之间角度不整合关系的证据. 岩石学报, 31(1): 133-142

    [78]

    白文吉, Robinson P, 杨经绥等. 1995. 西准噶尔不同时代蛇绿岩及其构造演化. 岩石学报, 11(增): 62-72

    [79]

    曹荣龙. 1994. 新疆北部蛇绿岩及基性-超基性杂岩. 新疆地质, 12(1): 25-31

    [80]

    陈博, 朱永峰. 2010. 新疆克拉玛依百口泉蛇绿混杂岩中辉长岩岩石学和地球化学研究. 岩石学报, 26(8): 2287-2298

    [81]

    陈石, 郭召杰. 2010. 达拉布特蛇绿岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论. 岩石学报, 26(8): 2336-2344

    [82]

    冯益民, 朱宝清, 肖序常等. 1991. 中国新疆西准噶尔山系构造演化. 北京: 北京科学技术出版社, 66-91

    [83]

    辜平阳, 李永军, 张兵等. 2009. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年. 岩石学报, 25(6): 1364-1372

    [84]

    辜平阳, 李永军, 王晓刚等. 2011. 西准噶尔达尔布特SSZ型蛇绿杂岩的地球化学证据及构造意义. 地质论评, 57(1): 36-44

    [85]

    韩宝福, 季建清, 宋彪等. 2006. 新疆准噶尔晚古生代陆壳垂向生长(I)-后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086

    [86]

    韩松, 董金泉, 于福生等. 2004. 新疆西准噶尔玛依拉山-萨雷诺海蛇绿岩岩石地球化学特征. 新疆地质, 22(3): 290-295

    [87]

    郝梓国, 王希斌, 鲍佩声等. 1989. 新疆西准噶尔地区两类蛇绿岩的地质特征及其成因研究. 岩石矿物学杂志, 8(4): 299-310

    [88]

    何国琦, 李茂松, 刘德权等. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社, 1-437

    [89]

    何国琦, 刘德权, 李茂松等. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列. 新疆地质, 13(2): 99-176, 178-196

    [90]

    何国琦, 李茂松. 2001. 中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义. 北京大学学报(自然科学版), 37(1): 99-110

    [91]

    何国琦, 刘建波, 张越迁等. 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定. 岩石学报, 23(7): 1573-1576

    [92]

    侯增谦, 莫宣学, 朱勤文等. 1996. "三江"古特提斯地幔热柱-洋中脊玄武岩证据. 地球科学, 17(4): 362-375

    [93]

    雷敏, 赵志丹, 侯青叶等. 2008. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比. 岩石学报, 24(4): 661-672

    [94]

    李锦轶, 何国琦, 徐新等. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168

    [95]

    李荣社, 计文化, 校培喜等. 2012. 北疆区域地质调查阶段性成果与新认识. 新疆地质, 30(3): 253-257

    [96]

    刘希军, 许继峰, 王树庆等. 2009. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义. 岩石学报, 25(6): 1373-1389

    [97]

    史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考. 地质论评, 51(6): 681-693

    [98]

    魏荣珠. 2010. 西准噶尔玛依勒山枕状熔岩地质特征及大地构造意义. 新疆地质, 28(3): 229-235

    [99]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604

    [100]

    肖序常, 汤耀庆, 李锦轶等. 1991. 古中亚复合巨型缝合带南缘构造演化. 北京: 科学技术出版社, 1-29

    [101]

    肖序常, 汤耀庆, 冯益民等. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社, 1-169

    [102]

    徐新, 何国琦, 李华芹等. 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33(3): 470-475

    [103]

    徐新, 周可法, 王煜. 2010. 西准噶尔晚古生代残余洋盆消亡时间与构造背景研究. 岩石学报, 26(11): 3206-3214

    [104]

    徐学义, 李荣社, 陈隽璐等. 2014. 新疆北部古生代构造演化的几点认识. 岩石学报, 30(6): 1521-1534

    [105]

    杨宝凯. 2011. 新疆西准噶尔唐巴勒蛇绿岩及其构造意义. 硕士学位论文. 西安: 长安大学, 1-35

    [106]

    杨高学, 李永军, 杨宝凯等. 2012. 西准噶尔巴尔雷克蛇绿混杂岩带中玄武岩地球化学特征及大地构造意义. 地质学报, 86(1): 188-197

    [107]

    杨高学, 李永军, 杨宝凯等. 2013. 西准噶尔玛依勒蛇绿混杂岩锆石U-Pb年代学、地球化学及源区特征. 岩石学报, 29(1): 303-316

    [108]

    杨瑞瑛, 唐红峰, 刘丛强等. 2000. 达拉布特蛇绿岩带镁铁质岩的地球化学. 矿物学报, 20(4): 363-370

    [109]

    尹继元, 袁超, 王毓婧等. 2011. 新疆西准噶尔晚古生代大地构造演化的岩浆活动记录. 大地构造与成矿学, 35(2): 278-291

    [110]

    张弛, 黄萱. 1992. 新疆西准噶尔蛇绿岩形成时代和环境的探讨. 地质评论, 38(6): 507-524

    [111]

    张立飞. 1997. 新疆西准噶尔唐巴勒蓝片岩40Ar/39Ar年龄及其地质意义. 科学通报, 42(20): 2178-2181

    [112]

    张旗, 张魁武, 李达周. 1992. 横断山区镁铁-超镁铁岩石. 北京: 科学出版社, 1-216

    [113]

    张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 地质出版社, 1-182

    [114]

    赵文平, 贾振奎, 温志刚等. 2012. 新疆西准噶尔巴尔鲁克蛇绿混杂岩带发现蓝闪片岩. 西北地质, 45(2): 136-138

    [115]

    朱宝清, 王来生, 王连晓. 1987. 西准噶尔西南地区古生代蛇绿岩. 中国地质科学院西安地质矿产研究所所刊, (17): 3-64

    [116]

    朱永峰, 徐新. 2006. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩. 岩石学报, 22(12): 2833-2842

    [117]

    朱永峰, 徐新, 魏少妮等. 2007. 西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究. 岩石学报, 23(7): 1739-1748

    [118]

    朱永峰, 徐新, 陈博等. 2008. 西准噶尔蛇绿混杂岩中的白云石大理岩和石榴角闪岩: 早古生代残余洋壳深俯冲的证据. 岩石学报, 24(12): 2767-2777

  • 加载中
计量
  • 文章访问数:  4497
  • PDF下载数:  5325
  • 施引文献:  0
出版历程
收稿日期:  2015-01-20
修回日期:  2015-10-20
刊出日期:  2016-05-31

目录