首页 | 官方网站   微博 | 高级检索  
     


The reaction history of kyanite in high‐P aluminous granulites
Authors:Jillian Kendrick  Aphrodite Indares
Affiliation:Department of Earth Sciences, Memorial University of Newfoundland, NL, Canada
Abstract:Cathodoluminescence (CL) mapping of kyanite in high pressure, aluminous granulites from the central Grenville Province reveals internal structures that are linked to their metamorphic reaction history. In two samples, individual kyanite crystals are shown to be composite porphyroblasts comprising three distinct generations, defined by their CL intensity and Cr (±V, Ti, Fe and Ga) content, and each separated by resorbed interfaces. In contrast, a sub‐aluminous sample contains two types of kyanite, one as resorbed inclusions in garnet and another in the groundmass or replacing garnet. These textural variants of kyanite are interpreted within the framework of phase equilibria modelling. In P–T pseudosections, a first generation of kyanite, which is only present in the most aluminous samples, is potentially linked to staurolite breakdown, and its resorption is consistent with a subsequent increase in pressure. This kyanite represents the earliest remnant of prograde metamorphism identifiable in these rocks. The second generation, present in the porphyroblasts in the same samples and as inclusions in garnet in the sub‐aluminous sample, is interpreted to be the peritectic product of muscovite dehydration melting. Resorption of this kyanite is consistent with subsequent continuous dehydration melting of biotite, which is also inferred based on microstructural considerations. The final generation of kyanite, present as rims on the prograde kyanite porphyroblasts in aluminous samples and as part of the groundmass or replacing garnet in the sub‐aluminous rock, is interpreted to have grown during melt crystallization upon retrogression. The presence of retrograde kyanite implies that the melt crystallized over a wide range of temperatures, and provides an important constraint on the P–T conditions of the metamorphic peak and on the retrograde P–T path. CL mapping is crucial for identifying retrograde kyanite in aluminous samples, as it preferentially overgrows existing kyanite rather than replacing other prograde phases. The scarcity of kyanite in sub‐aluminous rocks allows retrograde kyanite to grow as discrete crystals that can be identified by optical microscopy. This work attests to the potential of unconventional tools such as CL imaging for deciphering the metamorphic history of rocks.
Keywords:Anatexis  cathodoluminescence  high‐P granulite  kyanite  phase equilibria modelling (thermocalc)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号