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ABSTRACT

This is the second part of **Mesoscale Instability of a Baroclinic Basic Flow™ which discusses the
instability of a basic flow against mesoscale perturbations of transversal type.

A bi-mode instability spectrum is obtained by generalizing the Fady model to ageostrophic regime in
an f-plane: Eady modes present at the synoptic and subsynoptic scales, while the ageostrophic baroclinic
mesoscale modes present at the inertial scales of a few tens to hundreds kilometers. The mesoscale mode
is featured by an asymmetric “cat eyes” pattern in the vertical cross section and by an alternative distri-
bution of divergence and vorticity in the horizontal direction. The growth rates of the mesoscale modes
are about four times larger than those of Fady modes in magnitudes for the same wind profile. The major
energy source for development both Eady mode and mesoscale mode is the baroclinic available energy stored
in the rotational basic flow.

I. INTRODUCTION

The previous research on instability of a basic flow against disturbances of the trans-
versal type is mostly concentrated on synoptic and convective scales. Charney (1947)
and Eady (1949) first discovered the instability of a baroclinic flow against quasi-geostrophic
perturbation of synoptic scales. In the quasi-geostrophic framework a preferred scale
about 2000 km may be obtained when extending the spectrum of Eady mode to the shorter
wave range by including condensation heating in the model so as to decrease the effective
static stability. An Eady mode of shorter wavelength may also be obtained when the wind
shear is concentrated within a shallow layer or the basic flow has a significant curvature
(Prakki et al., 1982). These “wet” or ‘“shallow” quasi-geostrophic disturbances may be
able to interpret the medium-scale waves observed on the “Meiyu” fronts and those
short waves around a polar vortex, but the more difficult problem is the dynamics of meso-
B systems on the inertial scales (a few tens to hundreds of kilometers). By approximate
analyses Stone (1966, 1970) showed that there exist baroclinic instability for Richardson
number R, > 0.95, symmetric instability for R;<0.95, and Kelvin-Helmholtz instability for
0< R;<0.25. Based on the theory of two-dimensional turbulehce, Lilly (1983) suggested
that the mesoscale motions are supported by small scale motions because the mesoscale
motions are located at the inertial regime on the energy spectrum where no energy injection
occurs and only energy transfer among different scales are possible. On the other hand,
the lack of peak on mesoscales in the statistical power spectrum does not necessarily mean
that the atmosphere is absolutely stable against mesoscale perturbations, rather, it may
imply that the mesoscale instability requires more rigid criteria and therefore only occurs
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in the atmosphere with small probability. In order to discover a disturbance on the scales
about a hundred kilometers it requires to organize special field experiments with high quality
and high temporal and spatial resolutions in observation.

Fig. 1. Distribution of surface mesoscale convergence (solid lines) and tempera-
ture waves(dashed lines) along the direction of thermal wind. The contour
intervals of the isoplethes are 4x10-5%~t for divergeqce and 2°C
for temperature (1400 GMT 9 May 1979, Texas).

Fig. 1 shows a case of mesoscale analysis based on observations in SESAME 1979
in United States (Ogura et al., 1982). Along the cold front there are temperature waves
and divergence disturbances of a wavelength about 400 km. The vorticity also has a cor-
responding distribution. The wave train aligns along the axis of the south-west jet ahead
of a cold vortex on 500 hPa. In the following section the conditions favorable to these
kinds of transversal mesoscale disturbances to occur in a baroclinic, continuously stratified
atmosphere will be discussed.

