广义海原断裂带断层气地球化学特征与 地震活动性关系对比研究₀

周慧玲1,苏鹤军1,2,张 慧1,2,李晨桦1,2

(1.中国地震局兰州地震研究所,甘肃 兰州 730000;2.中国地震局地震预测研究所兰州科技创新基地,甘肃 兰州 730000)

摘要:根据广义海原断裂带断层气汞、氡浓度现场测量结果,对该断裂带不同段断层气浓度空间分 布特征以及整体分布趋势进行深入分析,结合该区历史大震背景、现今地震活动性以及地震时空 分布特征及b值空间扫描,深入探讨断层气分布特征与地震活动性之间的关系。研究表明,该断 裂带断层气浓度强度分段性明显,与地震活动性存在较好的对应关系。研究结果可为该断裂地 震危险性分析提供现今深部流体地球化学活动方面的证据,也为今后地震中长期预报提供重要 基础资料。

关键词:广义海原断裂;断层气;地震活动性参数;强震危险性 中图分类号:P593;P315.72⁺3 文献标志码:A 文章编号:1000-0844(2016)02-0278-07 DOI:10.3969/j.issn.1000-0844.2016.02.0278

Geochemical Characteristics of Fault Gas along Generalized Haiyuan Fault Zone and Its Relation to Earthquakes

ZHOU Hui-ling², SU He-jun^{1,2}, ZHANG Hui^{1,2}, LI Chen-hua^{1,2}

(1.Lanzhou Institute of Seismology, CEA, Lanzhou 730000, Gansu, China; 2.Lanzhou Base of Institute of Earthquake Prediction, CEA, Lanzhou 730000, Gansu, China)

Abstract: The eastern section of the North Qilian fault zone lies on the northeastern edge of the Qinghai—Tibet Plateau uplift zone, which consists of the Jinqianghe fault, Laohushan fault, and Maomaoshan fault. The Haiyuan fault, located in the west of the Ordos Block, is a NW trending, large strike-slip fault. It has good continuity with the eastern segment of the North Qilian Mountain fault, and both exhibit left-type dislocation. Therefore, the eastern segment of the North Qilian Mountain fault zone. Seismic activity is very strong in this area, where many $M_s \ge 7.0$ earthquakes have occurred over time, such as the famous 1920 Haiyuan M_s 8.5 earthquake and the 1927 Gulang M_s 8.0 earthquake. Therefore, the region's seismic hazards should be carefully investigated. Based on the measurement results of the mercury and radon concentrations of 10 fault-gas profiles in the generalized Haiyuan fault zone, in this paper, we describe our detailed analysis of the spatial distribution trend along the fault zone. Combined with the seismotectonic background and spatio-temporal evolution characteristics of large earthquakes, as well as the spatial distribution

① 收稿日期:2015-05-22

基金项目:甘肃省自然科学基金项目(1308RJZA275);中国地震局星火计划项目(XH15043) 作者简介:周慧玲(1989-),女,甘肃会宁人,硕士研究生,主要从事地震地下流体和地震预报研究。E-mail:zhl08270820@163.com。 通信作者:张 慧(1973-),女,甘肃天水人,博士,研究员,主要从事地震地下流体应用基础理论研究。E-mail:zhanghui@gssb.gov.cn。 Key words: the generalized Haiyuan fault zone; fault gas; seismicity parameter; strong earthquake risk

0 引言

北祁连山东段断裂带地处青藏高原隆起区的东 北边缘,由金强河断裂、老虎山断裂和毛毛山断裂组 成^[1]。海原断裂是位于鄂尔多斯地块西部的一条 NW走向的大型走滑断裂,与北祁连山东段断裂带 连续性好,在青藏高原大尺度块体运动学上的作用 相同,均为左型错动,因此北祁连东段断裂与狭义海 原断裂统称为"广义海原断裂"^[2]。广义海原断裂带 地震活动强烈,历史上发生过多次7级以上大震,破 坏性极其强烈,如1920年海原*M*_s8.5 地震、1927年 古浪*M*_s8.0 地震等^[3-5],且近年来小震频发,中强震 不断。姚家骏等^[6]通过 Morlet 小波变换分析青藏 高原东北缘*M*_s≥6.0 强震活动周期性特征,结果表 明该区强震存在显著周期变化,未来强震活动的频 度与强度有增加的趋势。因此对该区地震危险性的 研究应该引起足够的重视。

