SsPmp震相地壳探测方法

刘震, 田小波, 朱高华, 梁晓峰, 段耀晖, 张洪双, 滕吉文. SsPmp震相地壳探测方法[J]. 地球物理学报, 2015, 58(10): 3571-3582, doi: 10.6038/cjg20151012
引用本文: 刘震, 田小波, 朱高华, 梁晓峰, 段耀晖, 张洪双, 滕吉文. SsPmp震相地壳探测方法[J]. 地球物理学报, 2015, 58(10): 3571-3582, doi: 10.6038/cjg20151012
LIU Zhen, TIAN Xiao-Bo, ZHU Gao-Hua, LIANG Xiao-Feng, DUAN Yao-Hui, ZHANG Hong-Shuang, TENG Ji-Wen. Probing the Moho interface using SsPmp waves[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(10): 3571-3582, doi: 10.6038/cjg20151012
Citation: LIU Zhen, TIAN Xiao-Bo, ZHU Gao-Hua, LIANG Xiao-Feng, DUAN Yao-Hui, ZHANG Hong-Shuang, TENG Ji-Wen. Probing the Moho interface using SsPmp waves[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(10): 3571-3582, doi: 10.6038/cjg20151012

SsPmp震相地壳探测方法

详细信息
    作者简介:

    刘震,男,1985年生,博士研究生,主要从事地球壳幔结构方面的研究.E-mail:liuzhen@mail.iggcas.ac.cn

  • 中图分类号: P315

Probing the Moho interface using SsPmp waves

  • SsPmp波是远震S波经地表反射转换的P波在莫霍面发生反射后被地表台站接收得到的震相.震中距在30°~50°之间的远震S波震相经地表反射转换的P波射线参数较大,在莫霍面发生全反射,使得台站接收的SsPmp波具有较强的能量,能够从地震记录中清楚地识别出来,为探测台站附近的莫霍面形态提供新的途径.本文通过合成理论地震图分析了SsPmp震相与地壳厚度、射线参数和Pn波速度之间的关系.结果表明:对于水平界面,地壳厚度只影响SsPmp与Ss波之间的相对到时差;Pn波速度只影响SsPmp的相位;射线参数既对SsPmp波的相对到时有影响,也会引起SsPmp波的相位变化.对于复杂的界面,SsPmp反映的深度与速度梯度最大的深度接近,而反映的Pn波速度与实际的Pn波速度一致.
  • 加载中
  • [1]

    Ammon C J, Randall G E, Zandt G.1990. On the nonuniqueness of receiver function inversions. Journal of Geophysical Research,95(B10): 15303-15318.

    [2]

    Ammon C J.1991. The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America,81(6): 2504-2510.

    [3]

    Cawood P A, Hawkesworth C J, Dhuime B.2013. The continental record and the generation of continental crust. GSA Bulletin,125(1-2): 14-32.

    [4]

    Chen W P, Yu C Q, Tseng T L, et al. 2013. Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics,609: 491-503.

    [5]

    Crotwell H P, Owens T J, Ritsema J.1999. The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismological Research Letters,70(2): 154-160.

    [6]

    Ding Z F, He Z Q, Sun W G, et al. 1999. mantle velocity structure in eastern Tibetan plateau and its surrounding areas. Chinese Journal of Geophysics (in Chinese), 42(2): 197-205.

    [7]

    Gao R, Chen C, Lu Z W, et al. 2013. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics,606: 160-170.

    [8]

    Gao R, Xiao X C, Kao H, et al. 2002. Summary of deep seismic probing of the lithospheric structure across the West Kunlun-Tarim-Tianshan. Geological Bulletin of China (in Chinese), 21(1): 11-18.

    [9]

    Ge C, Zheng Y, Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton. Chinese Journal of Geophysics (in Chinese), 54(10): 2538-2548.

    [10]

    Guan Y, Kao H, Gao R, et al. 2001. Broadband seismic observational experiments from Tarim Basin to Kunlun Mountains. Acta Geoscientia Sinica (in Chinese),22(6): 559-562.

