松辽盆地南部岩石圈地幔变形特征及各向异性分析——来自橄榄岩包体的约束

商咏梅, 周永胜, 马玺. 2024. 松辽盆地南部岩石圈地幔变形特征及各向异性分析——来自橄榄岩包体的约束. 岩石学报, 40(4): 1285-1298. doi: 10.18654/1000-0569/2024.04.14
引用本文: 商咏梅, 周永胜, 马玺. 2024. 松辽盆地南部岩石圈地幔变形特征及各向异性分析——来自橄榄岩包体的约束. 岩石学报, 40(4): 1285-1298. doi: 10.18654/1000-0569/2024.04.14
SHANG YongMei, ZHOU YongSheng, MA Xi. 2024. Deformation and seismic anisotropy of the lithospheric mantle in southern Songliao Basin: Constraints from peridotite xenoliths. Acta Petrologica Sinica, 40(4): 1285-1298. doi: 10.18654/1000-0569/2024.04.14
Citation: SHANG YongMei, ZHOU YongSheng, MA Xi. 2024. Deformation and seismic anisotropy of the lithospheric mantle in southern Songliao Basin: Constraints from peridotite xenoliths. Acta Petrologica Sinica, 40(4): 1285-1298. doi: 10.18654/1000-0569/2024.04.14

松辽盆地南部岩石圈地幔变形特征及各向异性分析——来自橄榄岩包体的约束

  • 基金项目:

    本文受地震动力学国家重点实验室开放基金课题(LE-20-25)资助

详细信息
    作者简介:

    商咏梅, 女, 1989年生, 博士, 构造地质学专业, E-mail: Shangyongmei7576@163.com

    通讯作者: 周永胜, 男, 1969年生, 研究员, 主要从事高温高压岩石流变学实验研究, E-mail: zhouysh@ies.ac.cn
  • 中图分类号: P545

Deformation and seismic anisotropy of the lithospheric mantle in southern Songliao Basin: Constraints from peridotite xenoliths

More Information
  • SKS测量结果显示松辽盆地快波方向分布较为复杂, 由于缺乏深部岩石变形资料约束, 制约了地震波各向异性成因解释。本文通过对松辽盆地南部双辽地区橄榄岩包体进行详细的岩石学、地球化学、显微结构、各向异性研究, 结果显示双辽地区橄榄岩包体的平衡温度为893~1152℃, 来源于岩石圈地幔。橄榄岩中橄榄石的晶格优选方位(CPO)类型主要为A型、D型和AG型, 其中, AG型和D型CPO可能形成于西太平洋板块向欧亚大陆俯冲回撤导致的岩石圈变形, AG型橄榄石CPO也可能形成于熔体存在下的橄榄石变形。基于CPO计算获得的橄榄岩包体全岩VP各向异性(AVP)为4.79%~11.80%, 最大剪切波各向异性(AVSmax)为3.13%~7.93%。结合地球物理测量结果, 推断松辽盆地南部复杂的SKS各向异性的主要贡献可能来源于面理陡倾或直立的岩石圈地幔。

  • 加载中
  • 图 1 

    中国东北地区构造分区简图(据Yu et al., 2010; Hao et al., 2016; Li et al., 2017修改)

    Figure 1. 

    Tectonic map and SKS splitting observations of northeastern China (modified after Yu et al., 2010; Hao et al., 2016; Li et al., 2017)

    图 2 

    双辽地区橄榄岩包体正交偏光下显微结构图

    Figure 2. 

    Microphotographs under crossed-polarized light of peridotite xenoliths in Shuangliao

    图 3 

    双辽橄榄岩包体的矿物化学成分图

    Figure 3. 

    Major element geochemical diagrams of the peridotites xenoliths in Shuangliao

    图 4 

    EBSD测量获得的双辽地区橄榄岩包体中橄榄石的CPO图像

    Figure 4. 

    EBSD measured olivine CPO of the mantle xenoliths in Shuangliao

    图 5 

    EBSD测量获得的双辽地区橄榄岩包体中斜方辉石(Opx)和单斜辉石(Cpx)的CPO图像

    Figure 5. 

    EBSD measured orthopyroxene (Opx) and clinopyroxene (Cpx) CPO of the mantle xenoliths in Shuangliao

    图 6 

    双辽地区橄榄岩包体全岩地震波各向异性计算结果(以BA值排序)

    Figure 6. 