本文通过广义海原断裂带老虎山—毛毛山断裂 及海原断裂的断层气分布特征与历史和现今地震活 动特征的对比分析,并结合地震活动时空演化、b值 空间扫描特征,对广义海原断裂带不同段的活动习 性进行深入探讨,从地球化学的角度识别该断裂带 潜在大震危险区段,以期为地震趋势判断及震情跟 踪提供重要的基础资料,并为进一步深入探讨广义 海原断裂带地下流体空间变化与区域构造、断裂活 动习性以及应力场变化之间的时空演化关系提供背 景依据。

1 断层气测量仪器与方法

断层气测量项目有测氡、测汞两项。氡的测量 采用 FD-3017RaA 测氡仪,该仪器为一种瞬时测氡 仪器,极限探测灵敏度为 0.37 Bq/L;汞测量仪器为 JM-4 数字金膜测汞仪,具有体积小、轻便、灵敏度高 等特点,最低检出限为 10~11 g 汞。 具体采样过程如下:首先,用钢钎打一个深400~500 mm 的导向眼,向地下大约 150~200 mm 处插入 取样器,使得取样头与导向眼内大气隔绝;然后用橡 皮管将 FD-3017RaA 测氡仪与取样器连接,先排出橡 皮管内及取样器内的残留气体,再开始正式测氡。取 样体积为 1.5 L,加高压时间为2 min,测量时间为 2 min。氡的取样完成开始加高压时,将取样器与 JM-4 数字金膜测汞仪及大气采样仪连接,测汞仪开始取 样,其流速约为 0.5 L/min,取样时间为 2 min,体积为 0.5 L/min×2 min=1 L。

2 广义海原断裂带断层气空间分布特征

地壳放气是普遍存在的自然现象,而这种放气 现象在空间和时间上具有很明显的不均一性^[7]。国 内外研究表明,断层气的浓度强度与断裂带地质构 造环境、区域应力以及地下介质状态有密切的关 系^[8]。断裂活动强度不同导致相对应的断层气浓度 强度产生差异,同一断裂带不同段由于活动强度不同,断裂带的开启与闭合程度以及破碎程度不同,使 得断层气浓度强度存在差异^[9]。地震的发生都是在 地应力作用下形成的,地下气体在应力场的作用下 发生迁移,不同的断裂带以及同一断裂带应力状态 不同,使得地下气体浓度强度不同以及气体组分产 生差异。因此,断层气浓度强度空间分布差异为断 裂分段性研究提供了有力证据^[10-11]。同时,利用断 层气浓度的变化来监测预报地震是国内外广泛应用 的地震预报方法之一。

本文通过对老虎山、毛毛山断裂及海原断裂带 10个剖面的断层气汞、氡浓度的测量(图1),探讨断 层气地球化学特征与地震活动之间的关系。

在应用采样数据时,用背景值(一般为除去异常 值的平均值)与均方差,其中汞的平均值与均方差分 别用K和δ₁表示,氡分别用R和δ₂表示。取平均值作

Fig.1 Distribution of gas survey lines on the generalized Haiyuan fault zone

表1 广义海原断裂带测线名称一览表

Table 1 List of survey lines on the generalized Haiyuan fault zone

测线名称	经度/(°)	纬度/(°)	地名
HT1	104.751 7	36.877 97	高枣坪
HT2	104.605 7	36.894 88	大岘
HT3	104.189 9	37.043 03	周家窑
HT4	104.153 2	37.051 76	沈家庄
HT5	104.084 7	37.067 83	三唐东
HT6	104.025 0	37.040 61	喜集水
HT7	103.877 6	37.236 64	寺滩
HT8	103.829 4	37.085 02	崔家墩
HT9	103.496 2	37.140 00	金汤洼
HT10	103.447 4	37.149 88	黑马圈河