II. GOVERNING EQUATIONS AND SIMPLE ANALYTIC SOLUTION

The three-dimensional governing perturbation equations (1) and the set of equations
(2) presented in the first part of the present work (Zhang, 1988) are suitable to be solved by
matrix method. In order to find the theoretical solution of the problem for a simple wind
profile, we first discuss the characteristic equation for transversal disturbances, i. e., Eq.
(5) in the first part of the present work:

2__ 12 a2 dZW_ zfoz _ﬂ_ 2 2. 442 PR
[f =k U= 0) I =y gy —RIV = U —0)

-U.,(U—c)IW=0, (1)
where IV represents the eigenfunction of the vertical velocity, ¢ the complex characteristic
phase speed, U stands for the basic flow, f is the Coriolis parameter, /N the buoyancy
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frequency, £ the wavenumber in x-direction, A=0 or 1 indicates if the model is hydro-
static or not. Eq. (1) has three singularities fon the real axis: U=c¢ and U=c*f/k,
which correspond to three critical levels belonging to Rossby wave and inertial waves,
respectively. Eq. (1) becomes quasi-singular when the imaginary part of ¢ is very small
which results in difficulties in convergence for computation of ¢. If A=0 and without
considering U ,,, the problem is relatively easy to handle. Further, for large scale motions
£ is small, Eq. (1) is reduced to the classical Eady model with only one singularity
2 2 2

(U—c)[%ZVTV—EfJ}’—W]—zU,‘Z—VZV=o. (2)
This model has the theoretical solution and its instability spectrum has a short wave cut-off.
Does there exist any mesoscale instability beyond the short wave cut-off? The ageostrophic
model (1) may include this possibility. The following analysis will demonstrate the exis-
tence of the theoretical solution for the ageostrophic model (1).

By introducing a new variable R=%(UJ —c)/f and Richardson number R;=N?/U?

for U,, and A=0 Eq. (1) is reduced to the following form
d'wW , ,dW
Jp7 T2 p TRRW =0, (3)
It is shown that Eq. (3) is essentially identical with the hypergeometric differential equation.
In the canonical form of the hypergeometric differential equation

x(x—1)y"+[(a+B+1)x—y]y' tafy=0, (4)
we introduce variable transformation x=R*, and choose (a,8) =1/2(—1/2+~/1/4—R; ) »
and p=1/2, then Eq. (4) is reduced to (3). Therefore Eq. (3) also has a solution in the
form of hypergeometric function F (a, 8, p, R?). In order to find the specific solution
satisfying the upper and lower boundary conditions and to obtain the eigenvalue ¢, two
linearly independent hypergeometric functions F, and F, are used to construct the general
solution

R(R*-1)

W=AF,+BF,. (5)
The solution J# has to satisfy the following relations at the upper and the lower boundaries
where Rr=k4(U/s—c)/f and Ry=t(Uz—c)/f:
Wor=AF (R:) +BF,.(R?) =0
Wy=AF,(R})+ BF, (R%) =0}'
The eigenvalue ¢ is calculated by the following determinant if the coefficients 4 and B
do not vanish simultaneously:

This transcendental equation can be solved for eigenvalue ¢ in terms of iterative method.

(6)

III. INSTABILITY OF AN IRROTATIONAL STRATIFIED FLOW AND THE “CAT EYES” PATTERN

F=0 is one of the special cases of Eq. (1). For the linearlwind profile U=q4z Eq.
(1) is reduced to

dZW_’_[ R; \Z_Ak:]Wzo, (8)
c/

dz? (z—2z

where R;=N*/a*, z,=c/a. Assuming that A=0 and introducing variable transformation
n=k(z-z;) we have
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C,cos (blnn) + C,cos (blngy) R,-——}
=146 4 Co wenpel1
C,+C.lnlp 0

where p? is defined as an integer. The eigenvalue ¢ is then determined by the upper
and lower boundary conditions }# =0. Assuming that the wind speed at the upper bound-
ary is Uy, for R;<1/4 a complex phase speed ¢=U;/2 [1+ictg (nm/26)] is ob-
tained (n is a positive integer), which causes instability of the basic flow; for R;,=1/4
the boundary condition gives ¢=U/2; for R;>1/4 we have c¢=U;/(1-¢*""/*), also
representing a neutral wave. Therefore R;=1/4 is a critical value for instability to occur
in a hydrostatic basic flow of linear profile.
For nonlinear wind profile Eq. (1) is reduced to Taylor-Goldstein equation:

dw N* U. _ ] 3
dz’ [(U—c)z Uoe M V=0, (9)

which is widely used for discussions of the development and propagation of the gravity