    Calculated seismic properties of mantle xenoliths in Shuangliao (xenoliths were ordered according to BA-index)

    图 7 

    松辽盆地南部岩石圈地幔变形模式图(据Chen et al., 2017修改)

    Figure 7. 

    Schematic diagrams of the lithosphere deformation in the southern Songliao Basin (modified after Chen et al., 2017)

    表 1 

    双辽地区地幔橄榄岩包体岩石显微结构、主要矿物含量(%)、J值、M值和BA值参数

    Table 1. 

    Microstructure, modal compositions (%), calculated J-index, M-index and BA-index of Shuangliao mantle peridotite xenoliths

    样品号 岩性 显微结构 主要矿物含量(EBSD mapping) J M CPO类型 BA
    Ol Opx Cpx Sp Ol Opx Cpx Ol Opx Cpx Ol
    BBT19-7 二辉橄榄岩 粗粒-残斑状结构 71.74 17.66 9.47 1.13 4.46 4.81 4.15 0.17 0.13 0.04 AG 0.23
    BBT19-11 方辉橄榄岩 粗粒-残斑状结构 77.65 18.82 2.84 0.68 2.94 3.67 6.34 0.14 0.13 0.11 AG 0.30
    BLS19-23 二辉橄榄岩 扁平-等粒状结构 58.13 26.37 13.97 1.52 3.01 1.87 2.76 0.1 0.03 0.02 A 0.44
    BLS19-8 二辉橄榄岩 粗粒-残斑状结构 84.32 8.76 6.26 0.66 2.47 2.03 31.56 0.05 0.04 0.13 A 0.53
    BLS19-3 方辉橄榄岩 粗粒-原生粒状结构 85.21 11.87 2.23 0.69 53.93 3.66 11.35 0.48 0.12 0.15 A 0.58
    BBT19-10 二辉橄榄岩 粗粒-残斑状结构 76.45 16.32 6.26 0.97 8.57 2.88 7.11 0.14 0.05 0.17 A 0.58
    BLS19-5 二辉橄榄岩 粗粒-原生粒状结构 53.01 22.87 18.71 5.41 3.26 4.43 7.45 0.08 0.08 0.08 D 0.66
    BLS19-9 方辉橄榄岩 扁平-等粒状结构 74.75 19.78 4.71 0.77 1.87 1.32 3.27 0.05 0.01 0.02 D 0.69
    BBT19-4 方辉橄榄岩 粗粒-残斑状结构 80.12 15.9 3.39 0.59 4.80 2.53 6.53 0.18 0.05 0.03 D 0.75
    注:(Bunge, 1982),f(g)为在取向方向g处的ODF(Orientation Distribution Function,取向分布函数)密度,dg=1dφdφ2sinφ/8π2,(φ1, φ, φ2)为欧拉角.RiT为任意组构的取向差角的理论分布,Ri0为测量到的取向差角的分布,θmax为最大理论取向差角,n为数据组的数量(Skemer et al., 2005).样品的J值、M值和BA值参数由MTEX软件计算获得(Bachmann et al., 2010; Mainprice et al., 2011; https://mtex-toolbox.github.io/)
    下载: 导出CSV

    表 2 

    双辽地区地幔橄榄岩包体的主要矿物电子探针成分分析结果(wt%)

    Table 2. 