为背景值,取 $K + \delta_1$ 与 $R + \delta_2$ 分别作为土壤气汞、 氡异常下限,背景值与异常下限是两个主要的异常判 断依据。本文以每条剖面数据为统计样本进行异 常下限与背景值计算,综合利用平均值法和最大值 法进行断层气浓度强度分析。平均值法即用每条 剖面的异常平均值除以单剖面背景值,最大值法即 利用各测量场地断层气最大异常浓度值进行浓度 强度的分析。平均值法的目的是尽量消除变化幅 度较大的突跳值的影响,而最大值法的目的是消除 平均值法引起的异常值消减现象。为了避免不同 处理方法出现假异常或异常丢失现象,本文联合两 种方法进行断层气异常浓度强度的对比分析,结果 如表 2 所列。

图 2 是广义海原断裂带汞、氡浓度强度空间分 布特征图。由图可以看出,利用两种异常浓度分析 方法对断层气浓度强度空间分布特征进行研究,结 果基本一致。广义海原断裂带断层气汞、氡浓度强 度总体呈西强东弱的特征,并具有明显的分段性 (如图 2 中 A、B、C 所示)。以景泰喜泉张性岩桥 区为界,向西毛毛山-老虎山断裂带断层气浓度强 度相对较高(A 段),向东至邵水盆地次之(B 段), 而邵水盆地以东相对最小(C段)。研究表明,这种 断层气浓度强度的明显分段特性可能与区域现今 或历史地震活动特征存在一定关联。断层气浓度 强度反映了断裂带裂隙或孔隙度的大小等地下介 质物性参数变化,主要表现为断裂带的破碎及开启 程度的变化,而这种变化又与历史或现今断裂活动 习性的差异以及应力变化状态有关。因此对广义 海原断裂带地震活动性特征进行探讨十分必要,本 文下一节将对其历史与现今地震活动时空变化特 征进行详细分析。

表 2	广义海原断裂断层气数据统计结果

Table 2 Data of fault gas along the generalized Ha	iyuan fault zone
--	------------------

测线 名称	异常下限		测点数		最大值		浓度强度			
	Hg	Rn	Hg	D.,	Hg	Rn	平均值法		最大值法	
	$(K+\delta_1)$	$(R+\delta_2)$		Kn			Hg	Rn	Hg	Rn
HT1	0.192 17	1.756 1	11	11	0.240 03	2.200 9	1.439 6	2.022 1	1.550 3	2.102 9
HT2	0.235 98	2.387	9	7	0.308 61	2.708 8	1.711 3	1.964 9	1.711 3	1.964 9
HT3	0.068 448	5.078 7	13	13	0.091 44	5.756 2	1.468 9	1.667 9	1.762 7	1.667 9
HT4	0.164 2	7.474 5	11	11	0.251 46	9.311 5	2.281 9	1.696 1	2.574 5	1.811 4
HT5	0.093 456	11.346 5	10	10	0.102 87	12.86 68	1.406 3	1.610 2	1.406 3	1.610 2
HT6	0.077 343	4.389 8	13	13	0.080 01	6.941 3	1.338 2	2.832 4	1.338 2	2.977 7
HT7	0.053 865	5.77	15	15	0.057 15	7.618 5	1.442 3	1.763 5	1.442 3	1.912 2
HT8	0.050 623	8.037 7	13	13	0.057 15	9.311 5	1.444 4	1.621 2	1.444 4	1.682 4
HT9	0.057 248	3.001 4	19	18	0.080 01	4.232 5	1.929 7	1.9899	2.0781	2.261 3
HT10	0.053 166	6.018 9	12	12	0.080 01	11.173 8	2	3.717 4	2.333 3	4.304 3

图 2 广义海原断裂带断层气浓度强度空间分布图

Fig.2 Intensity spatial distribution of fault gas concentration along the generalized Haiyuan fault zone