    [11]

    Guo Z, Tang Y C, Chen J, et al. 2012. A study on crustal and upper mantle structures in east part of North China Craton using receiver functions. Chinese Journal of Geophysics (in Chinese), 55(11): 3591-3600, doi: 10.6038/j.issn.0001-5733.2012.11.008.

    [12]

    Herrmann R B, Wang C Y.1985. A comparison of synthetic seismograms. Bulletin of the Seismological Society of America,75(1): 41-56.

    [13]

    Jia S X, Zhang X K. 2005. Crustal structure and comparison of different tectonic blocks in North China. Chinese Journal of Geophysics (in Chinese), 48(3): 611-620.

    [14]

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International,105(2): 429-465.

    [15]

    Li Q S, Gao R, Wu F T, et al. 2013. Seismic structure in the southeastern China using teleseismic receiver functions. Tectonophysics,606: 24-35.

    [16]

    Li Y H, Tian X B, Wu Q J, et al. 2006. The Poisson ratio and crustal structure of the central Qinghai-Xizang inferred from INDEPTH-III teleseismic waveforms: Geological and geophysical implications. Chinese Journal of Geophysics (in Chinese), 49(4): 1037-1044.

    [17]

    Li Y K, Gao R, Mi S X, et al. 2014. The characteristics of crustal velocity structure for Liupan Mountain-Ordos Basin in the Northeastern Margin of Qinghai-Xizang(Tibet) Plateau. Geological Review (in Chinese), 60(5): 1147-1157.

    [18]

    Li Z W, Xu Y, Huang R Q, et al. 2011. Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications for 2008 Wenchuan earthquake. Science China: Earth Science (in Chinese), 41(3): 283-290.

    [19]

    Liu Q Y, Shao X Z.1985. Study on the dynamic characteristics of PS converted waves. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 28(3): 291-302.

    [20]

    Lu Z W, Gao R, Li Q S, et al. 2006. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau(1958—2004). Chinese Journal of Geophysics (in Chinese), 49(3): 753-770.

    [21]

    Luo Y, Chong J J, Ni S D, et al. 2008. Moho depth and sedimentary thickness in Capital region. Chinese Journal of Geophysics (in Chinese), 51(4): 1135-1145.

    [22]

    Meissner R.1973. The 'Moho’ as a transition zone. Geophysical Surveys,1(2): 195-216.

    [23]

    Pei S P, Zhao J M, Sun Y S, et al. 2007. Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography. Journal of Geophysical Research,112(B5): B05312.

    [24]

    Shi D N, Shen Y, Zhao W J, et al. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth and Planetary Science Letters,288(1-2): 329-334.

    [25]

    Si S K, Tian X B, Zhang H S, et al. 2012. Prevalent thickening and local thinning of the mantle transition zone beneath the Baikal rift zone and its dynamic implications. Science China: Earth Sciences (in Chinese),42(11): 1647-1659.

    [26]

    Si X, Teng J W, Ma X Y, et al. 2014. Detection of crust and mantle structures and distinguish of the anomaly body with artificial source deep seismic profiling. Progress in Geophysics (in Chinese), 29(2): 560-572, doi: 10.6038/pg20140212.

    [27]

    Sinha A K.1987. Tectonic zonation of the Central Himalaya and the crustal evolution of collision and compressional belts. Tectonophysics,134(1-3): 59-74.

    [28]

    Sun C Q, Lei J S, Li C, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamic implications. Chinese Journal of Geophysics (in Chinese), 56(12): 4095-4105, doi: 10.6038/cjg20131214.

    [29]

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science,294(5547): 1671-1677.

    [30]

    Teng J W, Deng Y F, Badal J, et al. 2014. Moho depth, seismicity and seismogenic structure in China mainland. Tectonophysics,627: 108-121.

    [31]

    Teng J W, Zhang Z J, Zhang X K, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics,609: 202-216.

    [32]

    Tian X B, Teng J W, Zhang H S, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors,184(3-4): 186-193.

    [33]

    Tseng T L, Chen W P, Nowack R L, et al. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophysical Research Letters,36(24): L24304.

    [34]

    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America,89(3): 733-741.