    Mineral chemistry (wt%) of Shuangliao mantle peridotite xenoliths

    样品号 BBT19-7 BLS19-23 BLS19-8 BLS19-3 BLS19-9 BBT19-4 样品号 BBT19-7 BLS19-23 BLS19-8 BLS19-3 BLS19-9 BBT19-4
    矿物 Ol 矿物 Cpx
    K2O 0.01 0.01 0.01 0.00 0.00 0.01 K2O 0.01 0.01 0.00 0.01 0.01 0.01
    CaO 0.09 0.03 0.07 0.05 0.02 0.10 CaO 18.59 19.82 20.14 21.22 21.36 19.46
    MnO 0.13 0.11 0.12 0.08 0.13 0.12 MnO 0.08 0.09 0.09 0.08 0.07 0.08
    MgO 48.01 47.77 47.86 49.18 48.29 48.62 MgO 15.65 14.89 15.64 16.46 15.79 17.05
    Al2O3 0.03 0.02 0.02 0.01 0.01 0.03 Al2O3 6.40 6.07 4.55 2.95 3.26 3.61
    Na2O 0.02 0.00 0.00 0.00 0.01 0.01 Na2O 1.39 1.56 1.27 0.94 1.11 1.07
    SiO2 40.57 40.62 40.86 41.10 41.04 40.95 SiO2 52.10 52.61 53.18 53.99 54.01 53.71
    FeO 8.67 9.22 9.10 7.76 8.65 7.90 FeO 2.85 2.42 2.44 1.81 2.11 2.56
    Cr2O3 0.03 0.04 0.02 0.02 0.02 0.04 Cr2O3 0.92 0.93 1.26 1.37 1.27 1.44
    TiO2 0.03 0.02 0.01 0.03 0.01 0.01 TiO2 0.39 0.39 0.30 0.05 0.15 0.09
    Total 97.59 97.85 98.06 98.23 98.17 97.77 Total 98.37 98.79 98.88 98.87 99.14 99.08
    Mg# 90.80 90.23 90.36 91.87 90.87 91.64 Mg# 90.73 91.66 91.95 94.19 93.02 92.24
    矿物 Opx 矿物 Sp
    K2O 0.01 0.00 0.01 0.01 0.01 0.01 K2O 0.01 0.01 0.01 0.01 0.01 0.01
    CaO 0.95 0.58 0.66 0.61 0.49 1.08 CaO 0.01 0.01 0.00 0.00 0.00 0.00
    MnO 0.09 0.09 0.11 0.08 0.10 0.11 MnO 0.08 0.06 0.11 0.17 0.15 0.16
    MgO 31.67 32.43 32.58 33.68 33.30 32.57 MgO 19.78 19.76 17.19 15.91 14.82 15.84
    Al2O3 4.85 4.04 3.17 2.16 2.23 2.84 Al2O3 50.88 54.14 39.74 30.00 32.26 27.59
    Na2O 0.13 0.09 0.09 0.05 0.03 0.08 Na2O 0.00 0.00 0.01 0.01 0.01 0.02
    SiO2 54.71 55.80 56.07 57.00 56.68 56.14 SiO2 0.00 0.00 0.00 0.00 0.00 0.00
    FeO 5.43 5.73 5.58 4.90 5.62 5.02 FeO 10.53 9.92 12.59 11.96 14.65 13.71
    Cr2O3 0.52 0.37 0.55 0.54 0.45 0.81 Cr2O3 14.61 12.21 25.97 38.36 34.19 38.75
    TiO2 0.12 0.10 0.07 0.04 0.06 0.04 TiO2 0.21 0.14 0.28 0.13 0.11 0.14
    Total 98.48 99.21 98.89 99.06 98.96 98.70 Total 96.10 96.26 95.89 96.55 96.21 96.22
    Mg# 91.22 90.99 91.23 92.46 91.35 92.04 Mg# 77.00 78.03 70.88 70.33 64.33 67.31
    T(Ca in opx)(℃) 1044 927 956 937 893 1077 Cr# 16.15 13.15 30.48 46.17 41.55 48.52
    T(BK90)(℃) 1152 1036 1050 1003 950 1142
    注:Mg#=100×Mg/(Mg+Fe);Cr#=100×Cr/(Cr+Al);T(BK90)和T(Ca in opx):地质温度计(Brey and Köhler, 1990)
    下载: 导出CSV

    表 3 

    双辽地区地幔橄榄岩包体全岩地震波参数

    Table 3. 

    Calculated seismic properties of Shuangliao mantle peridotite xenoliths

    样品号 AVP VPmax VPmin AVSmax dVSmax AVS1 VS1max VS1min AVS2 VS2max VS2min AVP/VS1 AVP/VS2 VPmean VSmean
    (%) (km/s) (km/s) (%) (km/s) (%) (km/s) (km/s) (%) (km/s) (km/s) (%) (%) (km/s) (km/s)
    BBT19-7 8.63 8.6 7.89 6.52 0.32 5.02 5.01 4.76 2.23 4.79 4.69 4.16 7.35 8.24 4.81
    BBT19-11 6.84 8.57 8.01 4.93 0.24 3.90 4.97 4.78 2.58 4.83 4.71 3.89 5.79 8.29 4.82
    BLS19-23 5.71 8.52 8.05 4.32 0.21 2.90 4.94 4.80 2.86 4.85 4.71 4.4 4.16 8.28 4.82
    BLS19-8 10.51 8.84 7.96 7.93 0.38 4.60 5.04 4.82 5.14 4.88 4.63 9.2 6.69 8.40 4.84
    BLS19-3 11.80 8.94 7.94 7.90 0.38 4.94 5.08 4.83 5.88 4.89 4.61 11.31 7.55 8.44 4.85
    BBT19-10 9.45 8.77 7.98 5.98 0.29 3.81 4.99 4.8 4.71 4.88 4.66 7.37 6.67 8.37 4.83
    BLS19-5 4.79 8.51 8.11 3.13 0.15 2.28 4.92 4.81 2.32 4.84 4.72 4.79 3.46 8.31 4.82
    BLS19-9 6.49 8.62 8.07 3.96 0.19 2.46 4.95 4.83 3.36 4.86 4.70 5.15 4.41 8.34 4.83
    BBT19-4 7.83 8.73 8.08 5.21 0.25 2.48 4.95 4.83 4.71 4.89 4.66 7.41 5 8.4 4.83
    下载: 导出CSV
  •  