3 广义海原断裂带地震活动性时空变化特征

3.1 地震活动空间分布特征

图 3 是广义海原断裂带历史地震空间分布及分 段频次统计图(所用资料是到 2011 年的全国大震目 录和全国小震目录,本文不考虑余震影响)。由图可 知,广义海原断裂带历史地震活动具有明显的分段 性(F₁、F₂、F₃):F₁、F₂和 F₃段均有 M_s6 以上历史 地震发生。其中 F₃ 段在 1920 年发生过 M_s8.5 和 $M_{s}7.0$ 地震,震级最大,至今离逝时间为95年: F_{2} 段在1988年发生过6级以上地震,离逝时间最长 (127年): F_{1} 段在1990年发生6.2级地震,离逝时 间最短(25年)。小于 $M_{s}6.0$ 地震分段如下: F_{1} 段 (老虎山—毛毛山断裂)东端小震活动频繁,是整个 广义海原断裂带小震集中区段:而 F_{2} 段地震活动相 对较弱,其小震活动主要分布在与 F_{1} 的交汇区附 近,向东方向地震活动较少: F_{3} 段与 F_{2} 段地震活动 水平相当。为了具体分析每段地震活动特性,本文

图 3 广义海原断裂带历史地震空间分布及分段频次统计图

Fig.3 Distribution of historical earthquakes along the generalized Haiyuan fault zone and the frequency chart of segment $F_1 \sim F_3$

2016年

对 F_1 、 F_2 、 F_3 段的地震活动频次进行了时间序列的 统计[图 3 中(a)、(b)、(c)]。结果显示, F_1 段地震 活动频繁,随时间呈逐渐增强的趋势,并在 1990 年 前后出现一个小震活动峰值,随后地震活动增强趋 势愈明显[图 3(a)]; F_2 段与 F_1 段具有类似的地震 活动增强趋势,但从空间分布情况来看,该段地震活 动主要集中在与 F_1 形成的岩桥过渡区; F_3 段现今 小震活动相对较弱,并在时间序列上没有明显趋势 性变化。总体来说,广义海原断裂现今地震活动具 有西强东弱的特征,这与前面地震断层气浓度强度 空间分布特征相一致。

图 4 为广义海原断裂带地震时空序列图。该图 以断裂带西端为原点,沿断层走向为横坐标,将断裂 带周边地震垂直投影到该坐标上,纵坐标为地震活 动的时间信息。该图清晰地反应出广义海原断裂带 地震活动时空演化特征:(1)从空间尺度来看,广义 海原断裂带区域地震活动在断层上的投影明显分为 A、B、C 三个区域,其中区域 B 为 F₁ 与 F₂ 之间的 张性岩桥区,该段地震活动频率高、震级大,多发生 4 级以上地震;区域 A 为毛毛山一老虎山断裂带, 该区域小震活动相对 B 区域频率低,但最大震级与 B区域相当;C区域为狭义海原断裂带中东段,该区域

Fig.4 Spatial and temporal distribution of earthquakes along the generalized Haiyuan fault zone (Blue arrow indicates the fault strike)

地震活动频率、震级相对较低:(2)从时间尺度看,大 约在1992年之前,大于4级地震主要集中在C区 域;1992年之后4级以上地震则集中在B区域,特 别是2008年之后,区域A、C处于地震平静状态,而 区域B小震活动丛集活跃(图中红色虚线所示)。 图中两红色箭头指示了广义海原断裂带各独立活动 段近年来地震活动时空演化趋势。根据马谨等^[12-14] 的研究,这种时空变化趋势是断层应力协同演化过 程的体现,是各分段所处应力状态的一个标志,因 此,断裂带地震活动性时空分布特征分析是断层分 段活动性研究的有效手段。据此本人认为,1992年 之后地震汇集的景泰地区仍是未来中强地震的危险 区域。

由于断层气测量资料较少,虽然不能进行相关 时间变化特征的分析,但是从地震时空演化的过程 来看,1992年之后4级以上地震聚集区与断层气高 值区在空间上是相对应的。