    [35]

    Wei Z G, Chen L.2012. Regional differences in crustal structure beneath northeastern China and northern North China Craton: constraints from crustal thickness and VP/VS ratio. Chinese Journal of Geophysics (in Chinese), 55(11): 3601-3614, doi: 10.6038/j.issn.0001-5733.2012.11.009.

    [36]

    Winchester J, Crotwell P. 1999. WebWEED and TauP: Java and Seismology. Seismological Research Letters,70(1): 80-84.

    [37]

    Wu Q J, Li Y H, Zhang R Q, et al. 2007. Receiver function estimated by multi-channel deconvolution. Chinese Journal of Geophysics (in Chinese), 50(3): 791-796.

    [38]

    Wu Q J, Zeng R S.1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform. Chinese Journal of Geophysics (Acta Geophysica Sinica)(in Chinese), 41(5): 669-679.

    [39]

    Xu Q, Zhao J M.2008. A review of the receiver function method. Progress in Geophysics (in Chinese), 23(6): 1709-1716.

    [40]

    Xu Q, Zhao J M, Cui Z X, et al. 2010. Moho offset beneath the central Bangong-Nujiang suture of Tibetan Plateau. Chinese Science Bulletin,55(7): 607-613.

    [41]

    Xu S B, Mi N, Xu M J, et al. 2014. Crustal structures of the Weihe graben and its surroundings from receiver functions. Science China: Earth Sciences,57(2): 372-378.

    [42]

    Xu T, Wu Z B, Zhang Z J, et al. 2014. Crustal structure across the Kunlun fault from passive source seismic profiling in East Tibet. Tectonophysics,627: 98-107.

    [43]

    Xu T, Zhang Z J, Tian X B, et al. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from active source seismic experiment along the Lixin to Yixing profile in East China. Acta Petrologica Sinica (in Chinese),30(4): 918-930.

    [44]

    Ye Z, Li Q S, Gao R, et al. 2013. Seismic receiver functions revealing crust and upper mantle structure beneath the continental margin of southeastern China. Chinese Journal of Geophysics (in Chinese), 56(9): 2947-2958, doi: 10.6038/cjg20130909.

    [45]

    Yu C Q, Chen W P, van der Hilst R D. 2013. Removing source-side scattering for virtual deep seismic sounding(VDSS). Geophysical Journal International,195(3): 1932-1941.

    [46]

    Yu C Q, Chen W P, Ning J Y, et al. 2012. Thick crust beneath the Ordos plateau: Implications for instability of the North China craton. Earth and Planetary Science Letters,357-358: 366-375.

    [47]

    Zeng R S, Sun W G, Mao T E, et al. 1995. The depth of Moho in the mainland of China. Acta Seismologica Sinica,8(3): 399-404.

    [48]

    Zhang R Q, Wu Q J, Sun L, et al. 2014a. Crustal and lithospheric structure of Northeast China from S-wave receiver functions. Earth and Planetary Science Letters,401: 196-205.

    [49]

    Zhang X Y, Zhang Z J, Xu T, et al. 2012. Phase shift approximation for the post-critical seismic wave. Journal of Geophysics and Engineering,9(5): 482-493.

    [50]

    Zhang Z J, Bai Z M, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics,606: 140-159.

    [51]

    Zhang Z J, Deng Y F, Teng J W, et al. 2011a. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences,40(4): 977-989.

    [52]

    Zhang Z J, Yang L Q, Teng J W, et al. 2011b. An overview of the earth crust under China. Earth-Science Reviews,104(1-3): 143-166.

    [53]

    Zhang Z J, Wang Y H, Houseman G A, et al. 2014b. The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust. Earth and Planetary Science Letters,408: 370-377.

    [54]

    Zhao J R, Li S L, Zhang X K, et al. 2005. Three dimensional Moho geometry at northeast edge of Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 48(1): 78-85.

    [55]

    Zheng T Y, Chen L, Zhao L, et al. 2006. Crust-mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust. Physics of the Earth and Planetary Interiors,159(1-2): 43-58.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2014-12-25
修回日期:  2015-09-16
上线日期:  2015-10-20

目录