    Arai S. 1994. Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research, 59(4): 279-293 doi: 10.1016/0377-0273(94)90083-3

     

    Bachmann F, Hielscher R and Schaeben H. 2010. Texture analysis with MTEX-free and open source software toolbox. Solid State Phenomena, 160: 63-68 doi: 10.4028/www.scientific.net/SSP.160.63

     

    Bascou J, Delpech G, Vauchez A, Moine BN, Cottin JY and Barruol G. 2008. An integrated study of microstructural, geochemical, and seismic properties of the lithospheric mantle above the Kerguelen plume (Indian Ocean). Geochemistry, Geophysics, Geosystems, 9(4): Q04036

     

    Bernard RE, Behr WM, Becker TW and Young DJ. 2019. Relationships between olivine CPO and deformation parameters in naturally deformed rocks and implications for mantle seismic anisotropy. Geochemistry, Geophysics, Geosystems, 20(7): 3469-3494 doi: 10.1029/2019GC008289

     

    Bernard RE, Schulte-Pelkum V and Behr WM. 2021. The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics, 814: 228954 doi: 10.1016/j.tecto.2021.228954

     

    Bi YJ, Huang ZC, Wang HB and Wu HT. 2020. Upper-mantle anisotropy and dynamics beneath Northeast Asia: Insight from SKS and local S splitting analysis. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009160 doi: 10.1029/2020GC009160

     

    Boneh Y and Skemer P. 2014. The effect of deformation history on the evolution of olivine CPO. Earth and Planetary Science Letters, 406: 213-222 doi: 10.1016/j.epsl.2014.09.018

     

    Brey GP and Köhler T. 1990. Geothermobarometry in four-phase lherzolites Ⅱ. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6): 1353-1378 doi: 10.1093/petrology/31.6.1353

     

    Bunge HJ. 1982. Texture Analysis in Materials Science. London: Butterworths

     

    Chatzaras V, Kruckenberg SC, Cohen SM, Medaris LG Jr, Withers AC and Bagley B. 2016. Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture. Journal of Geophysical Research: Solid Earth, 121(7): 4895-4922 doi: 10.1002/2015JB012628

     

    Chatzaras V and Kruckenberg SC. 2021. Effects of melt-percolation, refertilization and deformation on upper mantle seismic anisotropy: Constraints from peridotite xenoliths, Marie Byrd Land, West Antarctica. In: Martin AP and van der Wal W (eds.). The Geochemistry and Geophysics of the Antarctic Mantle. Geological Society of London, M56-2020-16

     

    Chen HC, Niu FL, Obayashi M, Grand SP, Kawakatsu H, Chen YJ, Ning JY and Tanaka S. 2017. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range. Earth and Planetary Science Letters, 471: 32-41 doi: 10.1016/j.epsl.2017.04.030

     

    Couvy H, Frost DJ, Heidelbach F, Nyilas K, Ungár T, Mackwell S and Cordier P. 2004. Shear deformation experiments of forsterite at 11GPa-1400℃ in the multianvil apparatus. European Journal of Mineralogy, 16(6): 877-889 doi: 10.1127/0935-1221/2004/0016-0877

     

    Falus G, Tommasi A, Ingrin J and Szabó C. 2008. Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth and Planetary Science Letters, 272(1-2): 50-64 doi: 10.1016/j.epsl.2008.04.035

     

    Gao JL, Liu JQ, Guo ZF, Meng FC, Zhai LN and Li ZP. 2017. Chemical and carbon isotopic compositions of volatiles in Shuangliao Cenozoic basalts and related mantle xenoliths: Implications for origins of volatiles. Acta Petrologica Sinica, 33(1): 81-92 (in Chinese with English abstract)

     