Fig. 2. Instability spectrum in growth rates Fig. 3. The eigenfunction corresponding
versus wavelengths and the non- to the point “x” in Fig. 2, is
dimensional wavenumber a=kh. R; shown in the vertical cross section,
is labeled near the curves, the bold height z versus horizontal distance
‘dashed line indicates the wavelength x. R;=0.1, L=8 km,

of the most unstable mode.

waves. We assume that the basic flow U=U, tanh [ (z-z,)/kh], and choose the stratification
parameter so that the local Richardson number around z,is R;=0—0.2 and the vertical
resolution d =20 m within the integration domain between 0—10 km. In order to obtain
a complete picture the center z, of the maximum shear is assumed to locate at the center
of the integration domain with a characteristic thickness of the shear layer =2 km. The
eigenvalue ¢ and the eigenfuntion J¥ satisfying Eq. (9) and the boundary condition }¥ =0
are then obtained by “shooting method” (Figs. 2 and 3). Since streamfunction is related
to W by W =1,, Fig. 3 also represents the picture of the streamfunction satisfying Eq. (9)
but with a phase shift of /2.

It is realized from the instability spectrum given in Fig. 2 that the whole wavebands
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of 2ah<IL<co are all unstable for a hypertangent basic flow of curvature and with a
minimum R;=0—0.1 at z=2z,. The maximum growth rate on the instability spectrum
locates, near the nondimensional wavénumber Ak=0.5 (wavelength 4z#) with a phase
speed C,=0. A “cat eyes” pattern of the streamlines sets up which is centered at the
middle level z, where the shear reaches its maximum (Fig. 3). As the characteristic thick-
ness of the shear layer £ increases, the wavelength of the most unstable mode may
increase to a few tens of kilometers which is much larger than the convective scales. For
the purpose of comparison, the case for R; <0 is also calculated. The characteristic flow
pattern is featured by simple convective cells with a little tilt (figure ommitted) which is
more similar to the simple thermal convection rather than the *‘cat eyes” pattern occurring
in a statically stable stratified fluids.

IV, f#0 —EADY MODES AND MESOSCALE MODES

The Coriolis parameter f is usually not negligible for motions on the scale of hundred
kilometers. The gradient of temperature supported by rotation of the basic flow may pro-
vide available potential energy to the disturbances of certain special structures. The analyses
on symmetric instability show that a baroclinic basic flow which is absolutely linertially
stable for a pure horizontal disturbance and convectively stable for a vertical perturbation,
may be unstable for a slant convective perturbation as long as the disturbance is less tilt
than the isentropic surface (Zhang, 1988). For disturbances of transversal type on the synop-
tic scales the quasi-geostrophic Eady modes and Charney modes are growing with time with
their phases tilted westward with height (Charney, 1947; Eady, 1949). The analysis in
Section II pointed out that on the wavebands, where ageostrophic wind is important, Eq.
(1) has a solution in form of hypergeometric functions. Because solving the transcendental
equation (7) by iterative method is time consuming, the following will give the results
obtained by two numerical techniques, i. e., the matrix method and shooting method for
the phase speeds, growth rates and the characteristic flow patterns.

For a simple transversal perturbation in (x,z)-plane the streamfunction y can be
introduced to decrease the order of the equation. Let u=y¢,, w=—1y,, M*’=—gdlnpg/oz,
N*=gdlng/dy, operater V:=9*/2x"*+8*/0z*, and the basic flow be a function of 2z
alone and anelastic assumption is used, the perturbation equations are then written as

9 i) 2y — _ _
(8t + ULV —Usspu— [0 40,0,

(2 U(%)wrfw,:o, (10)