3.2 b 值空间分布特征

根据古登堡定律,区域地震活动的震级、频次之 间有 logN = a - bM(Gutenberg et al.,1954)的关 系,N 代表震级 M 以上地震的频度,a 表示区域内 的地震活动水平,b 则反映区域内不同震级地震的 相对分布。地震活动性参数 b 值能够反映地壳环境 应力的大小。岩石实验结果证明,应力积累水平与 b 值成反比关系^[15-17]。通常认为,高 b 值表示小震 频率高、发生中强地震的危险性小,反映区域应力积 累水平较低:反之,低 b 值则表示小震频率低、发生 中震地震的危险大,反映区域应力积累水平较 高^[18-19]。用 b 值衡量区域应力(应变)水平具有一 定的物理基础^[20]。国内外很多学者利用 b 值来研 究断裂带应力积累水平,从而进行断层分段性研究, 分析不同断裂带活动习性,并判断强震危险段^[21-23]。

本文采用 1965—2014 年全国地震目录,利用 ZMAP 程序对广义海原断裂带 b 值进行空间扫描 计算。其计算方法为最大似然法,网格的划分 0.1°×0.1°,扫描半径 50 km。

图 5 是广义海原断裂带 b 值空间变化特征图。 由图可以看出,广义海原断裂带 b 值具有明显的分 段性:低 b 值主要集中在老虎山、毛毛山东南段以及 张性岩桥区,表明该段应力水平积累较高,发生中强 震的危险性很大(图 5 中 A 段);相对低 b 值则集中 在断裂带中东段,表明该段区域应力水平积累也相 对较高,有发生中强地震的可能性(图 5 中 C 段); 而高 b 值主要集中在断裂带中段大营水盆地附近, 表明该区域区域应力水平积累相对较低(图 5 中 B 段),发生地震的可能性较小。

3.3 断层气地球化学特征与地震活动关系对比

通过对广义海原断裂带地震时空分布及 b 值空 间变化特征分析,可以看出广义海原断裂带现今地 震活动具有明显的分段特征,与前文利用断层气浓 度强度分布特征的研究结果相一致,即地震活动性 强的地区,b 值相对较低,断层气浓度相对较高;地 震活动性较弱的地区,b 值相对较高,断层气浓度相 对较低。在老虎山-毛毛山断裂,尤其是其东南段以 及张性岩桥区断层气浓度强度较大,对应的 b 值较 低,而狭义海原断裂中东段 b 值较高,相对应的断层 气浓度强度较小。结合断裂带地震活动协同演化理 论及最近历史强震离逝时间,笔者认为广义海原断 裂带现今中小地震活动趋于集中,断层气浓度强度 较大的 F_1 与 F_2 交汇区域是未来中强地震危险区 域,而东西端具有中长期强震孕育背景。

4 结论与探讨

本文通过广义海原断裂带不同段断层气浓度强 度空间分布特征分析,结合地震、构造地质资料以及 地震活动性参数 b 值对比研究,认为断层气浓度强 度与地震活动之间存在良好的对应耦合关系,断层 气浓度强度分布能够较好地反映出断裂现阶段地震 活动性强度,是断层分段活动性研究的有效方法,也 是地震前兆监测的有效手段之一。

(1) 广义海原断裂带断层气汞、氡浓度强度具有明显的分段性:毛毛山一老虎山断裂带东南段和 与狭义海原断裂西段形成的张性岩桥区浓度强度较大,以此为界,广义海原断裂带中东段断层气浓度逐 渐较小,总体呈西强东弱的空间分布特征。

(2)断层气浓度强度与地震活动性以及 b 值之间存在对应关系,即现今地震活动性强的地区断层 气浓度相对较高,b 值较低:地震活动性较弱的地区 断层气浓度相对较低,b 值较高。

(3)结合断层气浓度与地震活动性时空演化特征,并根据断裂带地震活动协同演化理论认为,现今 地震汇集的景泰地区仍是未来中强地震的危险 区域。

参考文献(References)

- 【1】 袁道阳,刘百篪,吕太乙,等.毛毛山断裂带位移累积滑动亏损 特征及其分段意义讨论[J].西北地震学报,1996,18(4):59-67.
 YUAN Dao-yang,LIU Bai-chi,LV Tai-yi, et al. The Cumulative Slip Deficit of Displacements and Significance of Segmentation along the Maomaoshan Fault Zone[J]. Northwestern Seismological Journal,1996,18(4):59-67.(in Chinese)
- [2] 刘静,徐锡伟,李岩峰,等.以海原断裂甘肃老虎山段为例浅析 走滑断裂古地震记录的完整性——兼论古地震研究中的若干 问题[J].地质通报,2007,26(6):650-660.

