阜平杂岩中几种不同类型片麻岩的锆石激光探针等离子体质谱年代学研究
Geochronological Study of Zircons from High-Grade Gneisses of Fuping Complex by LP-ICPMS Technique
-
摘要: 利用激光探针等离子体质谱方法研究了阜平杂岩中几种不同类型片麻岩中的锆石样品。实验结果显示,对于较简单的锆石群,其207Pb-206Pb数据分布的峰值年龄给出与常规锆石铅的TIMS方法一致的结果;通过分析大量的锆石颗粒,可以弥补TIMS方法分析数据较少的缺陷,从而给出更全面的年龄分布特征。对于具有多期混合的锆石,以及具有继承铅、多期增生历史的锆石,通过对一个样品中多个颗粒的分析以及对单个颗粒的不同位置的分析,可区分出不同期次地质事件的信息,从而为阜平杂岩的形成、变质演化历史提供了年代学依据。研究结果为阜平杂岩中大量发育的灰片麻岩给出约2.5Ga的岩浆活动年龄信息,出露面积较小的角闪斜长片麻岩给出了约2.7Ga的年龄信息,同时还给出了约2.2Ga和约1.9Ga的两期变质事件年龄信息
-
Key words:
- Laser Probe /
- ICPMS /
- Fuping complex /
- Zircon /
- Geochronology
-
-
[1] [1]牛树银,陈路,许传诗等.1994.太行山区地壳演化及成矿规律.北京:地震出版社
[2] [2]王凯怡,李继亮,刘如琦.1991.阜平片麻岩之成因.地质科学,(3):254~267
[3] [3]王凯怡,郝杰,周少平等.1997.单颗粒锆石离子探针质谱定年结果对五台造山事件的制约.科学通报,42(12):1295~1298
[4] [4]徐平,关鸿,孙敏等.1998.激光探针等离子体质谱用于锆石年代学研究的分析和校正方法的进一步探讨.地球化学,待刊.
[5] [5]张宗清,伍家善,叶笑江.1991.阜平群下部太古代变质岩石的REE、Rb-Sr和Sm-Nd年龄及其意义.地球化学,(2):118~126
[6] [6]Arrowsmith P. 1987. Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry. Anal. Chem. , 59: 1437~1444
[7] [7]Compston W, Kinny P D, Wiliam I S and Foster J J. 1986. The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion probe. Earth Planet Sci. Lett. , 80: 71~81
[8] [8]Dunphy J M, Ludden J N and Parrish R R. 1995. Stitching together the Ungava orogen, northern Quebec: geochronological (TIMS and ICP-MS) and geochemical contraints on late magmatic events. Can. J. of Earth Science, 32:2115~2127
[9] [9]Feng R, Machado N and Ludden J. 1993. Lead geochronology of zircon by laser-inductively coupled plasma mass spectrometry (LP-ICPMS). Geochim. Cosmochim. Acta., 57: 3479~3486
[10] [10]Fryer B J, Jackson S E and Longerich H P. 1993. The application of laser ablation microprobe-inductively coupled plasmamass spectrometry (LAM-ICP-MS) to in situ (U) -Pb geochronology. Chemical Geology, 109:1~8
[11] [11]Gray A L. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst (London), 110:551~556
[12] [12]Hirata T and Nesbitt R W. 1995. U-Pb isotope geochronology of zircon: Evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim. Cosmochim. Acta., 59:2491~2500
[13] [13]Krogh T E. 1973. A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic determinations. Geochim. Cosmochim. Acta., 37:485~494
[14] [14]Krogh T E. 1982. Improved accuracy of U-Pb zircon ages by selection of more concordant fractions using a high gradient magnetic separation tecnique. Geochimi. Cosmochimi. Acta. , 46:631~636
[15] [15]Liu D Y, Page R W, Compston W and Wu J S. 1985. U-Pb zircon geochronology of late Archaean metamorphic rocks in the Taihangshan-Wutaishan area, North China. Precambrian Res. , 27:85~109
[16] [16]Ludwig K R. 1991. 1SOPLOT: A plotting and regression program for radiogenic-isotope data. USGS open-file report, 91-445:1~39
[17] [17]Scott D J and Gauthier G. 1996. Comparison of TIMS (U-Pb) and laser ablation microprobe ICP MS (Pb) techniques for age determination of detrital zircons from Paleoproterozoic metasedimentary rocks from northeastern Laurentia, Canada, with tectonic implications. Chemical Geology, 131:127~142
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0