92 i) M ty
<8t+U8x 60— M+ Ny, =0.
Assuming the following characteristic wave solution b
(1/),1),9)=Re[(lp,V,T)e"k(x"C” (11)
and substituting (11) for (10), a set of ordinary differential equations in z are then obtain-
ed for eigenfunctions (¥,}/,7), which are further discretized in z to produce a matrix
equation
cHE=2¢ (12)
where ¢ is the eigenvalue, £ the eigenvector defined by discrete point sets on z coordinate,
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G and @ the complex matrices consisting of the parameters of the basic flow M3 N?,
f, the wavenumber % and the vertical resolution d. Under the constraints of the upper
and lower boundary condition J =0, Eq. (12) can be directly solved by use of the stand-

ard computer software.
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Fig. 4. (a) The instability spectral curves a, b, ¢ are for the baroclinic flow with F;=0.625,
6.25 and 25, respectively. The set of curves on the right hand side repre-
sents Eady modes, while that on the left side represents mesoscale modes,
d=0.5 km, the extent of the basic flow and the integration domain H=10 km,
U =0—40 m/s,

®)

The growth rates and phase speeds of mesoscale modes (notice that the

units of the coordinate are 10 times larger than that used in Fig. 4a) R;=0.625,
H=10km, d=0.25 km, U=0—-40 m/s.

©

wavelength, units in km.

The growth retes and phase speeds for mesoscale modes and Eady modes.

R;=0.625, H=2 km,. d=0.05 km, U=0—8 m/s. The abscissa indicates
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Fig. 4 shows the instability spectra obtained by matrix method for R,=0.625, 6.25
and 25 (UJ,.,=0). The speed of the basic flow linearly increases from O to 40 m/s within
the integration domain z=0-—10 km. A staggering scheme is used for arrangement of
v, 0 and ¢ with ¢d=0.5 km and 0.25 km for 20 and 40-level model, respectively.
The sets of modes are obtained from the calculations: Eady modes and mesoscale inertial
gravity modes. The group of curves on the right hand side in Fig. 4a indicates the growth
rates of Eady modes. As R; decreases the instability spectra shift to the left (“violet
shift”) with a shortened wavelength and an enhanced growth rates o;=4c;. In order to
verity the accuracy of the matrix method the theoretical solution of Eady model is also
computed for the same parameters (Eady, 1949). The growth rates are shown in Fig. 4a
by those points which are close to the curve b. This implies a sufficient accuracy of the
matrix method for calculation of Eady mode in a 20-level model. The truncation wave-
length of curve a is about 1000 km for R;=0.625 and the maximum growth rate, which
corresponds to an e-folding time around 12 hours, appears at the wavelength about 1880
km. According to Tokioka’s estimate (1971), the magnitude of /; on the Meiyu front
is about 0.4. He obtained a wavelength of maximum growth rate about 1256 km in a 30-
level model for a basic flow of R;=0.4 and a shear layer of 4 km in its vertical extent.
The results of the computation obviouly depend upon R; and the thickness /{ of the
shear layer. In order to check the accuracy of computation for curve a, the shooting method
of high resolution (d=10 m) is also used to solve the two-point boundary value problem
of Eq. (1) by use of curve a as the initial guess. The calculated growth rates for the same
parameters are marked in Fig. 4a by “ x”, which are very close to the results of 20-
level model solved by matrix method. This indicates that the vertical resolution for calcula-
tions of Eady-mode is sufficient within the range of meso-a scales.