    Gao S, Rudnick RL, Xu WL, Yuan HL, Liu YS, Walker RJ, Puchtel IS, Liu XM, Huang H, Wang XR and Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earth and Planetary Science Letters, 270(1-2): 41-53 doi: 10.1016/j.epsl.2008.03.008

     

    Ge RF, Zhang QL, Wang LS, Xie GA, Xu SY, Chen J and Wang XY. 2010. Tectonic evolution of Songliao basin and the prominent tectonic regime transition in eastern China. Geological Review, 56(2): 180-195 (in Chinese with English abstract)

     

    Gripp AE and Gordon RG. 2002. Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2): 321-361 doi: 10.1046/j.1365-246X.2002.01627.x

     

    Guo P. 2019. Nature and deep process of the lithospheric mantle beneath the Xing'an-Mongolian Orogenic Belt: Constraints from mantle xenoliths in the Cenozoic basalts. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English abstract)

     

    Guo Z, Chen YJ, Ning JY, Feng YG, Grand SP, Niu FL, Kawakatsu H, Tanaka S, Obayashi M and Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data. Earth and Planetary Science Letters, 416: 1-11 doi: 10.1016/j.epsl.2015.01.044

     

    Guo Z, Chen YJ, Ning JY, Yang YJ, Afonso JC and Tang YC. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in northeast China. Earth and Planetary Science Letters, 433: 31-43 doi: 10.1016/j.epsl.2015.09.035

     

    Guo Z, Wang K, Yang YJ, Tang YC, Chen YJ and Hung SH. 2018. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave. Journal of Geophysical Research: Solid Earth, 123(3): 2410-2425 doi: 10.1002/2017JB014948

     

    Hansen LN, Zhao YH, Zimmerman ME and Kohlstedt DL. 2014. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth and Planetary Science Letters, 387: 157-168 doi: 10.1016/j.epsl.2013.11.009

     

    Hao YT, Xia QK, Jia ZB, Zhao QC, Li P, Feng M and Liu SC. 2016. Regional heterogeneity in the water content of the Cenozoic lithospheric mantle of eastern China. Journal of Geophysical Research: Solid Earth, 121(2): 517-537 doi: 10.1002/2015JB012105

     

    Higgie K and Tommasi A. 2012. Feedbacks between deformation and melt distribution in the crust-mantle transition zone of the Oman ophiolite. Earth and Planetary Science Letters, 359-360: 61-72 doi: 10.1016/j.epsl.2012.10.003

     

    Higgie K and Tommasi A. 2014. Deformation in a partially molten mantle: Constraints from plagioclase lherzolites from Lanzo, western Alps. Tectonophysics, 615-616: 167-181 doi: 10.1016/j.tecto.2014.01.007

     

    Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T and Hustoft J. 2003. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301(5637): 1227-1230 doi: 10.1126/science.1087132

     

    Ismaïl WB and Mainprice D. 1998. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296(1-2): 145-157 doi: 10.1016/S0040-1951(98)00141-3

     

    Jiang GZ, Hu SB, Shi YZ, Zhang C, Wang ZT and Hu D. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753: 36-48 doi: 10.1016/j.tecto.2019.01.006

     

    Jin ZM, Green HW II and Borch RS. 1989. Microstructures of olivine and stresses in the upper mantle beneath Eastern China. Tectonophysics, 169(1-3): 23-50 doi: 10.1016/0040-1951(89)90181-9

     

    Jung H and Karato SI. 2001. Water-induced fabric transitions in olivine. Science, 293(5534): 1460-1463 doi: 10.1126/science.1062235

     

    Jung H, Katayama I, Jiang Z, Hiraga T and Karato SI. 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421(1-2): 1-22 doi: 10.1016/j.tecto.2006.02.011

     

    Jung H. 2009. Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos, 109(3-4): 341-349 doi: 10.1016/j.lithos.2008.06.007

     

    Jung H, Park M, Jung S and Lee J. 2010. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. Journal of Earth Science, 21(5): 555-568 doi: 10.1007/s12583-010-0118-9

     

    Jung S, Jung H and Austrheim H. 2014. Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization. Earth, Planets and Space, 66: 46 doi: 10.1186/1880-5981-66-46

     

    Karato SI, Jung H, Katayama I and Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36: 59-95 doi: 10.1146/annurev.earth.36.031207.124120

     

    Katayama I, Jung H and Karato SI. 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32(12): 1045-1048 doi: 10.1130/G20805.1

     