LIU Jing, XU Xi-wei, LI Yan-feng, et al. On the Completeness of Paleoseismic Records of Strike-slip Fault: An Example from the Laohushan Segment of the Haiyuan Fault in Gansu, China, with a Discussion of Several Problems in the Paleoearthquake Study[J]. Geological Bulletin of China, 2007, 26(6): 650-660. (in Chinese)

- [3] 刘小凤,刘百箎,吕太乙,等.老虎山活动断裂研究[J].华南地震,1994,14(4):10-16.
 LIU Xiao-feng,LIU Bai-chi,LV Tai-yi, et al. The Research on the Laohushan Active Fault[J]. South China Journal of Seismology,1994,14(4):10-16.(in Chinese)
- [4] 何文贵,袁道阳,刘百箎,等.老虎山断裂带的分段性研究[J]. 西北地震学报,1994,16(3):66-72.
 HE Wen-gui, YUAN Dao-yang, LIU Bai-chi, et al. Study on the Segmentation of Laohushan Fault Zone[J].Northwestern Seismological Journal,1994,16(3):66-72.(in Chinese)
- [5] 刘百箎,吕太乙,袁道阳,等,景泰老虎山活动断裂地区的第四 纪地层的划分与对比研究[J].西北地震学报,1994,16(4):54-62.

LIU Bai-chi, LV Tai-yi, YUAN Dao-yang, et al. Study on the Division and Correlation of Quaternary Stratain in Laohushan Active Fault Area, Jingtai County, Gansu [J]. Northwestern Seismological Journal, 1994, 16(4):54-62.(in Chinese)

[6] 姚家骏,王慧娟,冯建刚,等.青藏高原东北缘 M_s≥6.0 强震活动特征及未来形势研究[J].地震工程学报,2013,35(4):737-742.

YAO Jia-jun, WANG Hui-juan, FEN Jian-gang. The Activity and Trends of $M_{\rm S} \ge 6.0$ Earthquake at the Northeastern Margin of the Qinghai—Tibetan Plateau[J].China Earthquake Engineering Journal, 2013, 35(4):737-742. (in Chinese) [7] 王基华,王亮,孙凤民,等.断层气动态变化特征及其与地震活动的关系[J].地震,1994(3):58-63.

WANG Ji-hua, WANG Liang, SUN Feng-min, et al. The Dynamic Characteristics of Fault Gases and Its Relation to Seismic Activity[J].Earthquake,1994(3):58-63.(in Chinese)

[8] 康来迅,张新基,石雅镠,等.西秦岭北缘断裂带地震危险段的 研究[J].华南地震,1999,19(1):60-65.

KANG Lai-xin, ZHANG Xin-ji, SHI Ya-liu, et al. A Study on the Earthquake Risk Segments of the North Fault Zone in West Qinling Mountain[J]. South China Journal of Seismology, 1999, 19(1):60-65. (in Chinese)

- [9] 魏柏林,薛佳谋,李富光,等.从测定壤中的气汞量来研究活断 层[J].地震地质,1988,10(2):88-92.
 WEI Bo-lin,XUE Jia-mou,LI Fu-gaung, et al.Study on Active Fault by Means of Measuring Gaseous Mercury Content in Soil [J].Seismology and Geology,1988,10(2):88-92.(in Chinese)
- [10] 石雅镠,张必敖,王先彬.秦岭北缘大断裂断层气与地震危险 性[J].西北地震学报,1990,12(2):22-26.