It is interesting to notice some similarities of the above results to those in computation
of geostrophic modes. Kuo (1979) has obtained more than one set of instability spectra
for the growing ultra-long waves beyond the longwave cut-off of Charney modes. In the
above calculations more than one set of mesoscale ageostrophic instability spectra beyond
the short wave cut-off of Eady-modes is also obtained as shown in Fig. 4a. Especially,
when R; is smaller than one, the whole meso-# scales ranging from 20—500 km are all
unstable. Unlike Eady-modes, the computation on mesoscale bands is extremely sensitive
to the vertical resolution. The integration domain of Eq. (1) contains only one singularity
at synoptic scales but includes three singularities at mesoscales, which correspondingly
requires high resolution in the vertical. A series of numerical experiments of different
resolutions for R;=0.625 show that the simplest two-level model is able to produce
Eady-modes, but it loses mesoscale instability at all. The five-level model can produce weak
instability on mesoscales. The 20-level model further results in a significant instability
spectrum at mesoscales as shown in Fig, 4a. In a 40-level model the computed ¢; is
greatly increased with a maximum value shifted towards the shoEter waves. There is no
short wave cut-off at the wavelength about 20 km, which occurred in the 20-level model
as a computational cut-off. The e-folding time given by the 40-level model is about 3—4
hours, corresponding to a ¢; much larger than that of Eady-mode. The phase speeds
are between 20—30 m/s, higher than the vertically averaged wind speed. According ito
Kuo’s experience (1985), the solution has little changes when the number of levels changes
between 50—100, implying that the solution is approaching convergence. In order to further
clarify the impact of the vertical resolution on computations at mesoscales without
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increasing the requirement for core storage of computers, the 40-level model is still used
but with a smaller vertical domain of 2 km and a resolution d=0.05 km which is 10 times
higher than that used in Fig. 4a. The results are shown in Fig. 4c. The bi-mode instability
spectrum is again obtained with its left hand side representing the mesoscale modes and
the right hand side the ageostrophic Eady modes occurring on the mesoscales. The
computational short wave cut-off no longer appears because of the increased resolution.
The behavior of o; approaching to saturation bears a similarity to the spectral behavior
of the symmetric instability. Moreover, the spectra of Eady-modes and the mesoscale modes
all shift to the short wave side since the vertical extent of the shear layer has been signifi-
cantly reduced. In case of low resolution (d=0.5 km) the growth rate on mesoscales
is about 1.5 times larger than that of the Eady modes in their maximum values (Fig. 4a).
In case of high resolution (d=0.05 km) the maximum growth rate of the ageostrophic
mesoscale modes is about 3.6 times larger than that of Eady modes at synoptic scales.
Such a large growth rate is necessary for the development of mesoscale disturbances.

It is at least of some confidence from the above calculations at different resolutions
that there exist “shallow” or “moist” Eady modes at the meso-¢ scales (for small H and
R;), and the ageostrophic inertial gravity modes at the inertial scales from tens to hundreds
of kilometers.Their growth rates are smaller than those of convections in a static unstable
atmosphere but are larger than those of the quasi-geostrophic Eady-modes.

V. STRUCTURE OF THE CHARACTERISTIC WAVE AND ENERGY CONVERSION

The property of energy conversions can be determined from the structures of the cha-
racteristic waves and of the baroclinic basic flow. In a shear flow without rotation the
kinetic energy of the basic flow is the unique source of energy for the development of the
disturbances; while in a shear flow with rotation the available potential energy supported
by the rotation of the system can be another major source of energy for the growth of
the disturbances. The previous investigations show that Eady-modes on synoptic scales
are supported by the latter source, whereas the small scale instability of a shear flow is
supported by the former source. This section will analyze the structure of the characteris-
tic waves and the energy sources for the growing disturbances on mesoscales. The formulas
for energy calculation have been given in the first part of the present paper (Zhang, 1988).

The structure of Eady mode of wavelength 2000 km is shown in Fig. 5 for R;=
0.625 (corresponding to the point o in Fig. 4a). The eigenfunction and eigenvalue are
simultaneously obtained by solving Eq. (12). Fig. 5 delineates the major feature of Eady
mode: the vertical velocity reaches its maximum in the middle level, the trough line and
the ridge line (the lines which separate the southerly and northerly) slant westward with
increasing height. The temperature disturbance has a phase lag in respect to the wind
perturbation, p and w are positively correlated while # and w have a negative correlation.
Substituting the solution of the characteristic wave into the energy equations, we obtain
the ratio r=<P,P’)/{(K ,K’) which is about 100, implying that the Eady-modes are baro-
clinically dominated in nature. ‘ '

Fig. 6 shows the structure of the ageostrophic mesoscale mode with wavelength 100 km
(the point o in Fig. 4a), the bold solid and dashed lines represent streamfunction in the
(x,2)-plane, as a whole which is similar to the ‘“cat eyes” flow pattern obtained in an
irrotational shear flow with f=0 (Fig. 3), except that the disturbances are more concentrat-
ed in the lower layer, especially with a rapid decreasing of » and ¢ with height. Recently,