    Le Roux V, Tommasi A and Vauchez A. 2008. Feedback between melt percolation and deformation in an exhumed lithosphere-asthenosphere boundary. Earth and Planetary Science Letters, 274(3-4): 401-413 doi: 10.1016/j.epsl.2008.07.053

     

    Li J and Niu FL. 2010. Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks. Journal of Geophysical Research: Solid Earth, 115(B12): B12327

     

    Li SL, Guo Z and Chen YJ. 2017. Complicated 3D mantle flow beneath Northeast China from shear wave splitting and its implication for the Cenozoic intraplate volcanism. Tectonophysics, 709: 1-8 doi: 10.1016/j.tecto.2017.04.015

     

    Li ZQ, Chen JL, Zou H, Wang CS, Meng QA, Liu HL and Wang SZ. 2021. Mesozoic-Cenozoic tectonic evolution and dynamics of the Songliao Basin, NE Asia: Implications for the closure of the Paleo-Asian Ocean and Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Ocean. Earth-Science Reviews, 218: 103471 doi: 10.1016/j.earscirev.2020.103471

     

    Liang XR, Zhao DP, Xu YG and Hua YY. 2022. Anisotropic tomography and dynamics of the big mantle wedge. Geophysical Research Letters, 49(5): e2021GL097550 doi: 10.1029/2021GL097550

     

    Lin AB. 2020. Nature and evolution of lithospheric mantle beneath northeastern China. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English abstract)

     

    Liu CZ, Wu FY, Chung SL and Zhao ZD. 2011. Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology, 39(10): 923-926 doi: 10.1130/G32172.1

     

    Liu JQ. 1999. Volcanos in China. Beijing: Science Press (in Chinese)

     

    Liu KH, Gao SS, Gao Y and Wu J. 2008. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research: Solid Earth, 113(B1): B01305

     

    Liu SR, Tommasi A, Vauchez A and Mazzucchelli M. 2019. Crust-mantle coupling during continental convergence and break-up: Constraints from peridotite xenoliths from the Borborema Povince, Northeast Brazil. Tectonophysics, 766: 249-269 doi: 10.1016/j.tecto.2019.05.017

     

    Lu MQ, Lei JS, Zhao DP, Ai YS, Xu XW and Zhang GB. 2020. SKS splitting measurements in NE China: New insights into the Wudalianchi intraplate volcanism and mantle dynamics. Journal of Geophysical Research: Solid Earth, 125(3): e2019JB018575 doi: 10.1029/2019JB018575

     

    Lu MW, Lei JS and Zhang GB. 2019. Upper-mantle seismic anisotropy structure and dynamics beneath NE China inferred from SKS splitting analysis. Chinese Journal of Geophysics, 62(9): 3365-3384 (in Chinese with English abstract)

     

    Mainprice D and Humbert M. 1994. Methods of calculating petrophysical properties from lattice preferred orientation data. Surveys in Geophysics, 15(5): 575-592 doi: 10.1007/BF00690175

     

    Mainprice D, Barruol G and Ismaïl WB. 2000. The seismic anisotropy of the Earth's mantle: From single crystal to polycrystal. In: Karato SI, Forte A, Liebermann R, Masters G and Stixrude L (eds.). Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Volume 117. Washington, DC: American Geophysical Union, 237-264

     

    Mainprice D, Tommasi A, Couvy H, Cordier P and Frost DJ. 2005. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature, 433(7027): 731-733 doi: 10.1038/nature03266

     

    Mainprice D. 2007. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In: Schubert G and Price GD (eds.). Treatise on Geophysics. Oxford: Elsevier, 2: 437-491

     

    Mainprice D, Hielscher R and Schaeben H. 2011. Calculating anisotropic physical properties from texture data using the MTEX open-source package. In: Prior DJ, Rutter EH and Tatham DJ (eds.). Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy. Geological Society, London, Special Publications, 360(1): 175-192

     

    Mainprice D, Bachmann F, Hielscher R and Schaeben H. 2015. Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components. In: Faulkner DR, Mariani E and Mecklenburgh J (eds.). Rock Deformation from Field, Experiments and Theory: A Volume in Honour of Ernie Rutter. Geological Society, London, Special Publications, 49(1): 251-271

     

    Nicolas A and Christensen NI. 1987. Formation of anisotropy in upper mantle peridotites: A review. In: Fuchs K and Froidevaux C (eds.). Composition, Structure and Dynamics of the Lithosphere: Asthenosphere System, Volume 16. Washington, DC: American Geophysical Union, 111-123

     

    Park M and Jung H. 2017. Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709: 55-68 doi: 10.1016/j.tecto.2017.04.017