SHI Ya-liu,ZHANG Bi-ao,WANG Xian-bin, The Fault Gases of Large Fault on the Northern Fringe of Qinling Mountain and Its Earthquake Risk [J]. Northwestern Seismological Journal, 1990, 12(2):22-26. (in Chinese)

- [11] Pizzino L,Burrato P,Quattrocchi F,et al.Geochemical Signatures of Large Active Faults: The Example of the February 5th 1783,Calabrian Earthquake(Southern Italy)[J].Journal of Seismology,2004(8):363-380.
- [12] 马瑾,郭彦双.失稳前断层加速协同化的实验证据和地震实例
 [J].地震地质,2014.36(3):547-561.
 MA Jin, GUO Yan-shuang. Accelerated Synergism prior to Fault Instability: Evidnce from Laboratory Experiments and an Earthquake Case [J]. Seismology and Geology, 2014, 36 (3):547-561.(in Chinese)
- [13] 杜异军,马瑾,李建国.雁列式裂纹的相互作用及其稳定性
 [J].地球物理学报,1989.32(专辑 1):218-231.
 DU Yi-jun, MA Jin, LI Jian-guo. Interaction and Stability of en Echelon Crack[J]. Acta Geophysica Sinica, 1989, 32(Supp 1): 218-231. (in Chinese)
- [14] 马瑾, Sherman SI, 郭彦双. 地震前亚失稳应力状态的识别:以 5°拐折断层变形温度场演化的实验为例[J]. 中国科学: D辑, 2012, 42(5): 633-645.

MA Jin, Sherman S I,GUO Yan-shuang. Identification of Meta-instable Stess State Based on Experimental Study of Evolution of the Temperature Field During Stick-slip Instability on a 5° Bending Fault[J]. Science in China; Series D, 2012, 55 (6):869-881.(in Chinese)

- [15] Scholz C H. The Frequency-magnitude Relation of Microfracturing in Rock and Its Relation to Earthquakes [J].Bulletin of the Seismological Society of America, 1968, 58(1): 399-415.
- [16] Amitrano D.Brittle-Ductile Transition and Associated Seismicity: Experimental and Numerical Studies and Relationship with the b Value [J].Journal of Geophysical Research Solid Earth, 2003, 108(B1, 2044).
- [17] Schorlemmer D, Wiemer S, Wyss M. Variations in Earthquake-size Distribution across Different Stress Regimes [J]. Nature, 2005,437:539-542.
- [18] Wiemer S. Wyss M. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western US and Japan [J].Bulletin of the Seismological Society of America, 2000, 90(4):859-869.
- [19] 苏鹤军,张慧,李晨桦,等.西秦岭北缘断裂带断层气浓度空间 分布特征与强震危险性分析[J].地震工程学报,2013,35(3): 671-676.

SU He-jun, ZHANG Hui, LI Chen-hua, et al. Geochemical Features of Fault Gas on Northern Margin Fault of Xiqinling and Its Seismic Hazard Analysis[J].China Earthquake Engineering Journal, 2013.35(3):671-676.(in Chinese)

- [20] Wiemer S, Schorlemmer D. ALM: An Asperity-based Likelihood Model for California[J].Seismological Research Letters, 2007,78(1):134-140.
- [21] 王辉,曹建玲,荆燕,等.川滇地区强震活动前b值的时空分布 特征[J].地震地质,2012,34(3):531-543.
 WANG Hui, CAO Jian-ling, JING Yan, et al. Spatiotemporal Pattern of *b*-value before Major Earthquakes in the Sichuan— Yunnan Region[J]. Seismology and Geology, 2012, 34(3): 531-543.(in Chinese)
- [22] 易桂喜,龙锋,苏有锦.四川及邻区强震前地震活动性参数的 变化特征[J].四川地震,2007(4):5-9.
 YI Gui-Xi,LONG feng,SU You-jin. Variation Characteristics of Seismicity Parameters before Strong Earthquakes in Sichuan and Its Neighboring Regions[J].Earthquake Research in Sichuan,2007(4):5-9.(in Chienes)
- [23] 易桂喜,闻学泽,王思维.由地震活动参数分析龙门山—岷山 断裂带的现今活动习性与强震危险性[J].中国地震,2006,22 (2):117-125.

YI Gui-Xi WEN Xue-ze, WANG Si-wei. Study on Fault Sliding Behaviors and Strong Earthquake Risk of the Longmenshan— Minshan Fault Zones from Current Seismicity Parameters [J]. Earthquake Research in China,2006,22(2):117-125.(in Chienes)