Neo. 3 INSTABILITY OF BAROCLINIC BASIC FLOW 1l 321

2(fra)

)
t
~
s
-
——

l

ne
A

e — T ———

N
7 N
N

i
)
LA
v
.
~ s

g, ,_‘-*_ 'Q-‘.“\";
T A & h=ts
S S B e

| 0 ;

K pm
Fig. 5. The structure of the Eady-mode in Fig. 6. The structure of the ageostrophic mesoscale
(x, z)-plane. The bold solid and eigenmode. The bold, mean and thin lines
dashed lines are isopleths of souther are the isotaches for streamline, temperature
and norther wind speeds, the thin and meridional wind speed, respectively.
lines are for the positive and ne- The solid lines are positive, and the dashed
gative temperature perturbations, one negative. The positive and negative
respectively (units are arbitrary). The temperature centers are marked by W,C.
maximum ascending and descending R;=0.625, L=100 Km (point o in Fig.

motions are marked by the bold 4a).
arrow. H=10km, R;=0.625, L=
2000 km (points X in Fig. 4a).

Kuo and Seitter (1985) have also calculated the structures of the disturbances for an atmos-
phere of partly unstable stratification, which are also featured by a rapid damping
of x and § with height. The distributions of divergence and convergence can be deduced
from streamfunction in Fig. 6 based on u=¢y, and w=-y,, and the vorticity {=0av/dx
may be derived from v. Therefore the following structure sequence in the x-direction
is obtained: convergence—>anticyclone-—>divergence-—>cyclone.

Above the center of the lower “cat eye”, convergence changes sign while » keeps its
sign to be unchanged, which forms an inversed structure sequence. On the scale of hun-
dreds of kilometers the inertial gravity waves form an alternative distribution of the mesoscale
centers of divergence and vorticity because of the effect of f, which may generate mesoscale
disturbances of transversal type in the lower troposphere as shown in Fig. 1. A better pic-
ture may be obtained when the same calculation is applied to the realistic wind profiles
instead of the ideal linear profile.

The energy properties of the ageostrophic mesoscale modes are different from those of
Eady-modes. By substituting the eigen solution of Eq. (12) into the energy equations for
a wavelength of 100 km, the calculated ratio r ={(P,P’)/{K,K’) is about 5, i. e. both



322 ACTA METEOROLOGICA SINICA Vol. 2

terms of energy conversions are of the same order of magnitudes. However, the energy
properties are quite different when compared with an irrotational system. In a system
without rotation, the conversion term (P, P’)=0, and hence r=0. This indicates that
the mesoscale perturbation is more likely to develop in a baroclinic basic flow than in a
fluid system without rota‘non The significant positive correlation in (v, §) and the nega-
tive correlation in (u,w) are both favorable to the energy conversions from the basic flow

toward the disturbances.
V1. CONCLUDING REMARKS

In order to interpret disturbances propagating along the basic flow on the meso-to-
medium scales, Eady model is generalized to ageostrophic regime. The mesoscale instabil-
ity spectra are found beyond the short wave cut-off of Eady model. Eady-modes may
extend to the meso—g wave band, keeping a quasi-geostrophic feature, as long as the vertical
extent of the shear layer is small or Richardson number i$ small. While on the inertial scales
of a few tens to hundreds of kilometers, the fastest growing mode possesses the property of
the inertial gravity waves with a growth rate about 4 times larger than that of Eady-mode.
Such a large growth rate may be able to generate vertical velocity and low level conver-
gence of sufficient intensity, and hence to serve as a dynamic mechanism for triggering and

organizing the deep convective clouds.

The present paper is limited to discussing the transversal disturbances of the mesoscales
with the simplest model of prototype. In order to interpret the propagating mesoscale disturb-
ances along the “Meiyu” front and along the low level jets as well as the mesoscale
gravity waves propagating into the stratosphere and mesosphere from the tropopause jet
stream, more calculations on a variety of realistic situations are expected.
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