     

    Précigout J and Hirth G. 2014. B-type olivine fabric induced by grain boundary sliding. Earth and Planetary Science Letters, 395: 231-240 doi: 10.1016/j.epsl.2014.03.052

     

    Qi C, Hansen LN, Wallis D, Holtzman BK and Kohlstedt DL. 2018. Crystallographic preferred orientation of olivine in sheared partially molten rocks: The source of the "a-c switch". Geochemistry, Geophysics, Geosystems, 19(2): 316-336 doi: 10.1002/2017GC007309

     

    Qiang ZY and Wu QJ. 2015. Upper mantle anisotropy beneath the north of northeast China and its dynamic significance. Chinese Journal of Geophysics, 58(10): 3540-3552 (in Chinese with English abstract) doi: 10.6038/cjg20151010

     

    Ren JY, Tamaki K, Li ST and Junxia Z. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205 doi: 10.1016/S0040-1951(01)00271-2

     

    Rudnick RL, Gao S, Ling WL, Liu YS and McDonough WF. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77(1-4): 609-637 doi: 10.1016/j.lithos.2004.03.033

     

    Shi YT, Gao Y, Tai LX and Fu YY. 2015. The shear-wave splitting in the crust and the upper mantle around the Bohai Sea, North China. Journal of Asian Earth Sciences, 111: 505-516 doi: 10.1016/j.jseaes.2015.06.015

     

    Silver PG and Chan WW. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10): 16429-16454 doi: 10.1029/91JB00899

     

    Silver PG. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24(1): 385-432 doi: 10.1146/annurev.earth.24.1.385

     

    Skemer P, Katayama I, Jiang ZT and Karato SI. 2005. The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics, 411(1-4): 157-167 doi: 10.1016/j.tecto.2005.08.023

     

    Soustelle V, Tommasi A, Bodinier JL, Garrido CJ and Vauchez A. 2009. Deformation and reactive melt transport in the mantle lithosphere above a large-scale partial melting domain: The Ronda Peridotite Massif, Southern Spain. Journal of Petrology, 50(7): 1235-1266 doi: 10.1093/petrology/egp032

     

    Tao K, Niu FL, Ning JY, Chen YJ, Grand S, Kawakatsu H, Tanaka S, Obayashi M and Ni J. 2014. Crustal structure beneath NE China imaged by necessarray receiver function data. Earth and Planetary Science Letters, 398: 48-57 doi: 10.1016/j.epsl.2014.04.043

     

    Tian Y, Ma JC, Liu C, Feng X, Liu TT, Zhu HX, Yan D and Li HH. 2019. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications. Chinese Journal of Geophysics, 62(3): 1071-1082 (in Chinese with English abstract)

     

    Tommasi A, Tikoff B and Vauchez A. 1999. Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth and Planetary Science Letters, 168(1-2): 173-186 doi: 10.1016/S0012-821X(99)00046-1

     

    Tommasi A, Mainprice D, Canova G and Chastel Y. 2000. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. Journal of Geophysical Research: Solid Earth, 105(B4): 7893-7908 doi: 10.1029/1999JB900411

     

    Tommasi A, Vauchez A and Ionov DA. 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters, 272(1-2): 65-77 doi: 10.1016/j.epsl.2008.04.020

     

    Tommasi A, Baptiste V, Vauchez A and Holtzman B. 2016. Deformation, annealing, reactive melt percolation, and seismic anisotropy in the lithospheric mantle beneath the southeastern Ethiopian rift: Constraints from mantle xenoliths from mega. Tectonophysics, 682: 186-205 doi: 10.1016/j.tecto.2016.05.027

     

    Vinnik LP, Makeyeva LI, Milev A and Usenko AY. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International, 111(3): 433-447 doi: 10.1111/j.1365-246X.1992.tb02102.x

     

    Vollmer FW. 1990. An application of eigenvalue methods to structural domain analysis. Geological Society of America Bulletin, 102(6): 786-791 doi: 10.1130/0016-7606(1990)102<0786:AAOEMT>2.3.CO;2

     

    Wang L, Blaha S, Pintér Z, Farla R, Kawazoe T, Miyajima N, Michibayashi K and Katsura T. 2016. Temperature dependence of[100](010) and[001](010) dislocation mobility in natural olivine. Earth and Planetary Science Letters, 441: 81-90 doi: 10.1016/j.epsl.2016.02.029

     

