首页 | 官方网站   微博 | 高级检索  
     


A macro‐model with nonlinear springs for seismic analysis of URM buildings
Authors:Giovanni Rinaldin  Claudio Amadio  Lorenzo Macorini
Affiliation:1. Department of Engineering and Architecture, University of Trieste, Trieste, Italy;2. Department of Civil and Environmental Engineering, Imperial College London, London, UK
Abstract:Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:seismic analysis  unreinforced masonry  equivalent frame approach  nonlinear springs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号