    Xu YG, Zhang HH, Qiu HN, Ge WC and Wu FY. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chemical Geology, 328: 168-184 doi: 10.1016/j.chemgeo.2012.01.027

     

    Yang Y, Abart R, Yang XS, Shang YM, Ntaflos T and Xu B. 2019. Seismic anisotropy in the Tibetan lithosphere inferred from mantle xenoliths. Earth and Planetary Science Letters, 515: 260-270 doi: 10.1016/j.epsl.2019.03.027

     

    Yu SY, Xu YG, Huang XL, Ge WC and Ma JL. 2007. Characteristics of melt-rock reaction in Shuangliao peridotite xenoliths and their implications to mantle metasomatism. Acta Petrologica et Mineralogica, 26(3): 213-222 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6524.2007.03.002

     

    Yu SY, Xu YG, Huang XL, Ma JL, Ge WC, Zhang HH and Qin XF. 2009. Hf-Nd isotopic decoupling in continental mantle lithosphere beneath Northeast China: Effects of pervasive mantle metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570 doi: 10.1016/j.jseaes.2009.04.005

     

    Yu SY, Xu YG, Ma JL, Zheng YF, Kuang YS, Hong LB, Ge WC and Tong LX. 2010. Remnants of oceanic lower crust in the subcontinental lithospheric mantle: Trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, northeast China. Earth and Planetary Science Letters, 297(3-4): 413-422 doi: 10.1016/j.epsl.2010.06.043

     

    Zaffarana C, Tommasi A, Vauchez A and Grégoire M. 2014. Microstructures and seismic properties of south Patagonian mantle xenoliths (Gobernador Gregores and Pali Aike). Tectonophysics, 621: 175-197 doi: 10.1016/j.tecto.2014.02.017

     

    Zhang GC, Wu QJ, Li YH, Pan JT, Zhang FX and Guan J. 2013. An investigation on crustal anisotropy of Northeast China using Moho Ps converted phase. Acta Seismologica Sinica, 35(4): 485-497 (in Chinese with English abstract) doi: 10.3969/j.issn.0253-3782.2013.04.004

     

    Zhang RQ, Wu QJ, Sun L, He J and Gao ZY. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions. Earth and Planetary Science Letters, 401: 196-205 doi: 10.1016/j.epsl.2014.06.017

     

    高金亮, 刘嘉麒, 郭正府, 孟凡超, 翟俪娜, 李中平. 2017. 双辽新生代玄武岩及地幔捕虏体内流体的组成、碳同位素特征及其来源. 岩石学报, 33(1): 81-92 http://www.ysxb.ac.cn/article/id/5ff2dfb4bfedb51e1a6ae472

     

    葛荣峰, 张庆龙, 王良书, 解国爱, 徐士银, 陈娟, 王锡勇. 2010. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm

     

    郭鹏. 2019. 兴蒙造山带岩石圈地幔属性及深部过程: 来自新生代玄武岩中地幔包体的制约. 博士学位论文. 长春: 吉林大学

     

    林阿兵. 2020. 中国东北部岩石圈地幔性质及其形成过程. 博士学位论文. 武汉: 中国地质大学

     

    刘嘉麒. 1999. 中国火山. 北京: 科学出版社

     

    鲁明文, 雷建设, 张贵宾. 2019. 中国东北地区SKS分裂的上地幔各向异性结构与动力学. 地球物理学报, 62(9): 3365-3384 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909012.htm

     

    强正阳, 吴庆举. 2015. 中国东北地区北部上地幔各向异性及其动力学意义. 地球物理学报, 58(10): 3540-3552 doi: 10.6038/cjg20151010

     

    田有, 马锦程, 刘财, 冯晅, 刘婷婷, 朱洪翔, 闫冬, 李红昊. 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义. 地球物理学报, 62(3): 1071-1082 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903020.htm

     

    于宋月, 徐义刚, 黄小龙, 葛文春, 马金龙. 2007. 吉林双辽地区橄榄岩包体中熔体-岩石作用特征及其对地幔交代作用的启示. 岩石矿物学杂志, 26(3): 213-222 doi: 10.3969/j.issn.1000-6524.2007.03.002

     

    张广成, 吴庆举, 李永华, 潘佳铁, 张风雪, 管见. 2013. 利用莫霍面Ps震相研究中国东北地区地壳各向异性. 地震学报, 35(4): 485-497 doi: 10.3969/j.issn.0253-3782.2013.04.004

  • 加载中

(7)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-08-07
修回日期:  2024-02-04
刊出日期:  2024-04-01

目录